JPH06109735A - Measuring method for in vivo material by antigen-antibody reaction - Google Patents

Measuring method for in vivo material by antigen-antibody reaction

Info

Publication number
JPH06109735A
JPH06109735A JP29550692A JP29550692A JPH06109735A JP H06109735 A JPH06109735 A JP H06109735A JP 29550692 A JP29550692 A JP 29550692A JP 29550692 A JP29550692 A JP 29550692A JP H06109735 A JPH06109735 A JP H06109735A
Authority
JP
Japan
Prior art keywords
magnetic particles
particles
antibody
antigen
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29550692A
Other languages
Japanese (ja)
Inventor
Yoji Takahashi
洋二 高橋
Fumika Kobayashi
文香 小林
Satoshi Nagahata
敏 長畑
Makoto Anami
真 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP29550692A priority Critical patent/JPH06109735A/en
Publication of JPH06109735A publication Critical patent/JPH06109735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To qualitatively or quantitatively measure an in vivo material simply at high sensitivity by reacting an antigen in the in vivo material with an antibody of mixed particles carried with the antibody or antigen on two kinds of magnetic particles having the ratios between magnetization quantities and grain sizes within the specific ranges and particular specific weights. CONSTITUTION:The antibody of mixed particles and an antigen in an in vivo material, or the antigen of the mixed particles and an antibody in the in vivo material are reacted with the mixed particles carried with the antibody or antigen on the magnetic particles having the ratio between the magnetization quantity and grain size within the ranges of A, B, C, D, E and the specific weight of 1-2 and the magnetic particles having the ratio between the magnetization quantity and grain size within the ranges of C', D', E', F, G and the specific weight of 1-2. The magnetic field is applied to the reaction mixture. The absorbance or transmittance is measured with the wavelength of 350nm or above on unmagnetized magnetic particles, and the antigen or antibody in the in vivo material is qualitatively or quantitatively measured. Cross-linked polymerization particles, organic polymer material, or inorganic fine powder is used for the magnetic particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性粒子が特定範囲の
粒径で単分散状態では、集磁されない磁化量の粒子と集
磁される磁化量の粒子とを併用して、生体内物質の抗原
・抗体測定法において、極めて短時間に高感度、高信頼
性の得られる凝集法による免疫測定方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an in-vivo substance by combining particles having a magnetization amount that is not magnetized and particles having a magnetization amount that is magnetized when the magnetic particles are in a monodispersed state with a particle size in a specific range. In the antigen / antibody assay method described above, the present invention relates to an immunoassay method by the agglutination method, which is highly sensitive and reliable in an extremely short time.

【0002】[0002]

【従来の技術】生体内物質の各種抗体、抗原、細菌、ウ
ィルスあるいは癌マーカー等の測定は、多数の検体を短
時間で感度よく、しかも再現性等の信頼性も高くなけれ
ばならない。しかも分析コストの点から、少量の検体や
試薬による少量分析が望まれている。抗原又は抗体を固
定した特定の磁性粒子を用いる各種の方法が採用されて
いる。
2. Description of the Related Art For the measurement of various antibodies, antigens, bacteria, viruses, cancer markers and the like of substances in a living body, a large number of specimens must be sensitive in a short time and highly reliable such as reproducibility. Moreover, from the viewpoint of analysis cost, a small amount of analysis using a small amount of sample or reagent is desired. Various methods using specific magnetic particles to which an antigen or an antibody is immobilized have been adopted.

【0003】特開平1−193647号公報では、磁性
体含有不溶性担体粒子と磁性体を含有していない不溶性
担体粒子を用いる抗原・抗体の測定方法において、不溶
性担体粒子が有機高分子物質よりなる粒子、セラミック
粒子、又はシリカ粒子等を用いる事が記載されている。
特開平3−59459号公報では、磁性体含有不溶性担
体粒子と磁性体を含有していない不溶性担体粒子を用い
る抗原・抗体の測定方法において、前記粒子の平均粒
径、使用割合及び測定波長を特定する事が記載されてい
る。前記特開平3−193647号公報及び特開平3−
59459号公報は、いずれも磁性粒子と磁性体を含有
していない不溶性担体粒子を用いており、磁性のある粒
子と磁性のない粒子との組み合わせであり、2種類の粒
子の比重差を利用して分散性を改良する点については記
載されていない。
In JP-A-1-193647, a method for measuring an antigen / antibody using insoluble carrier particles containing a magnetic substance and insoluble carrier particles containing no magnetic substance, the insoluble carrier particles are particles made of an organic polymer substance. The use of ceramic particles, silica particles, or the like is described.
In JP-A-3-59459, in an antigen / antibody measuring method using insoluble carrier particles containing a magnetic substance and insoluble carrier particles not containing a magnetic substance, the average particle size of the particles, the use ratio and the measurement wavelength are specified. It is described to do. JP-A-3-193647 and JP-A-3-19367
Japanese Patent No. 59459 uses magnetic particles and insoluble carrier particles containing no magnetic material, and is a combination of magnetic particles and non-magnetic particles, and utilizes the difference in specific gravity between two types of particles. There is no mention of improving the dispersibility by the method.

【0004】USP4177253には、磁性粒子を用
いた免疫測定試薬及び測定方法が記載されている。この
記載は、B/F分離を必要とするEIA(エンザイムイ
ムノアッセイ)、RIA(ラジオアイソトープイムノア
ッセイ)等に関してでありB/F分離を必要としない凝
集方法については、記載されていない。また2種類の磁
性粒子を併用する点についても記載されていない。
US Pat. No. 4,177,253 describes an immunoassay reagent and a measurement method using magnetic particles. This description relates to EIA (enzyme immunoassay), RIA (radioisotope immunoassay) and the like that require B / F separation, and does not describe an aggregation method that does not require B / F separation. Further, there is no mention of using two types of magnetic particles in combination.

【0005】また特開平2−122265号公報では、
測定すべき物質と該物質に特異的に反応するかもしくは
競合する物質を固定した磁性粒子を含む反応液を反応容
器に入れ、該反応液にノズルから気流又は水流等の流体
を供給して該反応液を旋回させると共に、前記磁性粒子
が前記反応容器の少なくとも一部の壁面に沿って収束す
るような磁場をかけることにより前記磁性粒子の分布パ
ターンを形成して物質間の結合状態を測定する免疫学的
測定方法が記載されている。さらに特開平2−2811
42号公報では、液中において、測定対象である抗原ま
たは抗体と、前記の抗原または抗体と特異的に結合し得
る抗体または抗原を固定化した磁気微粒子とを接触さ
せ、抗原−抗体反応を生起させることにより抗原−抗体
−磁気微粒子結合体を生成させる工程を有する抗原また
は抗体の測定方法において、前記の抗原−抗体反応が、
反応系に交番磁界を印加した状態で行われる抗原または
抗体の測定方法が記載されている。しかしながら特開平
2−122265号公報の方法では、凝集した粒子に磁
場を付与して形成された分布パターンを測定するためマ
イクロプレートの材質に影響される等の問題点があり、
特開平2−281142号の方法では、交番磁界を印加
するための特別な装置を必要とする等の問題点がある。
Further, in Japanese Patent Laid-Open No. 122222/1990,
A reaction solution containing magnetic particles on which a substance to be measured and a substance that specifically reacts with or competes with the substance is immobilized is placed in a reaction vessel, and a fluid such as an air stream or a water stream is supplied to the reaction solution from a nozzle. The reaction liquid is swirled, and a magnetic field is applied so that the magnetic particles converge along the wall surface of at least a part of the reaction container, thereby forming a distribution pattern of the magnetic particles and measuring a binding state between substances. Immunological assay methods have been described. Further, JP-A-2-2811
In Japanese Patent Laid-Open No. 42-42, an antigen or antibody to be measured is brought into contact with an antigen or an antibody capable of specifically binding to the antigen or magnetic microparticles immobilized with the antigen in a liquid to cause an antigen-antibody reaction. In the method for measuring an antigen or an antibody, which comprises a step of producing an antigen-antibody-magnetic fine particle conjugate, the antigen-antibody reaction described above,
It describes a method for measuring an antigen or an antibody, which is carried out with an alternating magnetic field applied to the reaction system. However, the method of JP-A-2-122265 has a problem that the material of the microplate is affected because the distribution pattern formed by applying a magnetic field to the aggregated particles is measured,
The method of JP-A-2-281142 has a problem that a special device for applying an alternating magnetic field is required.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は前記
した従来技術の測定における問題点を解決し、感度が高
く、簡便で信頼性の高い生体内物質の定性又は定量測定
方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention solves the above-mentioned problems in the measurement of the prior art and provides a highly sensitive, convenient and highly reliable qualitative or quantitative measurement method for an in-vivo substance. With the goal.

【0007】また、本発明に従えば (1)磁化量−粒径図でA(1,10)、B(1,10
00)、C(X1,10)、D(X2,300)及びE
(X3,1000)の範囲内に含まれ比重が1〜2であ
る磁性粒子(I)、及びC′(X1,10)、D′(X
2,300)、E′(X3,1000)、F(70,1
0)及びG(70,1000)の範囲内に含まれ比重が
1〜2である磁性粒子(II)に、抗体又は抗原を担持
せさた混合粒子と、前記混合粒子の抗体と生体内物質中
の抗原、又は前記混合粒子の抗原と生体内物質中の抗体
を反応させる工程(ただし、X1,X2,X3は、X1
>X2>X3,18<X2<35である磁性粒子(I)
を単分散させた時に集磁される下限磁化量、磁性粒子
(II)の点C,D,EのX軸>X1,X2,X3、磁
性粒子(I)と磁性粒子(II)との比重差が0〜0.
5である。磁化量:emu/g,粒子:nm) (2)前記反応混合物に磁場を付与する工程 (3)集磁されない磁性粒子の量を350nm以上の波
長で吸光度又は透過度を測定し、生体内物質中の抗原又
は抗体を定性又は定量する工程を順次経る抗原・抗体反
応による生体内物質の測定方法が提供される。
According to the present invention, (1) A (1,10) and B (1,10) in the magnetization amount-particle diameter diagram.
00), C (X1,10), D (X2,300) and E
Magnetic particles (I) having a specific gravity of 1-2 in the range of (X3,1000), and C '(X1,10), D' (X
2,300), E '(X3,1000), F (70,1)
0) and G (70,1000) within the range of magnetic particles (II) having a specific gravity of 1 to 2 and carrying an antibody or an antigen, mixed particles, the mixed particles of the antibody and an in-vivo substance. Reacting the antigen in the mixture or the antigen in the mixed particles with the antibody in the in-vivo substance (where X1, X2 and X3 are X1
>X2> X3, 18 <X2 <35 Magnetic particles (I)
Lower limit amount of magnetism collected when the particles are monodispersed, X-axis of points C, D and E of magnetic particles (II)> X1, X2, X3, specific gravity of magnetic particles (I) and magnetic particles (II) The difference is 0 to 0.
It is 5. (Magnitude of magnetization: emu / g, particles: nm) (2) Step of applying a magnetic field to the reaction mixture (3) Absorbance or transmittance of the amount of magnetic particles that are not magnetically collected is measured at a wavelength of 350 nm or more to measure in-vivo substance There is provided a method for measuring an in-vivo substance by an antigen-antibody reaction, which sequentially undergoes a step of qualifying or quantifying an antigen or antibody therein.

【0008】本発明の方法では、単分散させた時に集磁
されない磁性粒子(I)と単分散状態でも集磁される磁
化量を持つ特定粒径の特定比重の磁性粒子(II)に、
抗体又は抗原を担持せさた混合粒子と、測定対象である
生体内の抗原又は抗体を反応させる事により、集磁工程
における集磁がより迅速確実に行われ、吸光度、透明度
又は濁度の測定をする事により、生体内物質中の抗原又
は抗体を定性又は定量できる事を見い出して本発明を完
成したものである。本発明で磁性粒子を単分散させた状
態とは、反応系に生体内物質が存在しないため、抗原・
抗体反応が起こらず、磁性粒子が分散している状態であ
る。
According to the method of the present invention, magnetic particles (I) which are not magnetized when monodispersed and magnetic particles (II) having a specific particle size and a specific amount of magnetization having a magnetization amount which is magnetized even in a monodispersed state are prepared.
By reacting the mixed particles supporting the antibody or antigen with the in-vivo antigen or antibody to be measured, the magnetism in the magnetism collecting step can be performed more quickly and reliably, and the absorbance, transparency or turbidity can be measured. The present invention has been completed by finding that the antigen or antibody in the substance in the living body can be qualitatively or quantitatively determined by performing the above. In the present invention, the state in which magnetic particles are monodispersed means that there is no in-vivo substance in the reaction system.
The antibody reaction does not occur and the magnetic particles are dispersed.

【0009】本発明で用いる磁性粒子(I)及び磁性粒
子(II)は、架橋重合体粒子、有機高分子物質や無機
微粉末等が用いられる。
As the magnetic particles (I) and magnetic particles (II) used in the present invention, cross-linked polymer particles, organic polymer substances, inorganic fine powders and the like are used.

【0010】架橋重合体粒子の製法としては各種の方法
が提案されているが、その一つはエチレン性不飽和単量
体を、架橋性の共重合単量体と水性媒体中でサスペンジ
ョン重合または乳化重合させて微小樹脂粒子分散液をつ
くり、溶媒置換、共沸、遠心分離乾燥などにより水を除
去して架橋重合体粒子を得るものであり、他の一つは脂
肪族炭化水素等の低SP有機溶媒、あるいはエステル、
ケトン、アルコール等の高SP有機溶媒のようにモノマ
ーは溶かすが重合体は溶解しない非水性有機溶媒中で、
エチレン性不飽和単量体と架橋重合体とを共重合させ、
得られる微小樹脂粒子共重合を分散するNAD法あるい
は沈殿析出法と称される方法がある。又本出願人の特開
昭58−129066号に記載された両イオン性基を有
するモノマー等から合成された微小樹脂粒子を用いても
よい。水性媒体または非水性有機媒体中で製造した架橋
重合体粒子は、ロ過、スプレー乾燥、凍結乾燥などの方
法で微小樹脂粒子の粒径を選別し、そのままもしくはミ
ルなどを用いて適当な粒径に粉砕して用いる事もでき
る。
Various methods have been proposed for producing crosslinked polymer particles, one of which is an ethylenically unsaturated monomer and a crosslinkable copolymerizable monomer in a suspension medium in an aqueous medium. Emulsion polymerization is used to make a dispersion of fine resin particles, and water is removed by solvent replacement, azeotropic distillation, centrifugal separation drying, etc. to obtain crosslinked polymer particles. SP organic solvent or ester,
In a non-aqueous organic solvent that dissolves monomers but not polymers, such as high-SP organic solvents such as ketones and alcohols,
Copolymerize an ethylenically unsaturated monomer and a cross-linked polymer,
There is a method called a NAD method or a precipitation method in which the obtained fine resin particle copolymerization is dispersed. Further, fine resin particles synthesized from a monomer having an amphoteric group described in JP-A-58-129066 of the present applicant may be used. Cross-linked polymer particles produced in an aqueous medium or a non-aqueous organic medium, the particle size of the fine resin particles are selected by filtration, spray drying, freeze drying, etc. It can also be used after crushing.

【0011】有機高分子物質としては、ポリスチレン、
スチレン−ブタジエン共重合粒子、ポリ塩化ビニル、ポ
リメタクリル酸メチル、ポリアミド、ポリエステル、ポ
リカーボネート等を用いることができる。この他にも、
多糖類、蛋白質の反合成ポリマー、、天然ポリマーおよ
びこれらの混合物も用いる事ができる。
As the organic polymer substance, polystyrene,
Styrene-butadiene copolymer particles, polyvinyl chloride, polymethyl methacrylate, polyamide, polyester, polycarbonate and the like can be used. Besides this,
Polysaccharides, protein anti-synthetic polymers, natural polymers and mixtures thereof can also be used.

【0012】無機微粉末としては、セラミック微粉末、
シリカ、アルミナ、シリカーアルミナ等を用いる事がで
きる。粒子の磁性化部位については、表層でも内部で
も、また粒子全体が磁性化されていてもよい。
As the inorganic fine powder, ceramic fine powder,
Silica, alumina, silica-alumina and the like can be used. Regarding the magnetized portion of the particle, the particle may be magnetized in the surface layer or in the inside thereof, or in the entire particle.

【0013】磁性化するには、例えば、金属鉄、Fe
、γ−Fe、Co−γ−Fe、(Ni
CuZn)O・(CuZn)O・Fe、(MnZ
n)O・Fe、(NiZn)O・Fe、S
rO・6Fe、BaO・6FeさらにSi
で被覆したFe等の各種フェライトを3〜1
00%、好ましくは30〜50%含有するように調製さ
れたものを用いる。前記の磁性を有する粒子として本出
願人による特開昭63−65085号及び特開平2−2
37019号公報の方法等によって得られたものを用い
ることができる。磁性粒子は、着色粒子を磁化させたも
のでも、また磁性粒子を着色したものでも、さらに着色
されてなくともよい。
To magnetize, for example, metallic iron, Fe 3
O 4 , γ-Fe 2 O 3 , Co-γ-Fe 2 O 3 , (Ni
CuZn) O. (CuZn) O.Fe 2 O 3 , (MnZ
n) O · Fe 2 O 3 , (NiZn) O · Fe 2 O 3, S
rO · 6Fe 2 O 3 , BaO · 6Fe 2 O 3 and Si
Various ferrites such as Fe 3 O 4 coated with O 2 are added in an amount of 3-1.
The thing prepared so that it may be contained at 00%, preferably 30 to 50% is used. As the particles having the above-mentioned magnetism, JP-A-63-65085 and JP-A-2-2 by the present applicant.
What was obtained by the method of 37019 gazette etc. can be used. The magnetic particles may be magnetized colored particles, colored magnetic particles, or may not be further colored.

【0014】磁性粒子(I)は、X軸に磁化量(emu
/g)Y軸に粒径(nm)の座標を持つ磁化量−粒径図
(図1)においてA(1,10)、B(1,100
0)、C(X1,10)、D(X2,300)及びE
(X3,1000)の範囲内に含まれるものであり、磁
性粒子(II)は、C′(X1,10)、D′(X2,
300)、E′(X3,1000)、F(70,100
0)及びG(70,1000)、の範囲内ただし磁性粒
子(II)のC′D′E′点におけるX軸>X1,X
2,X3,)に含まれるものである。
The magnetic particles (I) have a magnetization amount (emu) on the X axis.
/ G) A (1,10), B (1,100) in the magnetization amount-particle size diagram (FIG. 1) having coordinates of particle size (nm) on the Y axis
0), C (X1,10), D (X2,300) and E
The magnetic particles (II) are contained in the range of (X3,1000), and the magnetic particles (II) include C ′ (X1,10) and D ′ (X2,
300), E '(X3,1000), F (70,100)
0) and G (70,1000), except that the X axis at the C′D′E ′ point of the magnetic particle (II)> X1, X
2, X3,).

【0015】磁化量についてみると磁性粒子(I)は、
1emu/g≦磁性粒子(I)<X1,X2,X3em
u/gの範囲であり、磁性粒子(II)は、X1,X
2,X3≦磁性粒子(II)≦70emu/gの範囲の
ものを用いる。X1,X2,X3,は、磁化量一粒径図
における、C,D,E点のX軸を示し、本発明における
集磁工程の条件(例えば磁石の磁力、磁石及び器具の配
置条件、集磁時間等)で、磁性粒子を単分散させた時に
10,100及び1000nmの粒径の磁性粒子が集磁
されない磁化量の最大値を示し、X1,X2,X3を越
えると、上記条件で単分散の磁性粒子が集磁される磁化
量となる。従ってX1,X2,X3の磁化量は、集磁条
件によって決定される値であり、条件を変えると、異な
る値をとる。例えば集磁条件を内径7mmのウエル(分
析液収容部)を4方向に等間隔(中心間隔9mm)で配
置した直径3mmの棒磁石(2700ガウス)の中心部
に置いて集磁を5分間行った結果、X1、=35、X2
=26、X3=20であった。
Regarding the amount of magnetization, the magnetic particles (I) are
1 emu / g ≦ magnetic particles (I) <X1, X2, X3em
u / g, and the magnetic particles (II) have X1, X
2, X3 ≦ magnetic particles (II) ≦ 70 emu / g are used. X1, X2, X3 represent the X-axis of points C, D and E in the magnetization amount-particle size diagram, and represent the conditions of the magnetism collecting step in the present invention (for example, the magnetic force of the magnet, the arrangement condition of the magnet and the device, The maximum value of the amount of magnetization at which magnetic particles having a particle size of 10, 100 and 1000 nm are not collected when the magnetic particles are monodispersed in (magnetic time, etc.). It is the amount of magnetization that the dispersed magnetic particles are magnetized. Therefore, the magnetization amounts of X1, X2, and X3 are values determined by the magnetic flux collection conditions, and take different values when the conditions are changed. For example, the magnetizing conditions are set at the center of a bar magnet (2700 gauss) having a diameter of 3 mm, in which wells (analyte solution storage part) having an inner diameter of 7 mm are arranged at equal intervals (center interval 9 mm) in four directions, and magnetism is collected for 5 minutes. As a result, X1, = 35, X2
= 26 and X3 = 20.

【0016】磁化量を制御するためには、種々な手法を
取ることができ、制約されることはないが、例えば、前
記特開昭63−65085号及び特開平3−23701
9号公報に記載の方法によると、第1鉄イオンの濃度、
酸化剤の濃度、反応温度、第1鉄イオン、溶液中への酸
化剤の供給割合等を変化させる事により可能である、上
記要因中、磁化量を低くするためには、第1鉄イオンの
濃度を下げる、酸化剤の濃度を上げる、反応温度を下げ
る、酸化剤の供給配合を多くする事により、一方磁化量
を高くするためには、上記条件を逆の方向にすることに
よって得られる。上記条件は、単独でも複数組み合わせ
でも可能である。
Various methods can be used to control the amount of magnetization and there is no restriction. For example, the above-mentioned JP-A-63-65085 and JP-A-3-23701 are available.
According to the method described in Japanese Patent Publication No. 9, the concentration of ferrous ions,
It is possible by changing the concentration of the oxidant, the reaction temperature, the ferrous ion, the supply ratio of the oxidant into the solution, etc. Among the above factors, in order to reduce the magnetization amount, the ferrous ion In order to increase the amount of magnetization by decreasing the concentration, increasing the concentration of the oxidizing agent, lowering the reaction temperature, and increasing the amount of the oxidizing agent supplied, the above conditions can be obtained in the opposite direction. The above conditions may be used alone or in combination.

【0017】磁化量は、振動試料型磁力計を用いて測定
した。このような磁力計としては、例えば理研電子株式
会社よりMODEL BHV−3.5として市販されて
いる。
The amount of magnetization was measured using a vibrating sample magnetometer. Such a magnetometer is commercially available as MODEL BHV-3.5 from Riken Denshi Co., Ltd., for example.

【0018】磁性粒子(I)及び磁性粒子(II)につ
いて、比重は、1〜2の粒子を用い、比重が1未満の粒
子で磁性粒子を作る事は困難であり、比重が2を越える
と反応液中で分散性が不良となる。さらに比重について
は、両者の比重差が比重の大小関係を問わず0〜0.5
である。比重差が0.5を越えると、磁性粒子(I)と
磁性粒子(II)の免疫反応による凝集性が低下する。
好ましくは、0〜0.2である。
Regarding the magnetic particles (I) and (II), it is difficult to use particles having a specific gravity of 1 to 2 and particles having a specific gravity of less than 1 are difficult to make. If the specific gravity exceeds 2, Dispersibility becomes poor in the reaction solution. Further, regarding the specific gravity, the difference in specific gravity between the two is 0 to 0.5 regardless of the relative magnitude of the specific gravity.
Is. When the difference in specific gravity exceeds 0.5, the cohesiveness of the magnetic particles (I) and the magnetic particles (II) due to an immunoreaction decreases.
It is preferably 0 to 0.2.

【0019】粒径については、磁性粒子(I)及び磁性
粒子(II)ともに10〜1000nmのものを用い
る。粒径10nm未満では、磁化量が大きくても、凝集
塊が集磁されにくく、1000nmを越えると、分散性
が悪くなり、免疫反応が遅くなる。粒径は、磁性粒子の
核となる前述した架橋重合体粒子、有機高分子物質、無
機微粉末の粒径によって決定される。本発明での粒径
は、1次粒子を電子顕微鏡を用いて測定したものであ
る。
Regarding the particle size, both the magnetic particles (I) and the magnetic particles (II) have a particle size of 10 to 1000 nm. If the particle size is less than 10 nm, the agglomerates are hard to be magnetized even if the magnetization amount is large, and if it exceeds 1000 nm, the dispersibility deteriorates and the immune reaction becomes slow. The particle size is determined by the particle size of the above-mentioned crosslinked polymer particles, which are the core of the magnetic particles, the organic polymer substance, and the inorganic fine powder. The particle diameter in the present invention is obtained by measuring the primary particles with an electron microscope.

【0020】本発明の方法では、磁化量−粒径図におい
てA,B,C,D,Eの範囲の磁性粒子(I)とC′、
D′、E′、F、Gの範囲の磁性粒子(II)を用い
て、凝集塊を生成させるが、磁性粒子(I)について
は、好ましくはm(1,200)、n(1,400)、
o(18,400)及びp(18,200)の点を結ん
だ線に囲まれた内側の範囲、磁性粒子(II)について
好ましくは、q(35,200)、r(35,40
0)、s(45,400)及びt(45,200)の点
を結んだ線に囲まれた内側の範囲である。単位は、磁化
量はemu/g,粒径はnmである。
In the method of the present invention, the magnetic particles (I) and C'in the range of A, B, C, D and E in the magnetization amount-particle diameter diagram,
The magnetic particles (II) in the range of D ', E', F, G are used to generate the agglomerates. For the magnetic particles (I), preferably m (1,200), n (1,400). ),
The inner range surrounded by the line connecting the points of o (18,400) and p (18,200), preferably for magnetic particles (II) q (35,200), r (35,40)
0), s (45,400) and t (45,200) are inside ranges surrounded by a line connecting the points. The unit is such that the amount of magnetization is emu / g and the particle size is nm.

【0021】本発明の方法でいずれか一方の磁性粒子が
測定の範囲を外れた磁性粒子を用いた場合には、免疫反
応による凝集塊が成長されにくくまたは、凝集塊が磁力
によって誘引されなくなって結果的に感度低下の原因と
なる。
In the method of the present invention, when either one of the magnetic particles is out of the measurement range, aggregates due to immune reaction are hard to grow or aggregates are not attracted by magnetic force. As a result, it causes a decrease in sensitivity.

【0022】磁性粒子(I)と磁性粒子(II)の好ま
しい使用比率は、磁性粒子(I)/磁性粒子(II)=
1/20〜2/1より好ましくは1/8〜1/1であ
る。上記比率が1/20より小さい(磁性粒子(II)
が多過ぎる)と、定量できる測定範囲が狭くなり、2/
1を越える(磁性粒子(I)が多過ぎる)と免疫反応に
よる磁性粒子(II)が磁性粒子(I)を誘引しきれな
くなり、免疫反応による吸光度の感度が小さくなる。
The preferred use ratio of the magnetic particles (I) and the magnetic particles (II) is: magnetic particles (I) / magnetic particles (II) =
It is preferably 1/20 to 2/1 and more preferably 1/8 to 1/1. The ratio is smaller than 1/20 (magnetic particles (II)
Too much), the measurement range that can be quantified becomes narrower and 2 /
If it exceeds 1 (there are too many magnetic particles (I)), the magnetic particles (II) due to the immune reaction cannot attract the magnetic particles (I), and the sensitivity of the absorbance due to the immune reaction becomes small.

【0023】本発明の工程(1)として磁性粒子(I)
と磁性粒子(II)に抗体又は抗原を担持させる方法に
は、物理吸着法と共有結合法と包括法がある。物理吸着
法は、磁性粒子と、抗体又は抗原の間に働く疎水性相互
作用により固定化する方法等であり、磁性粒子は、抗原
溶液又は抗体溶液に浸漬するだけで、抗体又は抗原等の
タンパク質を吸着する。共有結合法は、磁性粒子に、ア
ミノ基やカルボキシル基のような官能基が表面についた
粒子で、グルタルアルデヒド等の架橋剤や水溶性カルボ
ジイミドのような活性剤を用いて、抗原又は抗体を共有
結合させる方法である。包括法は、物理吸着法と共有結
合法の中間方法で、抗原又は抗体をHEMA(Hydr
oxyethylmethacrylate)やHPM
A(Hydroxypropylmethacryla
te)のようなモノマーと混合し、γ線等で重合させて
結合する方法である。
As the step (1) of the present invention, the magnetic particles (I) are used.
As a method for supporting the antibody or antigen on the magnetic particles (II), there are a physical adsorption method, a covalent bond method, and an entrapment method. The physical adsorption method is a method in which magnetic particles are immobilized by a hydrophobic interaction that works between an antibody or an antigen, and the magnetic particles can be obtained by simply immersing the particles in an antigen solution or an antibody solution. Adsorb. The covalent bond method is a magnetic particle in which functional groups such as amino groups and carboxyl groups are attached to the surface, and an antigen or antibody is shared by using a cross-linking agent such as glutaraldehyde or an activator such as water-soluble carbodiimide. It is a method of combining. The encapsulation method is an intermediate method between the physical adsorption method and the covalent binding method, in which the antigen or antibody is transferred to HEMA (Hydr
oxymethylmethacrylate) and HPM
A (Hydroxypropy lmethacryla
It is a method of mixing with a monomer such as te), polymerizing with γ rays or the like, and binding.

【0024】本発明で測定する生体内物質とは、血液、
リンパ液、尿、だ液等の体液内の抗体又は抗原であり、
または体液内に侵入した微生物、ウイルスやその成分で
あり、その種類は、被測定対象である生体内物質の特定
の抗原又は抗体に対して抗体又は抗原の関係にあるもの
であり、分析液中の抗原又は抗体に応じて選択される。
かかる抗原又は抗体の例としては、以下のもの等を挙げ
ることができる。 抗原類:IgG,IgA,IgM,IgE,アルブミ
ン、hCG,AFP,カルジオライビン抗原、血液型物
質、コンカナバリンA,DNA,プロスタグランジン、
CRP,HBs,ヒト成長ホルモン、ステロイドホルモ
ン、CEA,IgD等。 抗体類:抗アルプミン抗体、抗hCG抗体、抗IgG抗
体、抗IgA抗体、抗IgM抗体、抗IgE抗体、抗I
gD抗体、抗AFP抗体、抗DNA抗体、抗プロスタグ
ランジン抗体、抗ヒト凝固ファクター抗体、抗CRP抗
体、抗HBs抗体、抗ヒト成長ホルモン抗体、抗ステロ
イドホルモン抗体等、及びこれらを含む血清、並びにモ
ノクロナール抗体等。
The in-vivo substance to be measured in the present invention is blood,
Antibodies or antigens in body fluids such as lymph, urine, saliva,
Alternatively, it is a microorganism, virus or its component that has invaded into the body fluid, the type of which has an antibody or antigen relationship with a specific antigen or antibody of the in-vivo substance to be measured, Is selected according to the antigen or antibody.
Examples of such antigens or antibodies include the followings. Antigens: IgG, IgA, IgM, IgE, albumin, hCG, AFP, cardiolivin antigen, blood group substance, concanavalin A, DNA, prostaglandin,
CRP, HBs, human growth hormone, steroid hormone, CEA, IgD, etc. Antibodies: anti-albumin antibody, anti-hCG antibody, anti-IgG antibody, anti-IgA antibody, anti-IgM antibody, anti-IgE antibody, anti-I
gD antibody, anti-AFP antibody, anti-DNA antibody, anti-prostaglandin antibody, anti-human coagulation factor antibody, anti-CRP antibody, anti-HBs antibody, anti-human growth hormone antibody, anti-steroid hormone antibody, etc., and serum containing these, and Monoclonal antibody etc.

【0025】本発明では、工程(2)として吸光度や透
過率を測定する際に凝集塊を分析容器の分析液収容部側
方に集磁させ、工程(3)で磁力をかけた状態で集磁さ
れない磁性粒子を分析することにより、分光光度計の光
源−検出器の光路から凝集塊による妨害を極めて簡便か
つ効率的に排除することができる。
In the present invention, when the absorbance and the transmittance are measured in the step (2), the agglomerates are magnetized to the side of the analysis solution storage portion of the analysis container, and the magnetic force is applied in the step (3). By analyzing the non-magnetized magnetic particles, the interference from agglomerates can be eliminated very simply and efficiently from the light source-detector optical path of the spectrophotometer.

【0026】本発明では、さらに効率を上げたるために
は、分析容器の分析液収容底部はV字型やU字型ではな
く、平底状が好ましい。磁石の配設は、好ましくは分析
容器の分析液収容部の回り4方向に等間隔に磁力がかる
ように磁石を支持プレートに配置した場合だが、それら
に限定されず、支持体に配置しただけでなく、凝集塊
が、分析容器の分析液収納部側壁に集磁させられる配置
であれば限定されず、少なくとも1個の磁石の個数で達
成できる。また、分析液収容部周囲の全周に磁石を配設
してもよい。また、磁石の形状も丸棒状、角状、リング
状、シート状等の任意の形状を選択できる。
In the present invention, in order to further improve the efficiency, it is preferable that the analysis liquid storage bottom portion of the analysis container is not V-shaped or U-shaped, but flat-shaped. The arrangement of the magnets is preferably such that the magnets are arranged on the support plate so that the magnetic force is applied at equal intervals in four directions around the analysis liquid storage portion of the analysis container, but the magnets are not limited thereto, and the magnets may be arranged only on the support. However, the agglomerate is not limited as long as it is arranged to collect magnetism on the side wall of the analysis liquid storage portion of the analysis container, and it can be achieved by the number of at least one magnet. In addition, magnets may be arranged around the entire circumference of the analysis liquid container. Further, the magnet may have any shape such as a round bar shape, a square shape, a ring shape, and a sheet shape.

【0027】集磁するための磁石は、永久磁石でも電磁
石でもよく、永久磁石の場合は、集磁が必要なときに磁
石を配置した支持プレートを分析容器に近接させること
で集磁が可能となり、電磁石の場合には、必要な際に電
気的に磁力を発生させることで集磁が可能となる。永久
磁石を用いる、より効率的な好ましい方法は、例えば9
6の微小ホール(ウェル)有するプラスチックプレート
(市販品としてグライナー社製の「マイクロプレート」
を使用できる)を用意し、これを分析容器として用い、
マイクロプレートの周縁下部突起部の内側に、はまるよ
うに磁石支持プレートをマイクロプレートにかぶせる状
態で用いる。ゴム磁石製シートを用いることもできる。
支持プレートに磁石を配設させる方法は、分析液収容部
の側方部に磁力がかかるように、収容部に相当する部分
の3〜4方向に、好ましくは等間隔になるよう磁石を固
定すればよい。
The magnet for collecting the magnet may be a permanent magnet or an electromagnet. In the case of the permanent magnet, the magnet can be collected by bringing the support plate on which the magnet is arranged close to the analysis container when the magnetism is required. In the case of an electromagnet, magnetism can be collected by electrically generating a magnetic force when necessary. A more efficient and preferred method of using a permanent magnet is, for example, 9
Plastic plate with 6 micro holes (well) (commercially available "Griner Microplate")
Can be used) and use this as an analysis container,
The magnet support plate is used by covering the microplate so that the magnet support plate fits inside the lower peripheral edge projection of the microplate. A rubber magnet sheet can also be used.
The method of arranging the magnets on the support plate is such that the magnets are fixed so that the magnetic force is applied to the side portion of the analysis liquid storage portion in the 3-4 directions of the portion corresponding to the storage portion, preferably at equal intervals. Good.

【0028】本発明では、吸光度や透過率を分光光度計
により測定するが、その測定波長は、350nm以上の
波長を選択する。
In the present invention, the absorbance and the transmittance are measured by a spectrophotometer, and the measurement wavelength is selected to be 350 nm or more.

【0029】本発明による生体内物質の測定方法は、こ
れまで定量測定を主体に述べてきたが、定性測定に適用
する事もできる。例えば、カットオフ値をAFPでは、
10ng/m1に設定し、その時の吸光度を1.0近傍
になるように、磁性粒子の量、緩衝液び緩衝液中の塩濃
度、界面活性剤の濃度等を調製する。カットオフ値を境
として、350nm以上の波長を用いて、吸光度が1.
0を越えるものを陽性、越えないものを陰性として判定
することによって定性測定を行う。
The method for measuring a substance in a living body according to the present invention has been described mainly for quantitative measurement, but it can be applied to qualitative measurement. For example, if the cutoff value is AFP,
The amount of magnetic particles, the buffer concentration, the salt concentration in the buffer, and the surfactant concentration are adjusted so that the absorbance at that time is set to about 1.0. Using the wavelength of 350 nm or more with the cutoff value as the boundary, the absorbance is 1.
Qualitative measurement is carried out by judging that those exceeding 0 are positive, and those not exceeding 0 are negative.

【0030】本発明では、特定磁化量、特定粒径及び特
定比重の磁性粒子(I)により抗原−抗体−磁性粒子又
は、抗体−抗原−磁性粒子の複合体の凝集塊が生成され
るが、磁性器粒子(I)は単分散状態では集磁されない
のに、凝集塊が生成されると集磁されるのは、ストーク
スの法則による原理と推定される。ストークスの法則で
働く力は重力であるが、本発明では、ストークスの法則
の重力の代わりに磁力が作用して、凝集塊が形成される
と集磁される。
In the present invention, magnetic particles (I) having a specific amount of magnetization, a specific particle size and a specific gravity generate an aggregate of an antigen-antibody-magnetic particle or an antibody-antigen-magnetic particle complex. It is presumed that the magnetic particles (I) are not magnetized in the monodisperse state, but are magnetized when the agglomerates are generated, based on the principle of Stokes' law. The force acting according to Stokes 'law is gravity, but in the present invention, a magnetic force acts instead of gravity according to Stokes' law to collect magnetism when an aggregate is formed.

【0031】以下、本発明を実施例に基づいて、さらに
具体的に説明するが、本発明の技術範囲をこれらの実施
例に限定すべきでないことは言うまでもない。
The present invention will be described in more detail based on the following examples, but it goes without saying that the technical scope of the present invention should not be limited to these examples.

【0032】(製造例1) ポリマー粒子の製造 蒸留水・・・・・・・・・・・・・・・・・1100g スチレンスルホン酸ソーダ・・・・・・・・0.28g 4、4−アゾビス(4シアン吉草酸)・・・3.75g ジメチルエタノールアミン・・・・・・・・2.40g を反応容器に仕込み、温度83℃にセットし、窒素ガス
(N)流入下で攪拌し、ここに、スチレン100gを
滴下ロートから60分かけて滴下し、合計6時間重合し
た。走査型電子顕微鏡(S−510:日立制作所製)で
粒径を測定したところ平均粒子径110nmであった。
この溶液をラテックス溶液(1)とする。
(Production Example 1) Production of polymer particles Distilled water: 1100 g Sodium styrenesulfonate: 0.28 g 4, 4 -Azobis (4 cyan valeric acid) ... 3.75 g Dimethyl ethanolamine ... 2.40 g was charged into a reaction vessel, the temperature was set to 83 ° C, and nitrogen gas (N 2 ) was introduced. After stirring, 100 g of styrene was added dropwise from the dropping funnel over 60 minutes to carry out polymerization for a total of 6 hours. When the particle size was measured with a scanning electron microscope (S-510: manufactured by Hitachi, Ltd.), the average particle size was 110 nm.
This solution is called latex solution (1).

【0033】(製造例2) ポリマー粒子の製造 蒸留水・・・・・・・・・・・・・・・・・1100g スチレンスルホン酸ソーダ・・・・・・・・0.28g 4、4−アゾビス(4シアン吉草酸)・・・3.75g ジメチルエタノールアミン・・・・・・・・2.40g を反応容器に仕込み、温度83℃にセットし、窒素ガス
(N)流入下で攪拌し、ここに、スチレン300gを
滴下ロートから60分かけて滴下し、合計6時間重合し
た。走査型電子顕微鏡で粒径を測定したところ平均粒子
径290nmであった。この溶液をラテックス溶液
(2)とする。
(Production Example 2) Production of polymer particles Distilled water: 1100 g Sodium styrenesulfonate: 0.28 g 4, 4 -Azobis (4 cyan valeric acid) ... 3.75 g Dimethyl ethanolamine ... 2.40 g was charged into a reaction vessel, the temperature was set to 83 ° C, and nitrogen gas (N 2 ) was introduced. After stirring, 300 g of styrene was added dropwise from the dropping funnel over 60 minutes to carry out polymerization for a total of 6 hours. When the particle size was measured with a scanning electron microscope, the average particle size was 290 nm. This solution is referred to as a latex solution (2).

【0034】(製造例3) ポリマー粒子の製造 蒸留水・・・・・・・・・・・・・・・・・1100g スチレンスルホン酸ソーダ・・・・・・・・0.28g 4、4−アゾビス(4シアン吉草酸)・・・3.75g ジメチルエタノールアミン・・・・・・・・2.40g を反応容器に仕込み、温度83℃にセットし、窒素ガス
(N)流入下で攪拌し、ここに、スチレン500gを
滴下ロートから60分かけて滴下し、合計6時間重合し
た。走査型電子顕微鏡で粒径を測定したところ平均粒子
径620nmであった。この溶液をラテックス溶液
(3)とする。
(Production Example 3) Production of polymer particles Distilled water: 1100 g Sodium styrenesulfonate: 0.28 g 4, 4 -Azobis (4 cyan valeric acid) ... 3.75 g Dimethyl ethanolamine ... 2.40 g was charged into a reaction vessel, the temperature was set to 83 ° C, and nitrogen gas (N 2 ) was introduced. After stirring, 500 g of styrene was added dropwise from the dropping funnel over 60 minutes to carry out polymerization for a total of 6 hours. When the particle size was measured with a scanning electron microscope, the average particle size was 620 nm. This solution is called latex solution (3).

【0035】(製造例4) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例1)のラテックス溶液(1)100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeClを10g投入
し、0.1N−NaOHでpH6.9に調製した。この
後、窒素ガス流入下で攪拌しながら、容器内の温度70
℃に加温した。このものに予め、脱酸素イオン交換水1
リットルに亜硝酸ナトリウム20g溶解した溶液を、2
5ml/分の割合で供給した。この間pHは一定に維持
し、約20分後、フェマタイトの磁性粒子が生成した。
走査型電子顕微鏡で粒径を測定したところ平均粒子径1
20nmであった。これを濾過、水洗いして磁性粒子を
得た。得られた粒子は茶色をしていた。磁化量は10e
mu/gであった。
(Production Example 4) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex solution (1) of (Production Example 1) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added and the pH was adjusted to 6.9 with 0.1N-NaOH. After that, the temperature in the container was adjusted to 70
Warmed to ° C. Deoxidized ion-exchanged water 1
2 g of a solution of 20 g of sodium nitrite dissolved in 1 liter
It was supplied at a rate of 5 ml / min. During this time, the pH was kept constant, and after about 20 minutes, magnetic particles of fematite were produced.
When the particle size was measured with a scanning electron microscope, the average particle size was 1
It was 20 nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. Magnetization amount is 10e
It was mu / g.

【0036】(製造例5) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例1)のラテックス溶液(1)100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、20m
l/分の割合で供給した。この間pHは一定に維持し、
約20分後、フェマタイトの磁性粒子が生成した。走査
型電子顕微鏡で粒径を測定したところ平均粒子径120
nmであった。これを濾過、水洗いして磁性粒子を得
た。得られた粒子は茶色をしていた。磁化量は20em
u/gであった。
(Production Example 5) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex solution (1) of (Production Example 1) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added to this
It was supplied at a rate of 1 / min. During this period, keep the pH constant,
After about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 120.
was nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. The amount of magnetization is 20 em
It was u / g.

【0037】(製造例6) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例1)のラテックス溶液(1)100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、10m
l/分の割合で供給した。この間pHは一定に維持し、
約20分後、フェマタイトの磁性粒子が生成した。走査
型電子顕微鏡で粒径を測定したところ平均粒子径120
nmであった。これを濾過、水洗いして磁性粒子を得
た。得られた粒子は茶色をしていた。磁化量は31em
u/gであった。
(Production Example 6) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex solution (1) of (Production Example 1) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added to this product to 10 m.
It was supplied at a rate of 1 / min. During this period, keep the pH constant,
After about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 120.
was nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. The amount of magnetization is 31 em
It was u / g.

【0038】(製造例7) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例1)のラテックス溶液(1)100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、5ml
/分の割合で供給した。この間pHは一定に維持し、約
20分後、フェマタイトの磁性粒子が生成した。走査型
電子顕微鏡で粒径を測定したところ平均粒子径120n
mであった。これを濾過、水洗いして磁性粒子を得た。
得られた粒子は茶色をしていた。磁化量は42emu/
gであった。
Production Example 7 Production of Magnetic Particles 0.9 L of ion-exchanged water was charged into a reaction vessel. To this, 100 g (solid content 10 g) of the latex solution (1) of (Production Example 1) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. 5 ml of a solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added.
/ Min. During this time, the pH was kept constant, and after about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 120n.
It was m. This was filtered and washed with water to obtain magnetic particles.
The particles obtained were brown. The amount of magnetization is 42 emu /
It was g.

【0039】(製造例8) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例2)のラテックス溶液(2)100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、30m
l/分の割合で供給した。この間pHは一定に維持し、
約20分後、フェマタイトの磁性粒子が生成した。走査
型電子顕微鏡で粒子径を測定したところ平均粒子径31
0nmであった。これを濾過、水洗いして磁性粒子を
得。得られた粒子は茶色をしていた。磁化量は1emu
/gであった。
(Production Example 8) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex solution (2) of (Production Example 2) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water in advance was added to this product for 30 m.
It was supplied at a rate of 1 / min. During this period, keep the pH constant,
After about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 31.
It was 0 nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. The amount of magnetization is 1 emu
/ G.

【0040】(製造例9) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例2)のラテックス(2)溶液100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、25m
l/分の割合で供給した。この間pHは一定に維持し、
約20分後、フェマタイトの磁性粒子が生成した。走査
型電子顕微鏡で粒子径を測定したところ平均粒子径30
0nmであった。これを濾過、水洗いして磁性粒子を得
た。得られた粒子は茶色をしていた。磁化量は9emu
/gであった。
(Production Example 9) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex (2) solution of (Production Example 2) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added to this product for 25 m.
It was supplied at a rate of 1 / min. During this period, keep the pH constant,
After about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 30.
It was 0 nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. Magnetization amount is 9 emu
/ G.

【0041】(製造例10) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例2)のラテックス溶液100g(固形分1
0g)を投入し、窒素ガスにより脱酸素を行った。充分
脱酸素を行った後、FeCl10g投入し、0.1N
−NaOHでpH6.9に調製した。この後、窒素ガス
流入下で攪拌しながら、容器内の温度70℃に加温し
た。このものに予め、脱酸素イオン交換水1リットルに
亜硝酸ナトリウム20g溶解した溶液を、20ml/分
の割合で供給した。この間pHは一定に維持し、約20
分後、フェマタイトの磁性粒子が生成した。走査型電子
顕微鏡で粒子径を測定したところ平均粒子径310nm
であった。これを濾過、水洗いして磁性粒子を得た。得
られた粒子は茶色をしていた。磁化量は19emu/g
であった。
Production Example 10 Production of Magnetic Particles 0.9 L of ion-exchanged water was charged into a reaction vessel. In this, 100 g (solid content 1) of the latex solution of (Production Example 2)
0 g) was charged and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added and 0.1N was added.
-Adjusted to pH 6.9 with NaOH. Then, the temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was supplied to this in advance at a rate of 20 ml / min. During this period, keep the pH constant and keep
After a minute, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 310 nm.
Met. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. Magnetization amount is 19 emu / g
Met.

【0042】(製造例11) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例2)のラテックス(2)溶液100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、5ml
/分の割合で供給した。この間pHは一定に維持し、約
20分後、フェマタイトの磁性粒子が生成した。走査型
電子顕微鏡で粒子径を測定したところ平均粒子径300
nmであった。これを濾過、水洗いして磁性粒子を得
た。得られた粒子は黒色をしていた。磁化量は40em
u/gであった。
(Production Example 11) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex (2) solution of (Production Example 2) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. 5 ml of a solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added.
/ Min. During this time, the pH was kept constant, and after about 20 minutes, magnetic particles of fematite were produced. When the particle size was measured with a scanning electron microscope, the average particle size was 300.
was nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were black. Magnetization amount is 40 em
It was u / g.

【0043】(製造例12) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例3)のラテックス(3)溶液100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、25m
l/分.の割合で供給した。この間pHは一定に維持
し、約20分後、フェマタイトの磁性粒子が生成した。
走査型電子顕微鏡で粒子径を測定したところ平均粒子径
630nmであった。これを濾過、水洗いして磁性体を
含有する不溶性担体粒子を得た。得られた粒子は茶色を
していた。磁化量は9emu/gであった。
Production Example 12 Production of Magnetic Particles 0.9 L of ion-exchanged water was charged into a reaction vessel. To this, 100 g (solid content 10 g) of the latex (3) solution of (Production Example 3) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added to this product for 25 m.
l / min. It was supplied at a rate of. During this time, the pH was kept constant, and after about 20 minutes, magnetic particles of fematite were produced.
When the particle size was measured with a scanning electron microscope, the average particle size was 630 nm. This was filtered and washed with water to obtain insoluble carrier particles containing a magnetic material. The particles obtained were brown. The amount of magnetization was 9 emu / g.

【0044】(製造例13) 磁性粒子の製造 反応容器にイオン交換水0.9リットルを仕込んだ。こ
れに(製造例3)のラテックス(3)溶液100g(固
形分10g)を投入し、窒素ガスにより脱酸素を行っ
た。充分脱酸素を行った後、FeCl10g投入し、
0.1N−NaOHでpH6.9に調製した。この後、
窒素ガス流入下で攪拌しながら、容器内の温度70℃に
加温した。このものに予め、脱酸素イオン交換水1リッ
トルに亜硝酸ナトリウム20g溶解した溶液を、10m
l/分.の割合で供給した。この間pHは一定に維持
し、約20分後、フェマタイトの磁性粒子が生成した。
走査型電子顕微鏡で粒子径を測定したところ平均粒子径
630nmであった。これを濾過、水洗いして磁粒子を
得た。得られた粒子は茶色をしていた。磁化量は30e
mu/gであった。
(Production Example 13) Production of magnetic particles A reactor was charged with 0.9 liter of ion-exchanged water. To this, 100 g (solid content 10 g) of the latex (3) solution of (Production Example 3) was added, and deoxidation was performed with nitrogen gas. After sufficiently deoxidizing, 10 g of FeCl 2 was added,
The pH was adjusted to 6.9 with 0.1 N NaOH. After this,
The temperature in the container was heated to 70 ° C. while stirring under the flow of nitrogen gas. A solution prepared by dissolving 20 g of sodium nitrite in 1 liter of deoxygenated ion-exchanged water was previously added to this product to 10 m.
l / min. It was supplied at a rate of. During this time, the pH was kept constant, and after about 20 minutes, magnetic particles of fematite were produced.
When the particle size was measured with a scanning electron microscope, the average particle size was 630 nm. This was filtered and washed with water to obtain magnetic particles. The particles obtained were brown. Magnetization amount is 30e
It was mu / g.

【0045】(感作法)(製造例1〜13)で作成した
磁性粒子は、粒子濃度4%となるように1mlのりん酸
緩衝液(pH5.0)に分散させる。これに1%EDC
(1−Ethyl−3−(3−Dimethylami
nopropyl)Calbodiimide,hyd
rochloride):(株)同人化学研究所製)水
溶液200μlを加え、攪拌した。この後、遠心分離
(12000rpm×20分)により上清を取り除き、
分離させた粒子を1mlの蒸留水に再分散させ、この操
作を2回繰り返し、3回目に上清を取り除いた沈殿物の
粒子に20mMりん酸緩衝液(pH7.5)を加え、粒
子濃度4%となるように分散させた。これに、塩析法に
よって部分精製した抗ヒトAFPヤギ由来抗体(ATA
B社製)200μlを加え攪拌後、冷蔵庫中にて3日間
感作させる。その後、遠心分離(12000rpm×2
0分)により上清を取り除き分離された粒子を1mlの
「0.1%Tween 20、1.5%ポリエチレング
リコール(PEG6000)、1%牛血清アルブミン/
20mMりん酸緩衝液(pH7.5)」(PB溶液と省
略)に再分散させ、この操作を3回繰返し、粒子濃度を
4%に調製する。各感作粒子の粒径、磁化量及び比重を
表1に示した。
(Sensitization method) The magnetic particles prepared in (Production Examples 1 to 13) are dispersed in 1 ml of a phosphate buffer (pH 5.0) so that the particle concentration becomes 4%. 1% EDC for this
(1-Ethyl-3- (3-Dimethylylami
nopropyl) Calbody, hyd
200 ml of aqueous solution was added and stirred. Then, the supernatant is removed by centrifugation (12000 rpm × 20 minutes),
The separated particles were redispersed in 1 ml of distilled water, and this operation was repeated twice, and 20 mM phosphate buffer solution (pH 7.5) was added to the particles of the precipitate from which the supernatant had been removed at the third time, and the particle concentration was adjusted to 4 It was dispersed so as to be%. Anti-human AFP goat-derived antibody (ATA) partially purified by salting out
After adding 200 μl (manufactured by Company B) and stirring, sensitize in a refrigerator for 3 days. Then, centrifuge (12000 rpm x 2
(0 min), the supernatant was removed, and the separated particles were mixed with 1 ml of “0.1% Tween 20, 1.5% polyethylene glycol (PEG6000), 1% bovine serum albumin /
20 mM phosphate buffer (pH 7.5) ”(abbreviated as PB solution) is re-dispersed, and this operation is repeated 3 times to adjust the particle concentration to 4%. Table 1 shows the particle size, the amount of magnetization and the specific gravity of each sensitized particle.

【0046】(実施例1)表1の磁性粒子(I)として
感作粒子9溶液0.125mlと磁性粒子(II)とし
て感作粒子11溶液0.5mlにPB溶液1.375m
lを混合してよく攪拌した溶液を試薬とする。この試薬
を0.1mlを平底96穴マイクロプレートのウェルに
分注する。AFP製品(バイオテスト社製)を生理食塩
水で希釈し、濃度500ng/mlとしたものを標準液
とする。標準液を生理食塩水で2倍ずつ希釈した系列を
作製したこれを検体とする。これらの検体を0.1ml
ずつ上記の平底96穴マイクロプレートのウェルに分注
し50分間室温で反応させた。次に当社作製の磁気分離
装置を平底96穴マイクロプレートのウェル側面外部5
分間あて、抗原抗体反応によって凝集した粒子を集磁さ
せる。残存する未反応の磁性粒子をマイクロプレートリ
ーダー(東ソー(株)製MPRA4i)により波長57
0nmでその吸光度を測定した。
Example 1 0.125 ml of the sensitized particle 9 solution as the magnetic particles (I) in Table 1 and 0.5 ml of the sensitized particle 11 solution as the magnetic particles (II) were added to the PB solution 1.375 m.
A solution prepared by mixing 1 and stirring well is used as a reagent. 0.1 ml of this reagent is dispensed into the wells of a flat-bottom 96-well microplate. An AFP product (manufactured by Biotest) is diluted with physiological saline to have a concentration of 500 ng / ml, which is used as a standard solution. A series prepared by diluting the standard solution by 2 times with physiological saline was prepared and used as a sample. 0.1 ml of these samples
Each was dispensed into the wells of the above flat-bottom 96-well microplate and reacted at room temperature for 50 minutes. Next, attach the magnetic separation device manufactured by our company to the outside 5
The particles agglomerated by the antigen-antibody reaction are attracted for a minute to collect the magnetism. The remaining unreacted magnetic particles were measured with a microplate reader (MPRA4i manufactured by Tosoh Corporation) at a wavelength of 57
The absorbance was measured at 0 nm.

【0047】(実施例2)実施例1において磁性粒子
(II)しての感作粒子11溶液を0.125mlに、
PB溶液を1.75mlに変えただけで、操作方法は実
施例1と同じである。
Example 2 The solution of the sensitized particles 11 as the magnetic particles (II) in Example 1 was added to 0.125 ml,
The operation method is the same as in Example 1 except that the PB solution was changed to 1.75 ml.

【0048】(実施例3)実施例1において磁性粒子
(II)しての感作粒子11溶液を0.125mlに、
PB溶液を0.175mlに変えただけで、操作方法は
実施例1と同じである。
Example 3 The solution of the sensitized particles 11 as the magnetic particles (II) in Example 1 was added to 0.125 ml.
The operation method is the same as in Example 1 except that the PB solution was changed to 0.175 ml.

【0049】(実施例4〜11,比較例1)実施例4〜
実施例11及び比較例1は表3に示したように磁性粒子
(I)と磁性粒子(II)を組み合わせて実験を行った
もので、操作方法は実施例1と同じである。
(Examples 4 to 11, Comparative Example 1) Examples 4 to
In Example 11 and Comparative Example 1, experiments were carried out by combining magnetic particles (I) and magnetic particles (II) as shown in Table 3, and the operation method was the same as in Example 1.

【0050】 [0050]

【0051】 [0051]

【0052】 [0052]

【0053】結果 吸光度とAFP溶液濃度の結果を表3に示した。比較例
1は両磁性粒子の磁化量が高い為、未反応の磁性粒子が
磁力によって引き付けられてしまった。測定不可能であ
った。
Results The results of absorbance and AFP solution concentration are shown in Table 3. In Comparative Example 1, since the magnetic amounts of both magnetic particles were high, the unreacted magnetic particles were attracted by the magnetic force. It was impossible to measure.

【0054】[0054]

【発明の効果】本発明によれば、磁化量の異なる2種類
の磁性粒子を用いることにより、抗原−抗体−磁性粒子
又は抗体−抗原−磁性粒子の凝集塊を生成し、この凝集
塊を集磁させるため、B/F分離が不要で、従来より
も、簡便で目的の物質が定量又は定性可能となり、集磁
がより確実に行なえ、一層高精度が分析が可能となり、
有用な臨床診断方法が得られる。
INDUSTRIAL APPLICABILITY According to the present invention, by using two types of magnetic particles having different amounts of magnetization, an aggregate of antigen-antibody-magnetic particle or antibody-antigen-magnetic particle is generated and the aggregate is collected. Since it is magnetized, B / F separation is not required, the target substance can be quantitatively or qualitatively simpler than in the past, the magnetism can be collected more reliably, and the analysis with higher accuracy becomes possible.
A useful clinical diagnostic method is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる磁性粒子の磁化量一粒径図FIG. 1 is a graph showing the amount of magnetization of a magnetic particle used in the present invention.

【符号の説明】[Explanation of symbols]

A,B,E,D,C………………この範囲内が磁性粒子
(I)の条件 C′,D′,E′,G,F………この範囲内が磁性粒子
(II)の条件 m,n,o,p……………………この範囲内が磁性粒子
(I)の好ましい条件 q,r,p,t……………………この範囲内が磁性粒子
(n)の好ましい条件
A, B, E, D, C ......... The conditions for magnetic particles (I) in this range C ', D', E ', G, F ... ... Magnetic particles (II) in this range Condition m, n, o, p ………………………… This range is preferable condition for magnetic particles (I) q, r, p, t …………………… Preferred conditions for (n)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿南 真 東京都品川区南品川4丁目1番15号 日本 ペイント株式会社東京事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Anan 4-1-1-15 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Nippon Paint Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記(1)〜(3)の工程を順次経ること
を特徴とする抗原・抗体反応による生体内物質の測定方
法。 (1)磁化量−粒径図でA(1,10)、B(1,10
00)、C(X1,10)、D(X2,300)及びE
(X3,1000)の範囲内に含まれ比重が1〜2であ
る磁性粒子(I)、及びC′(X1,10)、D′(X
2,300)、E′(X3,1000)、F(70,1
0)及びG(70,1000)の範囲内に含まれ比重が
1〜2である磁性粒子(II)に、抗体又は抗原を担持
させた混合粒子と、前記混合粒子の抗体と生体内物質中
の抗原、又は前記混合粒子の抗原と生体内物質中の抗体
を反応させる工程(ただし、X1,X2,X3,は、X
1>X2>X3,18<X2<35である磁性粒子
(I)を単分散させた時に集磁される下限磁化量、磁性
粒子(II)の点C′D′E′のX軸>X1,X2,X
3、磁性粒子(I)と磁性粒子(II)との比重差が0
〜0.5である。磁化量:emu/g,粒径:nm) (2)前記反応混合物に磁場を付与する工程 (3)集磁されない磁性粒子の量を350nm以上の波
長で吸光度又は透過度を測定し、生体内物質中の抗原又
は抗体を定性又は定量する工程
1. A method for measuring an in-vivo substance by an antigen-antibody reaction, which comprises sequentially performing the following steps (1) to (3). (1) Amount of magnetization vs. grain size A (1,10), B (1,10)
00), C (X1,10), D (X2,300) and E
Magnetic particles (I) having a specific gravity of 1-2 in the range of (X3,1000), and C '(X1,10), D' (X
2,300), E '(X3,1000), F (70,1)
0) and G (70,1000) within the range of magnetic particles (II) having a specific gravity of 1-2 and carrying an antibody or an antigen; mixed particles; Step of reacting the antigen of the above, or the antigen of the mixed particles with the antibody in the in-vivo substance (where X1, X2, X3 are X
1>X2> X3, 18 <X2 <35 The lower limit amount of magnetization collected when the magnetic particles (I) are monodispersed, the X axis of point C′D′E ′ of the magnetic particles (II)> X1 , X2, X
3, the specific gravity difference between the magnetic particles (I) and the magnetic particles (II) is 0
~ 0.5. (Magnetization amount: emu / g, particle size: nm) (2) Step of applying magnetic field to the reaction mixture (3) Absorbance or transmittance of the amount of magnetic particles that are not magnetically collected is measured at a wavelength of 350 nm or more to measure in vivo Process of qualitatively or quantitatively determining antigen or antibody in substance
JP29550692A 1992-09-22 1992-09-22 Measuring method for in vivo material by antigen-antibody reaction Pending JPH06109735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29550692A JPH06109735A (en) 1992-09-22 1992-09-22 Measuring method for in vivo material by antigen-antibody reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29550692A JPH06109735A (en) 1992-09-22 1992-09-22 Measuring method for in vivo material by antigen-antibody reaction

Publications (1)

Publication Number Publication Date
JPH06109735A true JPH06109735A (en) 1994-04-22

Family

ID=17821499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29550692A Pending JPH06109735A (en) 1992-09-22 1992-09-22 Measuring method for in vivo material by antigen-antibody reaction

Country Status (1)

Country Link
JP (1) JPH06109735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123137A (en) * 1996-10-16 1998-05-15 Sekisui Chem Co Ltd Highly sensitive immunoassay method
JP2011504592A (en) * 2007-11-26 2011-02-10 アトノミックス アクティーゼルスカブ Integrated separation and detection cartridge with magnetic particles having a bimodal size distribution
CN112255407A (en) * 2020-10-12 2021-01-22 中拓生物有限公司 Novel serum alpha-fetoprotein heteroplasmon 3 determination kit and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123137A (en) * 1996-10-16 1998-05-15 Sekisui Chem Co Ltd Highly sensitive immunoassay method
JP2011504592A (en) * 2007-11-26 2011-02-10 アトノミックス アクティーゼルスカブ Integrated separation and detection cartridge with magnetic particles having a bimodal size distribution
JP2011504591A (en) * 2007-11-26 2011-02-10 アトノミックス アクティーゼルスカブ Integrated separation and detection cartridge with means and methods for increasing the signal to noise ratio
CN112255407A (en) * 2020-10-12 2021-01-22 中拓生物有限公司 Novel serum alpha-fetoprotein heteroplasmon 3 determination kit and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0420186B1 (en) Immunoassay using magnetic particle
US5108933A (en) Manipulation of colloids for facilitating magnetic separations
JP2994372B2 (en) Magnetic particles for affinity binding applications and their use
US5736349A (en) Magnetic particle and immunoassay using the same
US20190170758A1 (en) Method of detection with a fluorescent labeling particle
US20080241964A1 (en) Material for improving sensitivity of magnetic sensor and method thereof
JPH02501753A (en) Manufacturing method of magnetically responsive polymer particles and its applications
US10203326B2 (en) Method of detecting target substance
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
JP2603843B2 (en) Measuring method of antigen or antibody
JPH06109735A (en) Measuring method for in vivo material by antigen-antibody reaction
JPH06231957A (en) Particle coated with ferrite and its manufacture
US20220205993A1 (en) Detection method of multiple analytes
EP0585868B1 (en) Magnetic particle and immunoassay using the same
JPH05322894A (en) Method and instrument for measuring biomass
JPH0763761A (en) Manufacture of fine magnetic particles for fixing physiologically active material
JP2938918B2 (en) Magnetic fine particle size measurement method
JP2938936B2 (en) Method for measuring antigen or antibody concentration
JPH09229936A (en) Measuring method for material under inspection using magnetic particles, and carrier and measuring instrument used in the method
JPH05180842A (en) Measurement of material in vivo by antigen/antibody reaction
JPH10239317A (en) Method and reagent for restrainedly measuring zone phenomenon suppression and measuring reagent
JPH0588787B2 (en)
JPH08146001A (en) Immunoassay and apparatus
US20230118882A1 (en) Magnetically responsive particles, and immunoassay method and immunoassay reagent using same
JPH05240859A (en) Method and apparatus for measuring agglutination immunity