JPH0611205A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH0611205A
JPH0611205A JP16731892A JP16731892A JPH0611205A JP H0611205 A JPH0611205 A JP H0611205A JP 16731892 A JP16731892 A JP 16731892A JP 16731892 A JP16731892 A JP 16731892A JP H0611205 A JPH0611205 A JP H0611205A
Authority
JP
Japan
Prior art keywords
cooling
intermediate pressure
heating
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16731892A
Other languages
Japanese (ja)
Inventor
Nobuhiro Nakagawa
信博 中川
Masao Kurachi
正夫 蔵地
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP16731892A priority Critical patent/JPH0611205A/en
Publication of JPH0611205A publication Critical patent/JPH0611205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an air conditioning apparatus where gas injection can be used without spoiling the reliability of a compressor even when the outdoor load fluctuates during air conditioning operation. CONSTITUTION:An air conditioning apparatus is provided with an outside temperature detector 21 which detects the outside temperatures, an intermediate pressure detector 22 which detects the intermediate pressure of a gas-liquid separator 14, an air conditioning mode judging device 24 which judges cooling or heating operation mode, a set intermediate pressure arithmetic device 25 which does arithmetic of set intermediate pressure based on the outside temperatures. In addition, an intermediate pressure judging device 26 which compares the arithmetic result with the intermediate pressure to judge, a pressure reducing amount decision device 27 which decides the pressure reducing amount of a pressure reducing device 15 for air conditioning corresponding to the judgment result, and a pressure reducing device driver 28 which drives the pressure reducing device 15 for air conditioning corresponding to the pressure reducing amount are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスインジェクションを
備えた冷暖房装置の制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of a heating and cooling system equipped with gas injection.

【0002】[0002]

【従来の技術】従来の技術としては特開昭57−124
661号公報で知られるような空気調和機がある。
2. Description of the Related Art As a conventional technique, JP-A-57-124 is known.
There is an air conditioner as disclosed in Japanese Patent No. 661.

【0003】以下、図面を参照しながら従来の技術につ
いて説明する。図5において、1は圧縮機、2は四方
弁、3は室外側熱交換器、4は毛細管よりなる第一減圧
装置、5は気液分離器、6は毛細管よりなる第二減圧装
置、7は室内側熱交換器、8はアキュムレータであり、
これらを冷媒管9を介して連通し冷媒サイクルを構成し
ている。
A conventional technique will be described below with reference to the drawings. In FIG. 5, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a first pressure reducing device made of a capillary, 5 is a gas-liquid separator, 6 is a second pressure reducing device made of a capillary, 7 Is an indoor heat exchanger, 8 is an accumulator,
These are communicated via the refrigerant pipe 9 to form a refrigerant cycle.

【0004】10は開閉弁であり、圧縮機1と気液分離
器5の上部とを連通するインジェクション管11に設け
られている。
An on-off valve 10 is provided on an injection pipe 11 which connects the compressor 1 and the upper portion of the gas-liquid separator 5 to each other.

【0005】以上のように構成された空気調和機につい
て、その動作を説明する。まず、冷房運転時は図5の実
線矢印の冷媒サイクルとなり、圧縮機1で圧縮された高
温高圧ガスは四方弁2を通り室外側熱交換器3で放熱し
て凝縮液化し、第一減圧装置4で中間圧力(約1MP
a)に減圧されて気液分離器5に送られる。
The operation of the air conditioner configured as above will be described. First, during the cooling operation, the refrigerant cycle indicated by the solid arrow in FIG. 5 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the outdoor heat exchanger 3 to be condensed and liquefied. Intermediate pressure at 4 (about 1MP
It is depressurized to a) and sent to the gas-liquid separator 5.

【0006】気液分離器5から出た冷媒は第二減圧装置
6で減圧され、室内側熱交換器7で吸熱蒸発して四方弁
2とアキュムレータ8を通って圧縮機1へ循環する。
The refrigerant discharged from the gas-liquid separator 5 is decompressed by the second decompression device 6, endothermicly evaporated by the indoor heat exchanger 7 and circulated to the compressor 1 through the four-way valve 2 and the accumulator 8.

【0007】このとき開閉弁10を開くと、気液分離器
5からガス冷媒がインジェクション管11を通って圧縮
機1に導かれるため、室内側熱交換器7にエンタルピー
の小さい液冷媒が流れ、冷房能力が増大する。
At this time, when the on-off valve 10 is opened, the gas refrigerant from the gas-liquid separator 5 is guided to the compressor 1 through the injection pipe 11, so that the liquid refrigerant having a small enthalpy flows to the indoor heat exchanger 7, Cooling capacity increases.

【0008】一方、暖房運転時は図5の破線矢印の冷媒
サイクルとなり、圧縮機1で圧縮された高温高圧ガスは
四方弁2を通り室内側熱交換器7で放熱して凝縮液化
し、第二減圧装置6で中間圧力(約0.6MPa)に減
圧されて気液分離器5に送られる。
On the other hand, during the heating operation, the refrigerant cycle indicated by the broken line arrow in FIG. 5 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the indoor heat exchanger 7 to be condensed and liquefied. The pressure is reduced to an intermediate pressure (about 0.6 MPa) by the two pressure reducing devices 6 and sent to the gas-liquid separator 5.

【0009】気液分離器5から出た冷媒は第一減圧装置
4で減圧され、室外側熱交換器3で吸熱蒸発して四方弁
2とアキュムレータ8を通って圧縮機1へ循環する。
The refrigerant discharged from the gas-liquid separator 5 is decompressed by the first decompression device 4, endothermicly evaporated by the outdoor heat exchanger 3 and circulated to the compressor 1 through the four-way valve 2 and the accumulator 8.

【0010】このとき開閉弁10を開くと、気液分離器
5からガス冷媒がインジェクション管11を通って圧縮
機1に導かれるため、このガス冷媒量分だけ室内側熱交
換器7を流れる冷媒量が増加し、暖房能力が増大する。
At this time, when the on-off valve 10 is opened, the gas refrigerant from the gas-liquid separator 5 is guided to the compressor 1 through the injection pipe 11, so that the refrigerant flowing in the indoor heat exchanger 7 by the amount of this gas refrigerant. The amount increases and the heating capacity increases.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、冷暖房運転で適正中間圧力が異なるにも
かかわらず、第一減圧装置4と第二減圧装置6の減圧量
が一定であるため、冷暖房運転両方でガスインジェクシ
ョンを使用した場合には、どちらかの運転時に液冷媒が
インジェクション管11を通って圧縮機1に流れ込み、
圧縮機1の信頼性を損なうという課題を有していた。
However, in the above-mentioned configuration, the decompression amounts of the first decompression device 4 and the second decompression device 6 are constant, although the proper intermediate pressures differ during the heating and cooling operation. When gas injection is used in both the heating and cooling operation, the liquid refrigerant flows into the compressor 1 through the injection pipe 11 during either operation,
There is a problem that the reliability of the compressor 1 is impaired.

【0012】また、第一減圧装置4と第二減圧装置6の
減圧量が一定であるため、室外負荷が変動して冷媒循環
量が変動した場合にも、液冷媒がインジェクション管1
1を通って圧縮機1に流れ込み、圧縮機1の信頼性を損
なうという課題を有していた。
Further, since the pressure reducing amounts of the first pressure reducing device 4 and the second pressure reducing device 6 are constant, the liquid refrigerant is injected into the injection pipe 1 even when the outdoor load changes and the refrigerant circulation amount changes.
There is a problem that the reliability of the compressor 1 is impaired by flowing through the compressor 1 into the compressor 1.

【0013】本発明は上記課題を解決するもので、冷暖
房両運転時、さらには室外負荷が変動した場合にも、圧
縮機の信頼性を損なうことなくガスインジェクションを
使用でき、冷暖房能力を増大できる冷暖房装置を提供す
ることを目的としている。
The present invention solves the above-mentioned problems. The gas injection can be used without impairing the reliability of the compressor and the cooling and heating capacity can be increased during both the heating and cooling operations and also when the outdoor load changes. The purpose is to provide an air conditioner.

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
に本発明の冷暖房装置は冷房用減圧装置、冷房用逆止
弁、気液分離器、減圧量可変の冷暖兼用減圧装置を備
え、冷房用減圧装置と冷房用逆止弁に並列に位置する暖
房用逆止弁と暖房用減圧装置と、気液分離器と圧縮機を
連通して開閉弁を有するインジェクション管と、外気温
度を検出する外気温度検出手段と、気液分離器の圧力を
検出する中間圧力検出手段と、冷房ないし暖房を判定す
る冷暖モード判定手段と、外気温度検出手段で検出した
外気温度を基に中間圧力の設定値を冷暖房に応じて演算
する設定中間圧力演算手段と、この演算結果と中間圧力
検出手段で検出した圧力とを比較判定する中間圧力判定
手段と、この判定結果に応じて冷暖兼用減圧装置の減圧
量を判定する減圧量判定手段と、この減圧量に応じて冷
暖兼用減圧装置を駆動する減圧装置駆動手段を備えた構
成となっている。
In order to achieve this object, an air conditioner according to the present invention comprises a pressure reducing device for cooling, a check valve for cooling, a gas-liquid separator, and a pressure reducing device for both heating and cooling of which the amount of pressure reduction is variable. Check valve for heating and a pressure reducing device for heating, which are located in parallel with the pressure reducing device for cooling and the check valve for cooling, an injection pipe having an on-off valve for connecting the gas-liquid separator and the compressor, and detecting the outside air temperature. Outside air temperature detecting means, intermediate pressure detecting means for detecting the pressure of the gas-liquid separator, cooling / heating mode determining means for determining cooling or heating, and set value of the intermediate pressure based on the outside air temperature detected by the outside air temperature detecting means. The intermediate pressure determining means for comparing the calculated result with the pressure detected by the intermediate pressure detecting means, and the decompression amount of the heating / cooling decompressor according to the determination result. Decompression amount judgment And means, has a configuration including a pressure reducing device driving means for driving the cooling and heating combined decompressor in response to the pressure reduction amount.

【0015】[0015]

【作用】本発明は上記のような構成により、冷暖モード
判定手段で冷房運転と判定した時は、外気温度検出手段
で検出した外気温度を基に冷房運転に適した中間圧力を
設定中間圧力演算手段で演算し、この結果と中間圧力検
出手段で検出した圧力とを中間圧力判定手段で比較判定
し、この結果に応じて減圧量判定手段で減圧量を決め、
減圧装置駆動手段で冷暖兼用減圧装置を駆動する。
According to the present invention, when the cooling / heating mode determining means determines the cooling operation, the intermediate pressure suitable for the cooling operation is set based on the outside air temperature detected by the outside air temperature detecting means. Calculated by the means, the result and the pressure detected by the intermediate pressure detecting means are compared and determined by the intermediate pressure determining means, and the pressure reducing amount is determined by the pressure reducing amount determining means according to the result,
The decompression device driving means drives the cooling / heating decompression device.

【0016】また、冷暖モード判定手段で暖房運転と判
定した時は、外気温度検出手段で検出した外気温度を基
に暖房運転に適した中間圧力を設定中間圧力演算手段で
演算し、この結果と中間圧力検出手段で検出した圧力と
を中間圧力判定手段で比較判定し、この結果に応じて減
圧量判定手段で減圧量を決め、減圧装置駆動手段で冷暖
兼用減圧装置を駆動する。
When the cooling / heating mode determining means determines that the heating operation is performed, the intermediate pressure suitable for the heating operation is calculated by the set intermediate pressure calculating means based on the outside air temperature detected by the outside air temperature detecting means. The pressure detected by the intermediate pressure detection means is compared and determined by the intermediate pressure determination means, the reduced pressure amount determination means determines the reduced pressure amount according to the result, and the pressure reduction device driving means drives the cooling / heating combined pressure reduction device.

【0017】これらのことにより、冷暖房両運転時に室
外負荷が変動した場合にも中間圧力を適正値に保ち、イ
ンジェクション管から圧縮機への液冷媒の流入を防止す
る。
As a result, the intermediate pressure is maintained at an appropriate value even when the outdoor load fluctuates during both heating and cooling operations, and the inflow of liquid refrigerant from the injection pipe to the compressor is prevented.

【0018】[0018]

【実施例】以下、本発明の一実施例を図1から図4を用
いて説明する。図1は本実施例における冷暖房装置の冷
媒サイクル図、図2は冷暖兼用減圧装置の制御フローチ
ャート、図3は冷房運転時の設定中間圧力と外気温度の
相関を示す特性図、図4は暖房運転時の設定中間圧力と
外気温度の相関を示す特性図である。尚、従来と同一構
成については同一符号を付し、その詳細な説明を省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a refrigerant cycle diagram of the cooling / heating device according to the present embodiment, FIG. 2 is a control flowchart of the heating / cooling decompression device, FIG. 3 is a characteristic diagram showing the correlation between the set intermediate pressure and the outside air temperature during the cooling operation, and FIG. 4 is the heating operation. FIG. 7 is a characteristic diagram showing a correlation between a set intermediate pressure and an outside air temperature at the time. It should be noted that the same components as those of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0019】図1において、12は冷房用減圧装置であ
り、JIS冷房標準条件で運転した場合に圧力を約1M
Paに減圧できる毛細管を使用している。13は冷房用
逆止弁である。14は気液分離器である。15は冷暖兼
用減圧装置で、電動膨張弁を使用している。16は室内
側熱交換器であり、室内機fに収納されている。
In FIG. 1, reference numeral 12 is a decompression device for cooling, which has a pressure of about 1 M when operated under JIS cooling standard conditions.
A capillary tube that can reduce the pressure to Pa is used. Reference numeral 13 is a check valve for cooling. 14 is a gas-liquid separator. Reference numeral 15 is a cooling / heating decompression device, which uses an electric expansion valve. Reference numeral 16 denotes an indoor heat exchanger, which is housed in the indoor unit f.

【0020】圧縮機1、四方弁2、室外側熱交換器3、
冷房用減圧装置12、冷房用逆止弁13、気液分離器1
4の低部、冷暖兼用減圧装置15、室内側熱交換器1
6、アキュムレータ8を冷媒管18を介して連通し冷媒
サイクルを構成している。
Compressor 1, four-way valve 2, outdoor heat exchanger 3,
Cooling decompression device 12, cooling check valve 13, gas-liquid separator 1
4 lower part, cooling / heating decompression device 15, indoor heat exchanger 1
6, the accumulator 8 is connected via the refrigerant pipe 18 to form a refrigerant cycle.

【0021】19は暖房用逆止弁である。20は暖房用
減圧装置であり、毛細管を使用している。暖房用逆止弁
19と暖房用減圧装置20は冷房用減圧装置12、冷房
用逆止弁13と並列に設置されている。
Reference numeral 19 is a check valve for heating. Reference numeral 20 denotes a heating decompression device, which uses a capillary tube. The check valve 19 for heating and the pressure reducing device 20 for heating are installed in parallel with the pressure reducing device 12 for cooling and the check valve 13 for cooling.

【0022】21は外気温度検出手段であり、室外機g
にサーミスタが取り付けられている。22は中間圧力検
出手段であり、気液分離器14に圧力センサが取り付け
られている。23は室内機fのリモコンである。
Reference numeral 21 is an outside air temperature detecting means, which is an outdoor unit g.
A thermistor is attached to. Reference numeral 22 is an intermediate pressure detecting means, and a pressure sensor is attached to the gas-liquid separator 14. Reference numeral 23 is a remote controller for the indoor unit f.

【0023】24は冷暖モード判定手段であり、リモコ
ン23の信号に応じて冷房運転か暖房運転かを判定す
る。25は設定中間圧力演算手段であり、外気温度検出
手段21で検出した外気温度を基に、冷房・暖房運転に
適した設定中間圧力を決定する。26は中間圧力判定手
段であり、中間圧力検出手段22で検出した圧力が設定
中間圧力より大きいか、小さいかを判定する。27は減
圧量判定手段であり、中間圧力判定手段26の判定結果
に従って電動膨張弁15をどれだけ(例えば20パル
ス)開くか、絞るか決める。28は減圧装置駆動手段で
あり、減圧量判定手段27の判定結果に応じたパルス数
を電動膨張弁15に送信して駆動させる。
Reference numeral 24 is a cooling / heating mode determining means, which determines whether the operation is the cooling operation or the heating operation according to a signal from the remote controller 23. Reference numeral 25 denotes a set intermediate pressure calculating means, which determines a set intermediate pressure suitable for cooling / heating operation based on the outside air temperature detected by the outside air temperature detecting means 21. Reference numeral 26 denotes an intermediate pressure determining means, which determines whether the pressure detected by the intermediate pressure detecting means 22 is higher or lower than the set intermediate pressure. Reference numeral 27 denotes a decompression amount determination means, which determines how much (for example, 20 pulses) the electric expansion valve 15 is opened or throttled according to the determination result of the intermediate pressure determination means 26. Decompression device driving means 28 transmits the number of pulses corresponding to the determination result of the decompression amount determination means 27 to the electric expansion valve 15 to drive it.

【0024】29は制御装置であり、冷暖モード判定手
段24、設定中間圧力演算手段25、中間圧力判定手段
26、減圧量判定手段27、減圧装置駆動手段28で構
成されている。
Reference numeral 29 is a control device, which comprises a cooling / heating mode determination means 24, a set intermediate pressure calculation means 25, an intermediate pressure determination means 26, a reduced pressure amount determination means 27, and a reduced pressure device drive means 28.

【0025】以上のように構成された冷暖房装置につい
てその動作を説明する。まず、冷房運転時は図1の実線
矢印の冷媒サイクルとなり、圧縮機1で圧縮された高温
高圧ガスは四方弁2を通り室外側熱交換器3で放熱して
凝縮液化し、冷房用減圧装置12で減圧されて冷房用逆
止弁13を通って気液分離器14に送られる。そして、
気液分離器14内の圧力が設定中間圧力になるように電
動膨張弁15で調節され、室内側熱交換器16で吸熱蒸
発して四方弁2とアキュムレータ8を通って圧縮機1へ
循環する。
The operation of the cooling and heating apparatus configured as described above will be described. First, during the cooling operation, the refrigerant cycle indicated by the solid arrow in FIG. 1 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 to radiate heat in the outdoor heat exchanger 3 to be condensed and liquefied, and the decompression device for cooling. The pressure is reduced at 12 and is sent to the gas-liquid separator 14 through the cooling check valve 13. And
The pressure in the gas-liquid separator 14 is adjusted by the electric expansion valve 15 so that it becomes a set intermediate pressure, and the heat is evaporated and absorbed in the indoor heat exchanger 16 to circulate to the compressor 1 through the four-way valve 2 and the accumulator 8. .

【0026】このとき開閉弁10を開くと、気液分離器
14からガス冷媒がインジェクション管11を通って圧
縮機1に導かれる。
At this time, when the opening / closing valve 10 is opened, the gas refrigerant is guided from the gas-liquid separator 14 to the compressor 1 through the injection pipe 11.

【0027】一方、暖房運転時は図1の破線矢印の冷媒
サイクルとなり、圧縮機1で圧縮された高温高圧ガスは
四方弁2を通り室内側熱交換器16で放熱して凝縮液化
し、電動膨張弁15で気液分離器14内の圧力が設定中
間圧力になるように調節される。そして、気液分離器1
4から出た冷媒は暖房用減圧装置20で減圧され暖房用
逆止弁19を通って室外側熱交換器3で吸熱蒸発して四
方弁2とアキュムレータ8を通って圧縮機1へ循環す
る。
On the other hand, during the heating operation, the refrigerant cycle indicated by the broken line arrow in FIG. 1 is performed, and the high-temperature high-pressure gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat in the indoor heat exchanger 16 to be condensed and liquefied, which is electrically driven. The expansion valve 15 adjusts the pressure in the gas-liquid separator 14 so as to reach the set intermediate pressure. And gas-liquid separator 1
The refrigerant discharged from 4 is decompressed by the heating decompression device 20, passes through the heating check valve 19 and is endothermicly evaporated by the outdoor heat exchanger 3, and circulates to the compressor 1 through the four-way valve 2 and the accumulator 8.

【0028】このとき開閉弁10を開くと、気液分離器
14からガス冷媒がインジェクション管11を通って圧
縮機1に導かれる。
At this time, when the opening / closing valve 10 is opened, the gas refrigerant is guided from the gas-liquid separator 14 to the compressor 1 through the injection pipe 11.

【0029】次に、電動膨張弁15の制御について図2
を用いて説明する。ステップ1は外気温度検出手段21
であり、サーミスタで外気温度Aoを検出してステップ
2に移行する。ステップ2は中間圧力検出手段22であ
り、圧力センサで気液分離器14の中間圧力Pmを検出
してステップ3に移行する。ステップ3は冷暖モード判
定手段24であり、リモコン23の信号から冷房か暖房
かを判定し、冷房運転の時はステップ4に移行する。
Next, the control of the electric expansion valve 15 will be described with reference to FIG.
Will be explained. Step 1 is the outside temperature detecting means 21.
Then, the outside air temperature Ao is detected by the thermistor, and the routine proceeds to step 2. Step 2 is the intermediate pressure detecting means 22, which detects the intermediate pressure Pm of the gas-liquid separator 14 with the pressure sensor and shifts to step 3. Step 3 is the cooling / heating mode determination means 24, which determines from the signal from the remote controller 23 whether cooling or heating, and when cooling is in progress, the process proceeds to step 4.

【0030】ステップ4は設定中間圧力演算手段25で
あり、冷房時の設定中間圧力Pcmを Pcm=a×Ao+b の式を用いて演算してステップ5に移行する。この式に
おいて、適正な設定中間圧力Pcmと外気温度Aoの間
には発明者らの実験から図3に示すような相関関係があ
ることがわかっており、図3から定数a=0.023、
b=0.2となる。
Step 4 is the set intermediate pressure calculating means 25, which calculates the set intermediate pressure Pcm during cooling using the equation Pcm = a × Ao + b, and shifts to step 5. In this equation, it is known from the experiments by the inventors that the proper set intermediate pressure Pcm and the outside air temperature Ao have a correlation as shown in FIG. 3, and the constant a = 0.023,
b = 0.2.

【0031】ステップ5は中間圧力判定手段26であ
り、中間圧力Pmと設定中間圧力Pcmが等しいときは
中間圧力Pmが適正であると判定してステップ1に戻
り、中間圧力Pmと設定中間圧力Pcmが等しくないと
きはステップ6に移行する。ステップ6も中間圧力判定
手段26であり、中間圧力Pmが設定中間圧力Pcmよ
り大きいと判定したときはステップ7に移行する。
Step 5 is the intermediate pressure determination means 26, and when the intermediate pressure Pm and the set intermediate pressure Pcm are equal, it is determined that the intermediate pressure Pm is appropriate and the process returns to step 1 to set the intermediate pressure Pm and the set intermediate pressure Pcm. When is not equal, the process proceeds to step 6. Step 6 is also the intermediate pressure determination means 26, and when it is determined that the intermediate pressure Pm is larger than the set intermediate pressure Pcm, the process proceeds to step 7.

【0032】ステップ7は減圧量判定手段27であり、
中間圧力Pmを小さくするために電動膨張弁15の開度
を「20パルス開」と判定してステップ9に移行する。
ステップ9は減圧装置駆動手段28であり、パルス信号
を電動膨張弁15に送信して20パルス開き、ステップ
1に戻る。
Step 7 is the decompression amount determination means 27,
In order to reduce the intermediate pressure Pm, the opening degree of the electric expansion valve 15 is determined to be "20 pulse open", and the process proceeds to step 9.
In step 9, the pressure reducing device driving means 28 transmits a pulse signal to the electric expansion valve 15, opens 20 pulses, and returns to step 1.

【0033】ステップ6で中間圧力Pmが設定中間圧力
Pcmより小さいと判定したときはステップ8に移行す
る。ステップ8は減圧量判定手段27であり、中間圧力
Pmを大きくするために電動膨張弁15の開度を「20
パルス閉」と判定してステップ9に移行する。ステップ
9は減圧装置駆動手段28であり、パルス信号を電動膨
張弁15に送信して20パルス絞り、ステップ1に戻
る。
When it is determined in step 6 that the intermediate pressure Pm is lower than the set intermediate pressure Pcm, the process proceeds to step 8. Step 8 is the decompression amount determination means 27, and the opening degree of the electric expansion valve 15 is set to "20" in order to increase the intermediate pressure Pm.
It is determined that the pulse is closed, and the process proceeds to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to throttle it by 20 pulses, and then returns to step 1.

【0034】ステップ3で暖房運転と判定したときは、
ステップ10に移行する。ステップ10は設定中間圧力
演算手段25であり、暖房時の設定中間圧力Phmを Phm=c×Ao+d の式を用いて演算してステップ11に移行する。この式
において、適正な設定中間圧力Phmと外気温度Aoの
間には発明者らの実験から図4に示すような相関関係が
あることがわかっており、図4から定数c=0.02、
d=0.5となる。
When the heating operation is determined in step 3,
Go to step 10. Step 10 is the set intermediate pressure calculating means 25, which calculates the set intermediate pressure Phm during heating using the equation Phm = c × Ao + d and shifts to step 11. In this equation, it is known from the experiments by the inventors that the appropriate set intermediate pressure Phm and the outside air temperature Ao have a correlation as shown in FIG. 4, and the constant c = 0.02 from FIG.
d = 0.5.

【0035】ステップ11は中間圧力判定手段26であ
り、中間圧力Pmと設定中間圧力Phmが等しいときは
中間圧力Pmが適正であると判定してステップ1に戻
り、中間圧力Pmと設定中間圧力Phmが等しくないと
きはステップ12に移行する。ステップ12も中間圧力
判定手段26であり、中間圧力Pmが設定中間圧力Ph
mより大きいと判定したときはステップ13に移行す
る。
Step 11 is the intermediate pressure judging means 26, and when the intermediate pressure Pm and the set intermediate pressure Phm are equal, it is judged that the intermediate pressure Pm is appropriate and the process returns to step 1 to set the intermediate pressure Pm and the set intermediate pressure Phm. When is not equal, the process proceeds to step 12. Step 12 is also the intermediate pressure determination means 26, and the intermediate pressure Pm is the set intermediate pressure Ph.
When it is determined that it is larger than m, the process proceeds to step 13.

【0036】ステップ13は減圧量判定手段27であ
り、中間圧力Pmを小さくするために電動膨張弁15の
開度を「20パルス閉」と判定してステップ9に移行す
る。ステップ9は減圧装置駆動手段28であり、パルス
信号を電動膨張弁15に送信して20パルス絞り、ステ
ップ1に戻る。
Step 13 is the depressurization amount determination means 27, which determines that the opening degree of the electric expansion valve 15 is "20 pulse closed" in order to reduce the intermediate pressure Pm, and shifts to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to throttle it by 20 pulses, and then returns to step 1.

【0037】ステップ12で中間圧力Pmが設定中間圧
力Phmより小さいと判定したときはステップ14に移
行する。ステップ14は減圧量判定手段27であり、中
間圧力Pmを大きくするために電動膨張弁15の開度を
「20パルス開」と判定してステップ9に移行する。ス
テップ9は減圧装置駆動手段28であり、パルス信号を
電動膨張弁15に送信して20パルス開き、ステップ1
に戻る。
When it is determined in step 12 that the intermediate pressure Pm is lower than the set intermediate pressure Phm, the process proceeds to step 14. Step 14 is the decompression amount determination means 27, which determines that the opening degree of the electric expansion valve 15 is "20 pulse open" in order to increase the intermediate pressure Pm, and proceeds to step 9. Step 9 is the pressure reducing device driving means 28, which transmits a pulse signal to the electric expansion valve 15 to open 20 pulses,
Return to.

【0038】上記実施例によれば、中間圧力Pmが常に
適正値に調節されるので、冷暖房両運転時、さらには室
外負荷が変動した場合にもインジェクション管11から
圧縮機1に液冷媒が流入するのを防止でき、圧縮機1の
信頼性を損なうことなく冷暖房能力を増大できる。
According to the above embodiment, since the intermediate pressure Pm is always adjusted to an appropriate value, the liquid refrigerant flows from the injection pipe 11 into the compressor 1 during both heating and cooling operations and also when the outdoor load changes. This can be prevented, and the cooling and heating capacity can be increased without impairing the reliability of the compressor 1.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
は、冷房用減圧装置、冷房用逆止弁、気液分離器、減圧
量可変の冷暖兼用減圧装置を備え、冷房用減圧装置と冷
房用逆止弁に並列に位置する暖房用逆止弁と暖房用減圧
装置と、気液分離器と圧縮機を連通して開閉弁を有する
インジェクション管と、外気温度を検出する外気温度検
出手段と、気液分離器の圧力を検出する中間圧力検出手
段と、冷房ないし暖房を判定する冷暖モード判定手段
と、外気温度検出手段で検出した外気温度を基に中間圧
力の設定値を冷暖房に応じて演算する設定中間圧力演算
手段と、この演算結果と中間圧力検出手段で検出した圧
力とを比較判定する中間圧力判定手段と、この判定結果
に応じて冷暖兼用減圧装置の減圧量を判定する減圧量判
定手段と、この減圧量に応じて冷暖兼用減圧装置を駆動
する減圧装置駆動手段を備えることにより、冷暖房両運
転時、さらには室外負荷が変動した場合にも、圧縮機の
信頼性を損なうことなく冷暖房能力を増大できる冷暖房
装置を提供できる。
As is apparent from the above description, the present invention includes a cooling decompression device, a cooling check valve, a gas-liquid separator, and a cooling / heating decompression device with variable decompression amount. A check valve for heating and a pressure reducing device for heating, which are located in parallel with the check valve for cooling, an injection pipe having an on-off valve for communicating the gas-liquid separator and the compressor, and an outside air temperature detecting means for detecting the outside air temperature. An intermediate pressure detection means for detecting the pressure of the gas-liquid separator, a cooling / heating mode determination means for determining cooling or heating, and an intermediate pressure set value based on the outside air temperature detected by the outside air temperature detection means according to cooling / heating. Set intermediate pressure calculating means for calculating the intermediate pressure determination means for comparing the calculated result with the pressure detected by the intermediate pressure detecting means, and a pressure reducing method for determining the pressure reduction amount of the cooling / heating decompression device according to the determination result. Volume determination means and this decompression By providing the pressure reducing device driving means for driving the pressure reducing device for both heating and cooling in accordance with the above, it is possible to increase the cooling and heating capacity without impairing the reliability of the compressor during both cooling and heating operation and even when the outdoor load fluctuates. A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷暖房装置の冷媒サ
イクル図
FIG. 1 is a refrigerant cycle diagram of an air conditioner according to an embodiment of the present invention.

【図2】同実施例の冷暖兼用減圧装置の制御フローチャ
ート
FIG. 2 is a control flowchart of the heating / cooling decompression device of the embodiment.

【図3】同実施例の冷房運転時の設定中間圧力と外気温
度の相関を示す特性図
FIG. 3 is a characteristic diagram showing a correlation between a set intermediate pressure and an outside air temperature during a cooling operation of the embodiment.

【図4】同実施例の暖房運転時の設定中間圧力と外気温
度の相関を示す特性図
FIG. 4 is a characteristic diagram showing a correlation between a set intermediate pressure during heating operation and an outside air temperature in the same embodiment.

【図5】従来の冷暖房装置の冷媒サイクル図FIG. 5: Refrigerant cycle diagram of a conventional cooling and heating device

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外側熱交換器 10 開閉弁 11 インジェクション管 12 冷房用減圧装置 13 冷房用逆止弁 14 気液分離器 15 冷暖兼用減圧装置 16 室内側熱交換器 19 暖房用逆止弁 20 暖房用減圧装置 21 外気温度検出手段 22 中間圧力検出手段 24 冷暖モード判定手段 25 設定中間圧力演算手段 26 中間圧力判定手段 27 減圧量判定手段 28 減圧装置駆動手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 10 Open / close valve 11 Injection pipe 12 Cooling decompression device 13 Cooling check valve 14 Gas-liquid separator 15 Cooling / heating decompression device 16 Indoor heat exchanger 19 Heating check Valve 20 Heating decompression device 21 Outside air temperature detection means 22 Intermediate pressure detection means 24 Cooling / heating mode determination means 25 Set intermediate pressure calculation means 26 Intermediate pressure determination means 27 Decompression amount determination means 28 Decompression device drive means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外側熱交換器、冷房
用減圧装置、冷房用逆止弁、気液分離器、減圧量可変の
冷暖兼用減圧装置、室内側熱交換器を順次連通し、前記
冷房用減圧装置と前記冷房用逆止弁に並列に位置する暖
房用逆止弁と暖房用減圧装置と、前記気液分離器と前記
圧縮機を連通して開閉弁を有するインジェクション管
と、外気温度を検出する外気温度検出手段と、前記気液
分離器の圧力を検出する中間圧力検出手段と、冷房ない
し暖房を判定する冷暖モード判定手段と、前記外気温度
検出手段で検出した外気温度を基に中間圧力の設定値を
冷暖房に応じて演算する設定中間圧力演算手段と、この
演算結果と前記中間圧力検出手段で検出した圧力とを比
較判定する中間圧力判定手段と、この判定結果に応じて
前記冷暖兼用減圧装置の減圧量を判定する減圧量判定手
段と、この減圧量に応じて前記冷暖兼用減圧装置を駆動
する減圧装置駆動手段とを備えた冷暖房装置。
1. A compressor, a four-way valve, an outdoor heat exchanger, a cooling decompression device, a cooling check valve, a gas-liquid separator, a cooling / heating decompression device with variable decompression amount, and an indoor heat exchanger, which are connected in order. An injection pipe having an opening / closing valve that connects the heating check valve and the heating pressure reducing device, which are located in parallel with the cooling pressure reducing device and the cooling check valve, and connects the gas-liquid separator and the compressor to each other. An outside air temperature detecting means for detecting the outside air temperature, an intermediate pressure detecting means for detecting the pressure of the gas-liquid separator, a cooling / heating mode determining means for determining cooling or heating, and an outside air detected by the outside air temperature detecting means. A set intermediate pressure calculating means for calculating a set value of the intermediate pressure based on the temperature according to cooling and heating, an intermediate pressure determining means for comparing and comparing the calculation result with the pressure detected by the intermediate pressure detecting means, and this determination result Depending on the A cooling / heating apparatus comprising: a decompression amount determination means for determining the decompression amount of 1. and a decompression device driving means for driving the cooling / heating decompression device according to the decompression amount.
JP16731892A 1992-06-25 1992-06-25 Air conditioning apparatus Pending JPH0611205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16731892A JPH0611205A (en) 1992-06-25 1992-06-25 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16731892A JPH0611205A (en) 1992-06-25 1992-06-25 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH0611205A true JPH0611205A (en) 1994-01-21

Family

ID=15847530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16731892A Pending JPH0611205A (en) 1992-06-25 1992-06-25 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH0611205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263443A (en) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp Air conditioner
JP2009198099A (en) * 2008-02-22 2009-09-03 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
US6467288B2 (en) Heat-pump water heater
US5934094A (en) Vehicle air conditioning system with expansion valve control during high pressure cycle conditions
EP2075519B1 (en) Air Conditoning system
JP3307466B2 (en) Air conditioner for electric vehicle
US20080083236A1 (en) Method for controlling stop operation of air conditioner
EP1869375A2 (en) Method of determining optimal coefficient of performance in a transcritical vapor compression system
US8205463B2 (en) Air conditioner and method of controlling the same
JPH09318177A (en) Multiroom type cooling/heating apparatus
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
JPH0611205A (en) Air conditioning apparatus
JP3479747B2 (en) Cooling cycle controller
JPH06288654A (en) Device for controlling motor-operated expansion valve in air conditioner
JP3231393B2 (en) Air conditioning
JPH0833245B2 (en) Refrigeration system operation controller
KR0123454B1 (en) Airconditioner
JPH0650614A (en) Freezing device
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
KR100461313B1 (en) airconditioner for automobile
JP3099574B2 (en) Air conditioner pressure equalizer
JPH0526532A (en) Air-conditioner
JPH01121650A (en) Injection control device for air conditioner
JPH0718935Y2 (en) Operation control device for air conditioner with radiant panel
JPH0833242B2 (en) Refrigeration equipment
JPH0810087B2 (en) Air conditioner
JPS5995349A (en) Controller for electric type expansion valve