JPH08146001A - Immunoassay and apparatus - Google Patents

Immunoassay and apparatus

Info

Publication number
JPH08146001A
JPH08146001A JP30941394A JP30941394A JPH08146001A JP H08146001 A JPH08146001 A JP H08146001A JP 30941394 A JP30941394 A JP 30941394A JP 30941394 A JP30941394 A JP 30941394A JP H08146001 A JPH08146001 A JP H08146001A
Authority
JP
Japan
Prior art keywords
magnetic particles
enzyme
antibody
immunoassay
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30941394A
Other languages
Japanese (ja)
Other versions
JP3216452B2 (en
Inventor
Masami Sumiya
雅実 角谷
Tomoo Saito
智雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP30941394A priority Critical patent/JP3216452B2/en
Publication of JPH08146001A publication Critical patent/JPH08146001A/en
Application granted granted Critical
Publication of JP3216452B2 publication Critical patent/JP3216452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To qualitatively and quantitatively measure an antigen or antibody in a specimen by adding an enzyme-labelled antigen or antibody to aggregated magnetic particles judged to be positive to react with each other and measuring the activity of enzyme bonded to the magnetic particles. CONSTITUTION: In an indirect aggregation measuring method, magnetic particles to which an antigen or antibody is bonded and a specimen are mixed in a reaction container to be reacted and the magnetic particles in the container are sedimented by a magnet. The inner surface of the reaction container is inclined by 20-40 deg. and the length of the particles flowing out after 1-5min is measured. The specimen wherein the measured length of the particles does not reach definite length by the agglutination due to immunoreaction is judged to be positive. The magnetic particles obtained by removing a supernatant liquid from a particle soln. judged to be positive are washed to be mixed with an enzyme-labelled antigen (antibody) to be reacted therewith. Further, the magnetic particles are collected by a magnet and, after the unreacted enzyme- labelled antigen (antibody) is removed, the magnetic particles are washed to be subjected to B/F separation and, thereafter, the activity of enzyme bonded to the magnetic particles is measured using a chemoluminescent substrate. By this constitution, the object to be measured in a specimen can be measured qualitatively and quantitatively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗原又は抗体が結合し
た磁性粒子と検体とを反応容器中で混合し、外部の磁力
により容器の内面に磁性粒子を沈降させ、この容器を所
定角度傾斜させて磁性粒子の流れ出し状態を測定する間
接凝集免疫測定法と、間接凝集免疫測定法で陽性と判定
された凝集した磁性粒子に酵素標識抗原又は酵素標識抗
体を加え反応させた後、磁性粒子に結合した酵素の活性
を化学発光基質を用いて測定する化学発光酵素免疫測定
法とを連続して行い、検体中の抗原又は抗体を測定する
免疫測定法、及びこの免疫測定法を行うための免疫測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mixes magnetic particles bound to an antigen or antibody with a specimen in a reaction vessel and causes magnetic particles to settle on the inner surface of the vessel by an external magnetic force, and the vessel is tilted at a predetermined angle. Indirect agglutination immunoassay for measuring the flow-out state of magnetic particles, and after reacting by adding an enzyme-labeled antigen or enzyme-labeled antibody to the agglutinated magnetic particles determined to be positive by the indirect agglutination immunoassay, the magnetic particles are An immunoassay for measuring an antigen or an antibody in a sample by continuously performing a chemiluminescent enzyme immunoassay in which the activity of a bound enzyme is measured using a chemiluminescent substrate, and immunity for performing this immunoassay. Regarding measuring device.

【0002】[0002]

【従来の技術】従来間接凝集免疫測定法は、抗原又は抗
体を結合させた粒子を試薬として用い、測定には特殊な
装置を使用しない多数検体の簡易測定法として広く実用
化されている。またこの粒子に磁性粒子を用いる方法
は、粒子と検体とを反応させた後磁力により粒子を強制
沈降させ、次いでこの粒子の入った容器を所定の角度傾
斜させて沈降粒子の流れ出した状態から測定結果を得る
ため、短時間で免疫反応の有無の判定結果が得られる簡
便な測定法として知られている(特開平3−14436
7号参照)。一方、酵素免疫測定法(EIA)は、免疫
反応により固相に結合した酵素の活性を測定して得られ
る結果と、予め既知濃度の検体から得た検量線とを比較
して結果を求める定量測定(精密試験)が可能な測定法
である。
2. Description of the Related Art Conventionally, the indirect agglutination immunoassay method has been widely put to practical use as a simple assay method for a large number of specimens, which uses particles bound with an antigen or an antibody as a reagent and does not use a special device for the measurement. In addition, the method of using magnetic particles for this particle is to measure the particle from the state in which the particle is forcibly settled by reacting the particle and the specimen and then the particle is forcibly settled, and then the container containing the particle is tilted at a predetermined angle to flow out the settling particle. In order to obtain the result, it is known as a simple measuring method that can obtain the result of determination of the presence or absence of immune reaction in a short time (Japanese Patent Laid-Open No. 3-14436)
(See No. 7). On the other hand, the enzyme immunoassay (EIA) is a quantitative method for obtaining a result by comparing a result obtained by measuring the activity of an enzyme bound to a solid phase by an immunoreaction with a calibration curve previously obtained from a sample having a known concentration. It is a measurement method that enables measurement (precision test).

【0003】[0003]

【発明が解決しようとする課題】前記間接凝集免疫測定
法で検体の定量測定を実施する場合には、検体の希釈列
を作りそれぞれの凝集像の目視判定結果に基づき測定を
行うため、半定量の測定結果が得られるにすぎなかっ
た。そこでこのような特徴から間接凝集免疫測定法は、
検体の定性測定(スクリーニング法)として主に用いら
れてきた。またEIAに化学発光基質を使用する化学発
光酵素免疫測定法は、短時間で測定結果が得られる方法
であるが、高価な化学発光基質を用いねばならないこ
と、バインド/フリー(B/F)分離及び固相の洗浄な
ど煩雑な操作を繰り返すため自動測定装置を用いる等多
数検体を定性測定する方法としては実用的な満足できる
方法ではなかった。そこで、従来の方法で定性測定と定
量測定とを実施しそれぞれの結果を得るには、まず検体
の定性測定を行い結果を得、次いでこの結果から煩雑な
検体の選出操作や分注操作を繰り返し定量測定を行って
いた。そのため多数検体から定量結果を得るまでには多
大な労力と時間とを要していた。
When performing quantitative measurement of a sample by the above-mentioned indirect agglutination immunoassay, a dilution series of the sample is formed and the measurement is performed based on the visual judgment result of each agglutination image. Only the measurement result of was obtained. Therefore, from such characteristics, the indirect agglutination immunoassay method is
It has been mainly used as a qualitative measurement (screening method) of a sample. In addition, the chemiluminescent enzyme immunoassay method that uses a chemiluminescent substrate for EIA is a method that can obtain the measurement result in a short time, but it requires the use of an expensive chemiluminescent substrate, and bind / free (B / F) separation. In addition, it is not a practically satisfactory method as a method for qualitatively measuring a large number of samples, such as using an automatic measuring device because complicated operations such as washing of the solid phase are repeated. Therefore, in order to perform qualitative measurement and quantitative measurement by the conventional method and obtain each result, first perform the qualitative measurement of the sample and obtain the result, and then repeat the complicated sample selection operation and dispensing operation from this result. Quantitative measurement was performed. Therefore, it takes a lot of labor and time to obtain quantitative results from many samples.

【0004】[0004]

【課題を解決するための手段】本発明者等は、鋭意研究
した結果、検体中の抗体又は抗原を測定するに当り、ま
ず抗原又は抗体が結合した磁性粒子と検体とを混合し、
外部の磁力により容器の内面に磁性粒子を沈降させ、こ
の容器を所定の角度傾斜させて沈降した磁性粒子の流れ
出し状態から測定を行う間接凝集免疫測定を行った後、
次いでこの間接凝集免疫測定で陽性と判定された凝集し
た磁性粒子に酵素標識抗体又は酵素標識抗原を加え反応
させて、磁性粒子に結合した酵素の活性を化学発光基質
を用いて測定する化学発光酵素免疫測定法とを連続して
行う免疫測定法及びこの免疫測定を行うための免疫測定
装置を見い出し本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention, in measuring an antibody or an antigen in a specimen, first mix the antigen or the magnetic particles to which the antibody is bound with the specimen,
After the magnetic particles are settled on the inner surface of the container by the external magnetic force, the container is tilted at a predetermined angle, and the indirect agglutination immunoassay is performed to measure from the flow-out state of the settled magnetic particles.
Then, a chemiluminescent enzyme for measuring the activity of the enzyme bound to the magnetic particles by using a chemiluminescent substrate by reacting by adding an enzyme-labeled antibody or an enzyme-labeled antigen to the aggregated magnetic particles determined to be positive in this indirect agglutination immunoassay. The present invention has been completed by finding an immunoassay method for carrying out the immunoassay method and an immunoassay apparatus for performing the immunoassay method.

【0005】本発明の間接凝集免疫測定法は、最初に抗
原又は抗体が結合した磁性粒子と検体とを反応容器に入
れて混合して反応を行い、反応容器を磁石が配置された
沈降促進装置上にのせて容器中の磁性粒子を磁力により
沈降させ、次いで磁力を除き容器を所定角度傾斜させた
後、容器の内面に沈降した磁性粒子の流れ出し状態を測
定する方法である。この測定法において、磁性粒子と検
体との反応は2分〜15分間撹拌することにより行うこ
とができる。また反応後磁性粒子を磁力により沈降させ
るためには、沈降促進台上に30秒〜5分間載せて行う
ことができるが、用いる磁性粒子の粒径又は磁力の強さ
に対応して処理時間を決めることができる。さらに磁性
粒子の流れ出し状態の測定は、反応容器を傾斜させた後
1分〜5分後の流れ出した粒子の長さを測定する。測定
はスケールで目視によって測定する方法や、透過型光セ
ンサー、反射型光センサー等の光センサーを用いた測定
装置により行うことができる。本方法で陰性又は陽性を
判定するには、通常流れ出す像を形成させる容器の内面
を水平面に対して20°〜40°に傾斜させた後、一定
値以上の流れ出しが認められた検体を陰性と判定し、免
疫反応により凝集してその長さに達しない検体を陽性と
判定している。
In the indirect agglutination immunoassay method of the present invention, first, magnetic particles to which an antigen or an antibody is bound and a sample are placed in a reaction container and mixed to carry out a reaction, and a precipitation promoting device in which a magnet is arranged in the reaction container is used. This is a method in which the magnetic particles in the container are settled on the top by magnetic force, then the magnetic force is removed and the container is tilted at a predetermined angle, and then the flow-out state of the magnetic particles settled on the inner surface of the container is measured. In this measuring method, the reaction between the magnetic particles and the sample can be performed by stirring for 2 minutes to 15 minutes. In order to settle the magnetic particles by magnetic force after the reaction, they can be placed on a settling promoting table for 30 seconds to 5 minutes, but the treatment time depends on the particle size of the magnetic particles used or the strength of the magnetic force. I can decide. Further, the flow-out state of the magnetic particles is measured by measuring the length of the flow-out particles 1 to 5 minutes after the reaction container is tilted. The measurement can be performed by a method of visually measuring with a scale or a measuring device using an optical sensor such as a transmissive optical sensor or a reflective optical sensor. To determine negative or positive with this method, after inclining the inner surface of the container for forming an image that normally flows out to 20 ° to 40 ° with respect to the horizontal plane, a sample in which the flowout of a certain value or more is recognized is negative. The specimen is judged to be positive if it is aggregated by an immune reaction and does not reach the length.

【0006】本発明で用いられる磁性粒子は、例えば5
0〜500Åの強磁性体粒子を含んだゼラチン磁性粒子
(特公平3−17103号)、磁性体の血清アルブミン
等の蛋白質で被覆した粒子、同様に合成ポリマーで被覆
した粒子、合成ポリマーを核としフェライト層で被覆し
さらにシランポリマーで被覆した粒子等を挙げることが
できる。これらの磁性粒子の中でも、測定には非特異反
応を起しにくく、残留磁気が少ないため良好な分散性を
示す強磁性体を含んだゼラチン磁性粒子を用いることが
好ましい。
The magnetic particles used in the present invention are, for example, 5
Gelatin magnetic particles containing ferromagnetic particles of 0 to 500 Å (Japanese Patent Publication No. 3-17103), particles coated with a protein such as serum albumin which is a magnetic material, particles similarly coated with a synthetic polymer, and a synthetic polymer as a core. Examples thereof include particles coated with a ferrite layer and further coated with a silane polymer. Among these magnetic particles, it is preferable to use gelatin magnetic particles containing a ferromagnetic material that exhibits good dispersibility because it is less likely to cause a non-specific reaction for measurement and has a small residual magnetism.

【0007】本発明の磁性粒子は、0.5μm〜5.0
μmの粒径粒子を用いることが好ましい。一般に化学発
光酵素免疫測定は粒径の小さい粒子を用いると反応効率
がよく、好結果を与え、一方、間接凝集免疫測定は粒径
の小さい粒子を用いると凝集が生じない場合がある等不
都合の場合がある。これらの状況に鑑み、用いる磁性粒
子の粒径の下限は0.5μmより大きな粒子を用いるこ
とがよい。また、粒子を次第に大きくすると前記した如
く、化学発光酵素免疫測定は効率よく実施することがで
きなくなるが、間接凝集免疫測定は好結果が得られやす
くなる。これらの状況に鑑み、用いる磁性粒子の粒径の
上限は5μmより小さな粒子を用いることがよい。更に
両測定を効率よく行うには磁性粒子の粒径は、1.0μ
m〜3.0μmが好ましい。
The magnetic particles of the present invention have a particle size of 0.5 μm to 5.0 μm.
It is preferable to use particles having a particle size of μm. Generally, chemiluminescent enzyme immunoassays have good reaction efficiency and give good results when particles with a small particle size are used, whereas indirect agglutination immunoassays have the disadvantage that agglutination may not occur when particles with a small particle size are used. There are cases. In view of these circumstances, the lower limit of the particle size of the magnetic particles used is preferably particles larger than 0.5 μm. As described above, when the particles are made larger, the chemiluminescent enzyme immunoassay cannot be efficiently performed, but the indirect agglutination immunoassay is likely to give good results. In view of these circumstances, the upper limit of the particle size of the magnetic particles used is preferably particles smaller than 5 μm. Furthermore, in order to perform both measurements efficiently, the particle size of the magnetic particles should be 1.0μ.
m to 3.0 μm is preferable.

【0008】また前記した磁性粒子には検体中の測定対
象物に応じて各種抗原又は抗体を結合させて免疫測定に
用いることができる。粒子に結合される抗体としては、
例えばテオフィリン、フェニトイン、バルプロ酸等の薬
剤、サイロキシ、エストロゲン、エストラジオール等の
低分子ホルモン、ガン胎児性抗原(CEA)、α−フェ
トプロテイン(AFP)等の癌マーカー、甲状腺刺激ホ
ルモン(TSH)、インスリン等の高分子ホルモン、I
L−1、IL−2、IL−6等のサイトカイン、EG
F、PDGF等のグロースファクター、DNA、RNA
等の核酸、ヘモグロビン等に対する抗体、さらにイムノ
グロブリン(抗体)に対する抗体等を挙げることができ
る。これらの抗体は、モノクローナル抗体であってもポ
リクローナル抗体であってもよく、さらに抗体の分解物
であるF(ab′)2 、Fab′、Fab等のフラグメ
ントであってもよい。一方、抗原としては、例えば、H
IV、ATLV、HBV等のウイルス関連抗原、前記ウ
イルスDNA、インスリン、TSH等の高分子ホルモン
を挙げることができる。検体としては、前記測定対象物
を含む体液、例えば血液、血清、尿等を挙げることがで
きる。これらの抗原又は抗体を磁性粒子への結合する方
法としては、物理吸着法又は化学結合法を採用すること
ができるが、抗原又は抗体が強固に結合される化学結合
法で行うことが好ましい。この化学結合法は、公知の方
法であり、結合試薬としてカルボジイミド試薬等の結合
試薬、グルタールアルデヒド、塩化シアヌル、ベンゾキ
ノン、タンニン酸、トリレンジイソシアネート等を使用
し、緩衝液中磁性粒子と抗原又は抗体とを反応させるこ
とにより行うことができる。
Further, various kinds of antigens or antibodies can be bound to the above-mentioned magnetic particles according to the object to be measured in the sample and used for immunoassay. Antibodies bound to particles include:
For example, drugs such as theophylline, phenytoin, valproic acid, low molecular hormones such as siloxy, estrogen, estradiol, carcinoembryonic antigen (CEA), cancer markers such as α-fetoprotein (AFP), thyroid stimulating hormone (TSH), insulin, etc. Polymeric hormone of I
L-1, IL-2, IL-6 and other cytokines, EG
Growth factors such as F and PDGF, DNA, RNA
And the like, antibodies against hemoglobin and the like, antibodies against immunoglobulins (antibodies), and the like. These antibodies may be monoclonal antibodies or polyclonal antibodies, and may be fragments of F (ab ') 2 , Fab', Fab, etc., which are degradation products of the antibodies. On the other hand, as an antigen, for example, H
Examples thereof include virus-related antigens such as IV, ATLV and HBV, the above-mentioned viral DNA, high molecular hormones such as insulin and TSH. Examples of the sample include body fluid containing the measurement target, such as blood, serum, urine and the like. As a method of binding these antigens or antibodies to the magnetic particles, a physical adsorption method or a chemical binding method can be adopted, but a chemical binding method in which the antigens or antibodies are firmly bound is preferably used. This chemical bonding method is a known method, using a binding reagent such as a carbodiimide reagent as a binding reagent, glutaraldehyde, cyanuric chloride, benzoquinone, tannic acid, tolylene diisocyanate, etc., magnetic particles in a buffer solution and an antigen or It can be performed by reacting with an antibody.

【0009】また、本測定を行うための検体及び試薬を
受容する容器としては、磁気応答性のない例えばポリス
チレン樹脂、ABS樹脂等のプラスチック製もしくはガ
ラス製のU字型、V字型又は平坦な底部をもつ容器であ
る。これらの測定容器の大きさは問わないが、多数の検
体を処理し、取り扱いが容易であり、鮮明な像を得るた
めにはポリスチレン製のV字型マイクロプレートが好適
である。このマイクロプレートは縦方向に12列、横方
向に8列の計96個のウェルをもつもの、12列、10
列の計120個のウェルをもつもの等により多数検体の
測定を行うことができる。さらにこの容器の内面に磁性
粒子を沈降させる手段には、電磁石、永久磁石等を用い
ることができるが、通常は取扱いが容易な永久磁石を用
いることが好ましい。
As a container for receiving a sample and a reagent for carrying out the main measurement, a U-shaped, V-shaped, or flat container made of plastic or glass having no magnetic response, such as polystyrene resin or ABS resin, is used. It is a container with a bottom. The size of these measuring containers is not limited, but a polystyrene V-shaped microplate is suitable for processing a large number of specimens, easy handling, and obtaining a clear image. This microplate has a total of 96 wells with 12 rows in the vertical direction and 8 rows in the horizontal direction, 12 rows, 10 rows.
A large number of samples can be measured by using a column having a total of 120 wells. Further, an electromagnet, a permanent magnet, or the like can be used as a means for causing the magnetic particles to settle on the inner surface of the container, but it is usually preferable to use a permanent magnet that is easy to handle.

【0010】また前記した平坦な底部をもつ容器中で磁
性粒子を沈降させる場合には、該磁石の磁力をアダプタ
ーを介して作用させることによって磁性粒子をウェル底
部の所定位置に強制沈降させることができる。このアダ
プターは、ウェルの底面に接する先端部分が尖鋭な形状
を有し、磁石又は鉄などの帯磁性材料を使用して形成さ
れたものを用いることができる。
When the magnetic particles are settled in the above-mentioned container having a flat bottom, the magnetic particles can be forced to settle at a predetermined position on the bottom of the well by causing the magnetic force of the magnet to act through an adapter. it can. As this adapter, a tip portion in contact with the bottom surface of the well has a sharp shape and is formed using a magnetized material such as magnet or iron.

【0011】次いで間接凝集免疫測定法で凝集し陽性と
判定された粒子液から上清を除き磁性粒子を洗浄し、こ
の粒子に酵素標識抗原又は酵素標識抗体を加え混合し反
応を行い、さらに磁力により磁性粒子を集め上清溶液を
除くことにより未反応の酵素標識抗原又は酵素標識抗体
を除去し、生理食塩水あるいは蒸留水で磁性粒子を洗浄
してB/F分離を行った後、磁性粒子に結合した酵素の
活性を化学発光基質を用いて測定することにより検体中
の測定対象物の量を測定することができる。凝集した磁
性粒子と酵素標識抗原又は酵素標識抗体との反応は室温
で2分〜10分間混合することにより行うことが好まし
い。
Next, the supernatant is removed from the particle solution which has been agglutinated by the indirect agglutination immunoassay and determined to be positive, and the magnetic particles are washed, an enzyme-labeled antigen or an enzyme-labeled antibody is added to the particles and mixed to carry out a reaction. The unreacted enzyme-labeled antigen or enzyme-labeled antibody is removed by collecting the magnetic particles with the aid of a supernatant solution, washing the magnetic particles with physiological saline or distilled water, and performing B / F separation. The amount of the target substance in the sample can be measured by measuring the activity of the enzyme bound to the enzyme using a chemiluminescent substrate. The reaction between the aggregated magnetic particles and the enzyme-labeled antigen or enzyme-labeled antibody is preferably performed by mixing at room temperature for 2 minutes to 10 minutes.

【0012】本測定の酵素標識抗体は前記したポリクロ
ーナル抗体若しくはモノクローナル抗体又はこれらの抗
体のフラグメントに酵素を標識して製造することができ
る。また本測定で用いる抗体は、検体に対して磁性粒子
に結合された抗体と異なるエピトープを認識する抗体を
用いることが測定を感度よく行うためには有利である。
この抗体に結合させる酵素としては、例えばアルカリホ
スファターゼ、β−ガラクトシダーゼ、グルコースオキ
シダーゼ等を挙げることができる。そしてこれらの酵素
を抗体に結合させるにはEIA試薬を製造するための公
知方法に従い行えばよい(「酵素免疫測定法」医学書
院、(1987年)参照。)。
The enzyme-labeled antibody used in the present measurement can be produced by labeling the above-mentioned polyclonal antibody or monoclonal antibody or a fragment of these antibodies with an enzyme. Further, as the antibody used in this measurement, it is advantageous to use an antibody that recognizes an epitope different from that of the antibody bound to the magnetic particles for the sample, in order to perform the measurement with high sensitivity.
Examples of the enzyme bound to this antibody include alkaline phosphatase, β-galactosidase, glucose oxidase and the like. In order to bind these enzymes to the antibody, a known method for producing an EIA reagent may be used (see "Enzyme-linked immunosorbent assay", Medical Shoin, (1987)).

【0013】これらの標識した酵素は基質を用いてその
活性を測定することができる。測定に用いる化学発光基
質は、標識酵素に適したものを用いることは言うまでも
なく、例えばメチルウンベリフェリルホスフェート、3
−(2′−スピロアダマンタン)−4−メトキシ−4−
(3″−ホスフォリルオキシ)フェニル−1,2−ジオ
キセタン二ナトリウム塩(AMPPD)(アルカリホス
ファターゼ用)、メチルウンベリフェリル−β−D−ガ
ラクトシド(β−D−ガラクトシダーゼ用)等を使用す
ることができる。発光量の測定は室温〜40℃で1分〜
30分反応させ、発光量をフォトンカウンター等の測定
装置により行うものである。他に測定は、4℃〜40℃
の範囲で加温しながら行う所謂レート法を採用すること
もできる。この測定で得られた発光量と検量線とを比較
することにより目的の測定対象物を定量することができ
る。
The activity of these labeled enzymes can be measured using a substrate. It goes without saying that the chemiluminescent substrate used for the measurement should be one suitable for the labeling enzyme, for example, methylumbelliferyl phosphate, 3
-(2'-Spiro adamantane) -4-methoxy-4-
(3 ″ -phosphoryloxy) phenyl-1,2-dioxetane disodium salt (AMPPD) (for alkaline phosphatase), methylumbelliferyl-β-D-galactoside (for β-D-galactosidase), etc. are used. The amount of luminescence can be measured at room temperature to 40 ° C. for 1 minute to
The reaction is carried out for 30 minutes, and the amount of luminescence is measured by a measuring device such as a photon counter. Other measurement is 4 ℃ -40 ℃
It is also possible to employ a so-called rate method in which heating is performed within the range. By comparing the luminescence amount obtained by this measurement with the calibration curve, the target measurement object can be quantified.

【0014】また化学発光の測定には、化学発光基質が
加えられた反応溶液を化学発光測定用の試験管、セル等
の容器に移し発光量の測定することが好ましい。
For the measurement of chemiluminescence, it is preferable that the reaction solution to which the chemiluminescence substrate is added is transferred to a chemiluminescence measurement test tube, a container such as a cell, and the amount of luminescence is measured.

【0015】またさらに化学発光酵素免疫測定には通常
磁性粒子に結合した酵素の活性測定を行うが、磁性粒子
に結合しない酵素標識抗体又は酵素標識抗原を分離し、
その未結合の酵素の活性を測定することにより検体中の
測定対象物の量を測定することもできる。
Further, the chemiluminescent enzyme immunoassay is usually carried out by measuring the activity of the enzyme bound to the magnetic particles, but the enzyme-labeled antibody or enzyme-labeled antigen not bound to the magnetic particles is separated,
The amount of the measurement target in the sample can also be measured by measuring the activity of the unbound enzyme.

【0016】一方、本発明の測定装置は、抗原又は抗体
が結合した磁性粒子と検体とを受容する反応容器と、該
磁性粒子、検体又は試薬を該反応容器へ分注する分注装
置と、反応容器中の試薬を混合する撹拌装置と、該磁性
粒子を磁力によって沈降させる沈降促進装置と、該反応
容器を傾斜させる傾斜処理装置と、反応容器からの磁性
粒子の流れ出し状態を測定する判定装置と、B/F分離
を行う洗浄装置と、磁性粒子に結合した酵素活性を化学
発光基質を用いて測定する化学発光測定装置等から構成
される。免疫測定装置は、さらに具体的にはこの発明の
図2のブロック図に示す通り、反応容器供給装置1、試
薬及び検体の分注装置2、撹拌装置3、磁力による沈降
促進装置4、傾斜処理装置5、磁性粒子の流れ出す長さ
を測定する判定装置6、洗浄装置7、酵素標識抗原又は
酵素標識抗体を分注する分注装置8、撹拌装置9、磁性
粒子から未反応の酵素標識抗原又は酵素標識抗体を除去
しB/F分離を行う洗浄装置10、化学発光基質分注装
置11、化学発光測定装置12、反応容器回収装置13
等を備えることができる。
On the other hand, the measuring device of the present invention comprises a reaction container for receiving a magnetic particle having an antigen or an antibody bound thereto and a sample, and a dispensing device for dispensing the magnetic particle, sample or reagent into the reaction container. A stirrer for mixing the reagents in the reaction vessel, a settling promoting apparatus for settling the magnetic particles by magnetic force, an inclination processing apparatus for inclining the reaction vessel, and a determination apparatus for measuring the flow-out state of the magnetic particles from the reaction vessel And a cleaning device for performing B / F separation, a chemiluminescence measuring device for measuring the enzyme activity bound to the magnetic particles using a chemiluminescent substrate, and the like. More specifically, as shown in the block diagram of FIG. 2 of the present invention, the immunoassay device includes a reaction container supply device 1, a reagent and sample dispensing device 2, a stirring device 3, a magnetic settling promoting device 4, and an inclination treatment. Device 5, Judgment device 6 for measuring the outflow length of magnetic particles, Washing device 7, Dispensing device 8 for dispensing enzyme labeled antigen or enzyme labeled antibody, Stirrer 9, Unreacted enzyme labeled antigen from magnetic particles or Cleaning device 10 for removing the enzyme-labeled antibody and B / F separation, chemiluminescent substrate dispensing device 11, chemiluminescent measuring device 12, reaction container collecting device 13
Etc. can be provided.

【0017】またこれらの装置において、分注装置、撹
拌装置及び洗浄装置は測定工程で複数回使用することに
より、小型化した装置とすることができる。図2に示す
構成例は、本発明の測定装置の一実施例であって本発明
を限定するものではない。
Further, in these devices, the dispensing device, the stirring device, and the cleaning device can be miniaturized by using them a plurality of times in the measurement process. The configuration example shown in FIG. 2 is an example of the measuring apparatus of the present invention and does not limit the present invention.

【0018】[0018]

【実施例】本発明を以下に示す実施例によりさらに詳細
に説明する。 実施例1 抗AFP抗体感作磁性粒子の製造 特公平3−17103号公報に記載の実施例の方法に従
い製造した各粒子径をもつ強磁性体を含んだゼラチン磁
性粒子に抗ヒトAFP抗体(ウサギ,DACO)を用
い、Barnard等の方法(Clin.Chem.,
27 (6)832(1981))に従い、抗AFP抗体
感作磁性粒子を調製した。
The present invention will be described in more detail with reference to the following examples. Example 1 Production of anti-AFP antibody-sensitized magnetic particles Gelatin magnetic particles containing a ferromagnetic substance having each particle size and produced according to the method described in Japanese Patent Publication No. 3-17103, were used to prepare anti-human AFP antibody (rabbit). , DACO) using the method of Barnard et al. (Clin. Chem.,
27 (6) 832 (1981)), anti-AFP antibody-sensitized magnetic particles were prepared.

【0019】実施例2 AFPの定性と定量測定 定性測定を行うにはまず96ウェルをもつV型マイクロ
プレートに前記実施例1で製造した抗AFP抗体を感作
した粒子径の異なる磁性粒子25μl(磁性粒子0.0
9%含有の分散液)及び40倍に希釈した各濃度の検体
25μlをそれぞれ加えて5分間撹拌した。撹拌後、V
型マイクロプレートを磁石が配置された沈降促進装置の
上に1分間セットし、磁性粒子をウェルの底部中心に集
めた。このプレートを60°(各ウェルの底部は約12
0°のV型であり、実質的に地面と約30°に傾けたこ
とになる。)傾け2分間保持した。強陽性の検体では粒
子は流出せず(図1、(a))、陰性の検体では粒子の
流出(図1、(b))が認められた。その流出した磁性
粒子の長さを計り、カットオフ値が中間になるように調
整し、陽性、陰性を判定した。その結果を表1に示す。
本測定では25ng/mlをカットオフ値とした。
Example 2 Qualitative and Quantitative Measurement of AFP In order to perform qualitative measurement, first, a V-shaped microplate having 96 wells was sensitized with the anti-AFP antibody prepared in Example 1 to prepare 25 μl of magnetic particles having different particle sizes ( Magnetic particle 0.0
(9% dispersion) and 25 μl of a 40-fold diluted sample of each concentration were added and stirred for 5 minutes. After stirring, V
The mold microplate was set on the sedimentation promoting device in which the magnet was placed for 1 minute, and the magnetic particles were collected at the center of the bottom of the well. Place the plate at 60 ° (about 12 at the bottom of each well).
It is V-shaped at 0 °, and is substantially inclined to the ground by about 30 °. ) Tilt and hold for 2 minutes. Particles did not flow out in the strongly positive sample (FIG. 1, (a)), and particle outflow was observed in the negative sample (FIG. 1, (b)). The length of the magnetic particles that flowed out was measured and adjusted so that the cutoff value was in the middle, and positive and negative were determined. Table 1 shows the results.
In this measurement, 25 ng / ml was used as the cutoff value.

【0020】定量測定は定性測定で判定が陽性と判定さ
れた検体について行った。この測定は定性測定の結果プ
レート内で陽性になった磁性粒子を選択し、この粒子を
洗浄1、この磁性粒子にアルカリホスフォターゼで標識
された抗AFP抗体20μl(標識抗体濃度0.5μg
/ml;0.1Mトリス−塩酸、2%BSA、1mMM
gCl2 、0.1mM ZnCl2 、pH7.5)を加
え5分撹拌した。さらに、生理食塩水で3回洗浄して未
結合の標識された抗AFP抗体を除去後、化学発光基質
であるAMPPD200μl(AMPPD濃度100μ
g/ml;0.1Mトリス−塩酸、1μM MgC
2 、0.1mM ZnCl2 、pH9.8)を磁性粒
子溶液に加えた溶液を化学発光測定用の容器に入れその
発光量をルミノメーターで測定しAFP濃度を求めた。
その結果を表2に示す。陰性の場合は、カットオフ以下
であるので、定量測定は行わない。
Quantitative measurement was carried out on a sample judged to be positive by qualitative measurement. In this measurement, magnetic particles that became positive in the plate as a result of qualitative measurement were selected, and the particles were washed 1, and 20 μl of the anti-AFP antibody labeled with alkaline phosphatase (the labeled antibody concentration was 0.5 μg)
/ Ml; 0.1 M Tris-hydrochloric acid, 2% BSA, 1 mMM
gCl 2 , 0.1 mM ZnCl 2 , pH 7.5) was added and stirred for 5 minutes. Furthermore, after washing with physiological saline three times to remove unbound labeled anti-AFP antibody, 200 μl of AMPPD as a chemiluminescent substrate (AMPPD concentration: 100 μm)
g / ml; 0.1 M Tris-hydrochloric acid, 1 μM MgC
l 2, 0.1mM ZnCl 2, pH9.8 ) to obtain the solution measured AFP concentration in a luminometer and the light emission amount in a container for chemiluminescence measurement of that added to the magnetic particle solution.
The results are shown in Table 2. If the result is negative, it is below the cutoff, so quantitative measurement is not performed.

【0021】 [0021]

【0022】 [0022]

【0023】[0023]

【発明の効果】本発明は、磁性粒子を用いた間接凝集免
疫測定法と化学発光酵素免疫測定法とを連続して実施す
るため、簡便な操作で定性測定結果と定量測定結果とを
同時に得ることができる。この間接凝集免疫測定には約
10分間を要し、化学発光酵素免疫測定には、10〜3
0分間を要する。従って同時には測定結果が得られず、
さらに少くとも1時間程度の測定時間を必要とした従来
法に比べ、連続して測定を実施する本測定では、20〜
40分間で定性測定結果と定量測定結果とを得ることが
できる。またマイクロプレートを使用すると、1枚のマ
イクロプレート当り96テスト同時に処理し結果が得ら
れるため、1時間に576〜1152検体の測定を行う
ことができる。また、さらに間接凝集免疫測定法で非特
異凝集により陽性と判定された検体については、化学発
光酵素免疫測定法で再測定を行うため、容易に非特異反
応による偽陽性の測定結果を除くことができる。
INDUSTRIAL APPLICABILITY In the present invention, since the indirect agglutination immunoassay method using magnetic particles and the chemiluminescent enzyme immunoassay method are continuously carried out, a qualitative measurement result and a quantitative measurement result can be simultaneously obtained by a simple operation. be able to. This indirect agglutination immunoassay requires about 10 minutes, and the chemiluminescent enzyme immunoassay requires 10 to 3 minutes.
It takes 0 minutes. Therefore, the measurement results cannot be obtained at the same time,
Compared with the conventional method that requires a measurement time of at least about 1 hour, in the main measurement in which continuous measurement is performed, 20 to 20
A qualitative measurement result and a quantitative measurement result can be obtained in 40 minutes. Further, when microplates are used, 96 tests can be processed simultaneously for each microplate, and the results can be obtained, so that 576 to 1152 samples can be measured in one hour. In addition, for samples that were determined to be positive by non-specific agglutination by the indirect agglutination immunoassay, re-measurement is performed by the chemiluminescent enzyme immunoassay, so it is possible to easily exclude false-positive measurement results due to non-specific reactions. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】V字型マイクロプレートを用いた間接凝集免疫
測定法による測定例である。(a)は、陽性検体、
(b)は陰性検体の測定例である。
FIG. 1 is an example of measurement by an indirect agglutination immunoassay using a V-shaped microplate. (A) is a positive sample,
(B) is an example of measurement of a negative sample.

【図2】本発明による免疫測定装置の一構成例を示すブ
ロック図である。
FIG. 2 is a block diagram showing a configuration example of an immunoassay device according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器供給装置 2 分注装置 3 撹拌装置 4 沈降促進装置 5 傾斜処理装置 6 判定装置 7 洗浄装置 8 分注装置 9 撹拌装置 10 洗浄装置 11 基質分注装置 12 化学発光測定装置 13 反応容器回収装置 DESCRIPTION OF SYMBOLS 1 Reaction container supply device 2 Dispensing device 3 Stirring device 4 Settling promotion device 5 Gradient treatment device 6 Judgment device 7 Cleaning device 8 Dispensing device 9 Stirring device 10 Cleaning device 11 Substrate dispensing device 12 Chemiluminescence measuring device 13 Reaction container recovery apparatus

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 抗原又は抗体が結合した磁性粒子と検体
とを反応容器中で混合し、外部の磁力により容器の内面
に磁性粒子を沈降させ、この容器を所定角度傾斜させて
磁性粒子の流れ出し状態を測定する間接凝集免疫測定法
と、間接凝集免疫測定法で陽性と判定された凝集した磁
性粒子に酵素標識抗原又は酵素標識抗体を加え反応させ
た後、磁性粒子に結合した酵素の活性を化学発光基質を
用いて測定する化学発光酵素免疫測定法とを連続して行
うことを特徴とする免疫測定法。
1. A magnetic particle bound with an antigen or an antibody and a sample are mixed in a reaction vessel, the magnetic particle is allowed to settle on the inner surface of the vessel by an external magnetic force, and the vessel is inclined at a predetermined angle to flow out the magnetic particle. After the indirect agglutination immunoassay for measuring the condition and the agglutinated magnetic particles determined to be positive by the indirect agglutination immunoassay are reacted with the enzyme-labeled antigen or enzyme-labeled antibody, the activity of the enzyme bound to the magnetic particles is measured. An immunoassay characterized by continuously performing a chemiluminescent enzyme immunoassay in which a chemiluminescent substrate is used for measurement.
【請求項2】 磁性粒子が0.5μm〜5.0μmの粒
子である請求項1記載の免疫測定法。
2. The immunoassay method according to claim 1, wherein the magnetic particles are particles of 0.5 μm to 5.0 μm.
【請求項3】 磁性粒子がゼラチン磁性粒子である請求
項2記載の免疫測定法。
3. The immunoassay method according to claim 2, wherein the magnetic particles are gelatin magnetic particles.
【請求項4】 標識酵素がアルカリホスファターゼであ
る請求項1記載の免疫測定法。
4. The immunoassay method according to claim 1, wherein the labeling enzyme is alkaline phosphatase.
【請求項5】 抗原又は抗体が結合した磁性粒子と検体
とを受容する反応容器と、該磁性粒子、検体又は試薬を
該反応容器へ分注する分注装置と、反応容器中の試薬を
混合する撹拌装置と、該磁性粒子を磁力によって沈降さ
せる沈降促進装置と、該反応容器を傾斜させる傾斜処理
装置と、反応容器からの磁性粒子の流れ出し状態を測定
する判定装置と、B/F分離を行う洗浄装置と、磁性粒
子に結合した酵素活性を化学発光基質を用いて測定する
化学発光測定装置とからなる免疫測定装置。
5. A reaction container that receives a magnetic particle having an antigen or an antibody bound thereto and a sample, a dispensing device that dispenses the magnetic particle, sample or reagent into the reaction container, and a reagent in the reaction container are mixed. Stirrer, a settling promoting device that settles the magnetic particles by magnetic force, a tilting device that tilts the reaction container, a determination device that measures the flow state of the magnetic particles from the reaction container, and a B / F separation. An immunoassay device comprising a washing device for performing and a chemiluminescence measuring device for measuring an enzyme activity bound to magnetic particles using a chemiluminescent substrate.
【請求項6】 反応容器がV字型マイクロプレートであ
る請求項5記載の装置。
6. The apparatus according to claim 5, wherein the reaction container is a V-shaped microplate.
【請求項7】 反応容器内面が水平に対して20°〜4
0°に傾斜させる傾斜処理装置である請求項5記載の装
置。
7. The inner surface of the reaction vessel is 20 ° to 4 with respect to the horizontal.
The device according to claim 5, which is a tilting device that tilts at 0 °.
【請求項8】 磁性粒子の流れ出し状態をレーザー光に
より測定する判定装置である請求項5記載の装置。
8. The device according to claim 5, which is a determination device for measuring the flow-out state of magnetic particles by laser light.
JP30941394A 1994-11-21 1994-11-21 Immunoassay method and device Expired - Fee Related JP3216452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30941394A JP3216452B2 (en) 1994-11-21 1994-11-21 Immunoassay method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30941394A JP3216452B2 (en) 1994-11-21 1994-11-21 Immunoassay method and device

Publications (2)

Publication Number Publication Date
JPH08146001A true JPH08146001A (en) 1996-06-07
JP3216452B2 JP3216452B2 (en) 2001-10-09

Family

ID=17992712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30941394A Expired - Fee Related JP3216452B2 (en) 1994-11-21 1994-11-21 Immunoassay method and device

Country Status (1)

Country Link
JP (1) JP3216452B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196927A (en) * 2007-02-13 2008-08-28 Fujifilm Corp Detection method of object material accompanied by removal of probe
US7731899B2 (en) 2007-02-08 2010-06-08 Biokit, S.A. Apparatus and methods for dispensing sample holders
US7731414B2 (en) 2007-02-08 2010-06-08 Instrumentation Laboratory Company Reagent cartridge mixing tube
JP2011007752A (en) * 2009-06-29 2011-01-13 Beckman Coulter Inc Container set for blood transfusion examination
US8728413B2 (en) 2007-02-08 2014-05-20 Biokit, S.A. Reagent container pack
US8795609B2 (en) 2007-02-08 2014-08-05 Biokit, S.A. Magnetic particle washing station

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7731899B2 (en) 2007-02-08 2010-06-08 Biokit, S.A. Apparatus and methods for dispensing sample holders
US7731414B2 (en) 2007-02-08 2010-06-08 Instrumentation Laboratory Company Reagent cartridge mixing tube
US8480954B2 (en) 2007-02-08 2013-07-09 Biokit, S.A. Apparatus and methods for dispensing sample holders
US8550697B2 (en) 2007-02-08 2013-10-08 Biokit, S.A. Reagent cartridge mixing tube
US8728413B2 (en) 2007-02-08 2014-05-20 Biokit, S.A. Reagent container pack
US8795609B2 (en) 2007-02-08 2014-08-05 Biokit, S.A. Magnetic particle washing station
US9523699B2 (en) 2007-02-08 2016-12-20 Biokit, S.A. Apparatus and methods for dispensing sample holders
US9636647B2 (en) 2007-02-08 2017-05-02 Biokit, S.A. Reagent cartridge mixing tube method
US11536718B2 (en) 2007-02-08 2022-12-27 Biokit, S.A. Magnetic particle washing station
JP2008196927A (en) * 2007-02-13 2008-08-28 Fujifilm Corp Detection method of object material accompanied by removal of probe
JP2011007752A (en) * 2009-06-29 2011-01-13 Beckman Coulter Inc Container set for blood transfusion examination

Also Published As

Publication number Publication date
JP3216452B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US5188968A (en) Method and reaction kit for agglutination detection
CN100501403C (en) Method for detecting analyte(s) using magnetic colloidal particles
JPH0670630B2 (en) Analytical method
EP0818680B1 (en) Agglutination immunoassay
US4436826A (en) Tagged immunoassay
JP2015068764A (en) Method for measuring density of analysis object and test strip for lateral flow
JP2009098138A (en) Method of high sensitive immunoassay
JPH09504094A (en) Method for assaying immunological substances using magnetic latex particles and non-magnetic particles
JP3216452B2 (en) Immunoassay method and device
WO1989001161A1 (en) Turbidimetric assay
JP2603843B2 (en) Measuring method of antigen or antibody
JP2006162466A (en) Method for measuring substance to be measured and measurement reagent
JPH08262024A (en) Kit for immunoassay of in vivo substance and immunoassay method
US5202269A (en) Method for immunochemical determination of hapten
JPH0580052A (en) Apparatus and method for measuring substance in vivo
JPH0843391A (en) Measuring method for antigen antibody reaction
JPH06160387A (en) Measuring method for antigen-antibody reaction
JPH08201391A (en) Immunological measuring method with marker grain
EP0435245B1 (en) Reaction kit
JPH09229936A (en) Measuring method for material under inspection using magnetic particles, and carrier and measuring instrument used in the method
JPH0772155A (en) Method for measuring antigen-antibody reaction
JPH10239317A (en) Method and reagent for restrainedly measuring zone phenomenon suppression and measuring reagent
JP2683944B2 (en) Indirect agglutination immunoassay method and device
EP0417301A1 (en) Method for assaying indirect agglutination
JP2745705B2 (en) Antigen / antibody assay

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees