JPH06109664A - Method and apparatus for reading radioactive image - Google Patents

Method and apparatus for reading radioactive image

Info

Publication number
JPH06109664A
JPH06109664A JP4256285A JP25628592A JPH06109664A JP H06109664 A JPH06109664 A JP H06109664A JP 4256285 A JP4256285 A JP 4256285A JP 25628592 A JP25628592 A JP 25628592A JP H06109664 A JPH06109664 A JP H06109664A
Authority
JP
Japan
Prior art keywords
radiation image
recording plate
image recording
excitation light
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4256285A
Other languages
Japanese (ja)
Inventor
Minoru Azumaguchi
實 東口
Kazuyuki Matsumoto
和之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC SCI KK
MC SCIENCE KK
Original Assignee
MC SCI KK
MC SCIENCE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC SCI KK, MC SCIENCE KK filed Critical MC SCI KK
Priority to JP4256285A priority Critical patent/JPH06109664A/en
Publication of JPH06109664A publication Critical patent/JPH06109664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a fluctuation in reading sensitivity caused by difference in circumferential speed of a reading position when a radioactive image recording plate is rotated with a constant number of rotations for read-scanning concentrically or spirally. CONSTITUTION:When a radioactive image recording plate is read and scanned on the plate 7 concentrically or spirally by rotation of the radioactive image recording plate 7 by a recording plate rotating means 19 and movement of an application position of excitation light 22 by an excitation light moving means, intensity of the excitation light 22 is the maximum by a modulation circuit 24 when an outermost circumference is scanned in concentric or spiral scanning and becomes weaker as an inner circumference is scanned in proportion to a size of a scanning radius.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線を吸収・蓄積す
る蛍光体層を放射線画像の記録手段として利用した放射
線画像記録板から、記録されている放射線画像を読み取
る放射線画像読取方法及び装置に関するもので、詳しく
は、前記蛍光体層に励起光を照射すると蓄積した放射線
の強弱に応じて前記蛍光体層に輝尽発光が起るという現
象を利用し、前記放射線画像記録板の蛍光体層を励起光
で走査し、その時、蛍光体層上に起る発光を検出するこ
とで、記録されている放射線画像を読み取ってゆく形式
の放射線画像読取方法及び装置の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation image reading method and apparatus for reading a recorded radiation image from a radiation image recording plate using a phosphor layer which absorbs and stores radiation as a radiation image recording means. More specifically, by utilizing the phenomenon that stimulated emission occurs in the phosphor layer according to the intensity of the accumulated radiation when the phosphor layer is irradiated with excitation light, the phosphor layer of the radiation image recording plate is used. The present invention relates to an improvement of a radiation image reading method and apparatus of a type in which a recorded radiation image is read by scanning the laser beam with excitation light and detecting light emission occurring on the phosphor layer at that time.

【0002】[0002]

【従来の技術】図2は、放射線画像読取装置が組込まれ
たX線回折装置の従来例を示したものである。
2. Description of the Related Art FIG. 2 shows a conventional example of an X-ray diffraction apparatus incorporating a radiation image reading apparatus.

【0003】このX線回折装置は、試料5にX線6を照
射して輝尽発光性の蛍光体層を利用した放射線画像記録
板7上にX線回折像を作るX線回折光学系8と、前記放
射線画像記録板7に作られたX線回折像を読み取る放射
線画像読取装置9とで構成されている。
In this X-ray diffraction apparatus, an X-ray diffraction optical system 8 for irradiating a sample 5 with X-rays 6 and forming an X-ray diffraction image on a radiation image recording plate 7 utilizing a photostimulable phosphor layer. And a radiation image reading device 9 for reading an X-ray diffraction image formed on the radiation image recording plate 7.

【0004】前記放射線画像記録板7は、放射線を吸収
・蓄積するとともにその後に励起光が照射されると蓄積
した前記放射線の強弱に応じて輝尽発光する蛍光体層7
aを有して、前記蛍光体層7aによって放射線画像を記
録するものである。蛍光体層7aは円板状の基板の一表
面に蛍光体を薄膜状に塗布することによって形成されて
おり、放射線画像記録板7の外観は、円板状を呈してい
る。
The radiation image recording plate 7 absorbs / accumulates radiation and, when irradiated with excitation light after that, stimulates emission of light according to the intensity of the accumulated radiation.
a, and a radiation image is recorded by the phosphor layer 7a. The phosphor layer 7a is formed by applying a phosphor in a thin film on one surface of a disk-shaped substrate, and the radiation image recording plate 7 has a disk-shaped appearance.

【0005】前記X線回折光学系8は、X線6を発生す
るX線源11、このX線源11から発生されたX線6を
試料5に導くモノクロメータ12およびコリメータ1
3、試料5を回転可能に支持したゴニオメータ14、放
射線画像記録板7などを構成要素としたものである。前
記放射線画像記録板7は、図示略の移動機構によって矢
印ロ方向に移動可能に支持され、試料5との距離が調整
可能にされている。
The X-ray diffraction optical system 8 includes an X-ray source 11 for generating X-rays 6, a monochromator 12 for guiding the X-rays 6 generated by the X-ray source 11 to a sample 5, and a collimator 1.
3, a goniometer 14 that rotatably supports the sample 5, a radiation image recording plate 7, and the like are components. The radiation image recording plate 7 is movably supported in the arrow B direction by a moving mechanism (not shown), and the distance to the sample 5 is adjustable.

【0006】一方、前記放射線画像読取装置9は、前記
放射線画像記録板7と、一定強度の励起光15を発生す
る光源16と、この光源16の発生した励起光15を前
記放射線画像記録板7の蛍光体層7aに照射させるとと
もに該蛍光体層7aで反射した励起光および蛍光体層7
aの発光による光を所定位置に導く光学系17と、この
光学系17によって所定位置に導かれた前記蛍光体層7
aの発光光を検出する発光光検出手段(光電子増倍管)
18と、前記放射線画像記録板7を回転操作する記録板
回転手段19と、前記光学系17と前記放射線画像記録
板7とを相対移動させることによって前記放射線画像記
録板7上の励起光15の照射位置を放射線画像記録板7
の回転中心に対して半径方向(図では、矢印ハに示す方
向)に移動させる励起光移動手段(図示略)と、前記発
光光検出手段18の出力信号を処理するとともに前記記
録板回転手段19や励起光移動手段の動作を制御する制
御ユニット20とを具備した構成とされている。
On the other hand, the radiation image reading device 9 includes the radiation image recording plate 7, a light source 16 for generating the excitation light 15 having a constant intensity, and the excitation light 15 generated by the light source 16 for the radiation image recording plate 7. Of the excitation light reflected by the phosphor layer 7a and the phosphor layer 7a.
An optical system 17 that guides the light emitted by a to a predetermined position, and the phosphor layer 7 that is guided to a predetermined position by the optical system 17.
Emission light detection means (photomultiplier tube) for detecting the emission light of a
18, the recording plate rotating means 19 for rotating the radiation image recording plate 7, and the excitation light 15 on the radiation image recording plate 7 by relatively moving the optical system 17 and the radiation image recording plate 7. Radiation image recording plate 7
Of the excitation light moving means (not shown) for moving in the radial direction (the direction indicated by arrow C in the figure) with respect to the rotation center of the recording plate, and the recording plate rotating means 19 while processing the output signal of the emitted light detecting means 18. And a control unit 20 for controlling the operation of the excitation light moving means.

【0007】ここに、前記光学系17は、半透過ミラー
等による第1の光線反射部材17a、全反射ミラー等に
よる第2の光線反射部材17b、集光レンズ17cなど
を構成要素としている。この光学系17における集光レ
ンズ17cは、非球面レンズを利用したもので、前記励
起光15を所定のビーム径で放射線画像記録板7にスポ
ット照射する役割と、励起光15の照射によって生じる
発光光や励起光の反射光を第2の光線反射部材17bに
導く役割を果たす。また、第1の光線反射部材17a
は、励起光15は透過させるが放射線画像記録板7上の
発光光は反射させる性質のもので、集光レンズ17cお
よび第2の光線反射部材17bによって導かれた発光光
を発光光検出手段18に送る。
Here, the optical system 17 has a first light ray reflecting member 17a such as a semi-transmissive mirror, a second light ray reflecting member 17b such as a total reflection mirror, and a condenser lens 17c. The condensing lens 17c in the optical system 17 uses an aspherical lens, and has a role of spot-irradiating the radiation image recording plate 7 with the excitation light 15 with a predetermined beam diameter and light emission caused by the irradiation of the excitation light 15. It plays a role of guiding the reflected light of light or excitation light to the second light ray reflecting member 17b. In addition, the first light reflecting member 17a
Has a property of transmitting the excitation light 15 but reflecting the emitted light on the radiation image recording plate 7. The emitted light guided by the condenser lens 17c and the second light ray reflection member 17b is emitted light detecting means 18 Send to.

【0008】また、前記制御ユニット20は、放射線画
像記録板7から読み取った放射線画像をCRT等の画像
表示装置に表示させるために、前記発光光検出手段18
の出力信号(画像情報信号)に対して所定の処理を実行
する。また、制御ユニット20は、発光光検出手段18
を介して読み取った画像情報をプリンタや磁気記憶装置
等に送出するための処理も行う。
Further, the control unit 20 causes the emitted light detecting means 18 to display the radiation image read from the radiation image recording plate 7 on an image display device such as a CRT.
Predetermined processing is performed on the output signal (image information signal) of. Further, the control unit 20 uses the emitted light detection means 18
It also performs processing for sending the image information read via the printer to a printer, a magnetic storage device, or the like.

【0009】以上の放射線画像読取装置9では、前記記
録板回転手段19による放射線画像記録板7の回転速度
および図示略の励起光移動手段による励起光照射位置の
移動速度を前記制御ユニット20によって制御すること
によって、前記放射線画像記録板7の表面(蛍光体層7
a)上を励起光15によって同心円状または渦巻き状に
走査し、この走査によって放射線画像記録板7上に生ず
る輝尽発光の発光強度を一定時間毎に前記発光光検出手
段18で逐次検出することによって前記放射線画像記録
板7に記録されている放射線画像の読み出しを行う。
In the above radiation image reading apparatus 9, the control unit 20 controls the rotation speed of the radiation image recording plate 7 by the recording plate rotating means 19 and the moving speed of the excitation light irradiation position by the excitation light moving means (not shown). By doing so, the surface of the radiation image recording plate 7 (phosphor layer 7
a) Scanning concentrically or spirally with the excitation light 15 on the top, and sequentially detecting the emission intensity of stimulated emission generated on the radiation image recording plate 7 by the scanning by the emission light detecting means 18 at regular intervals. Then, the radiation image recorded on the radiation image recording plate 7 is read out.

【0010】このような同心円状または渦巻き状の読取
走査によれば、放射線画像記録板7に記録されている画
像が、例えば結晶性試料のX線回折像等で、全体的に同
心円状あるいはそれに類した形状を呈している場合に、
実際に画像が記録されている円周状の範囲(放射線画像
記録板7の記録面の全面積から比較すると、ごく一部の
範囲となる)だけを効率よく読み取ることができて、実
際に読み上げて処理する画像情報量を少なく抑えること
ができ、読み取り処理に必要な作業時間を短縮すること
も可能になる。
According to such concentric or spiral reading scanning, the image recorded on the radiation image recording plate 7 is, for example, an X-ray diffraction image of a crystalline sample or the like, and is generally concentric or not. If you have a similar shape,
Only the circumferential area in which the image is actually recorded (a very small area in comparison with the total area of the recording surface of the radiation image recording plate 7) can be efficiently read, and actually read out. The amount of image information to be processed by the processing can be suppressed to a small amount, and the work time required for the reading processing can be shortened.

【0011】[0011]

【発明が解決しようとする課題】ところで、前記放射線
画像読取装置9においては、前記放射線画像記録板7を
一定の回転数で回転させておいて、この放射線画像記録
板7の一回転毎に間欠的に前記光学系17を放射線画像
記録板7の半径方向に一定距離だけ移動させれば、同心
円状の読取走査が実現でき、また、光学系17を放射線
画像記録板7の半径方向に一定速度で連続的に移動させ
れば渦巻き状の読取走査が実現できる。
By the way, in the radiation image reading apparatus 9, the radiation image recording plate 7 is rotated at a constant number of rotations, and the radiation image recording plate 7 is intermittently rotated every one rotation. By concentrically moving the optical system 17 in the radial direction of the radiation image recording plate 7 by a certain distance, concentric reading scanning can be realized, and the optical system 17 can be moved in the radial direction of the radiation image recording plate 7 at a constant speed. If it is moved continuously, the spiral scanning can be realized.

【0012】しかし、回転する放射線画像記録板7上で
は、内周側になるほど周速が小さくなる。従って、前記
放射線画像記録板7を一定回転数で回転させて同心円状
または渦巻き状の読取走査を行った場合では、単位時間
当りの励起光15の照射面積が、周速差によって内周側
ほど小さくなる。そのため、放射線画像記録板7上の単
位面積当りの励起光15の照射強度が内周側ほど強くな
り、放射線画像記録板7の内周側と外周側とでは蓄積さ
れている放射線強度が同じでも内周側ほど発光強度が大
きくなって、読み取り感度に差が生じる結果となる。
However, on the rotating radiation image recording plate 7, the peripheral speed decreases toward the inner peripheral side. Therefore, when the radiation image recording plate 7 is rotated at a constant number of revolutions to perform concentric or spiral reading scanning, the irradiation area of the excitation light 15 per unit time becomes closer to the inner peripheral side due to the peripheral speed difference. Get smaller. Therefore, the irradiation intensity of the excitation light 15 per unit area on the radiation image recording plate 7 becomes stronger toward the inner periphery side, and even if the accumulated radiation intensity is the same on the inner periphery side and the outer periphery side of the radiation image recording plate 7. The emission intensity increases toward the inner circumference side, resulting in a difference in reading sensitivity.

【0013】そこで、従来では、制御ユニット20内
に、周速差に起因した読み取り感度の差を補正するため
に、発光光検出手段18の検出した画像情報を放射線画
像記録板7上の読み取り位置の回転半径に応じて補正処
理する演算処理回路を設けているが、前記発光光検出手
段18による1回の読み出し処理毎に補正処理を繰り返
さなければならないため、演算処理量が膨大になり、処
理時間の遅延や、制御ユニット20を構成するハードウ
ェアの大型化や高額化といった不都合が生じていた。
Therefore, conventionally, in the control unit 20, in order to correct the difference in the reading sensitivity due to the peripheral speed difference, the image information detected by the emitted light detecting means 18 is read at the reading position on the radiation image recording plate 7. Although an arithmetic processing circuit for performing correction processing according to the radius of gyration is provided, the correction processing must be repeated for each read processing performed by the emission light detection means 18, resulting in an enormous amount of arithmetic processing, There have been inconveniences such as a time delay and an increase in the size and cost of the hardware constituting the control unit 20.

【0014】このような不都合を回避するための対応策
として、これまで、前記放射線画像記録板7の回転速度
を可変にしておいて、読み取り位置における周速が一定
になるように、放射線画像記録板7の回転数を制御する
ことも検討された。しかしながら、これによれば、前
記、記録板回転手段7の回転数を画素の読み出し精度を
維持するために、必要な精度で速度制御する必要があ
る。
As a countermeasure for avoiding such an inconvenience, the radiation image recording is performed so far so that the rotation speed of the radiation image recording plate 7 is variable and the peripheral speed at the reading position is constant. Controlling the rotational speed of the plate 7 has also been considered. However, according to this, in order to maintain the pixel reading accuracy, it is necessary to control the speed of the recording plate rotating means 7 with the necessary accuracy.

【0015】前記、記録板回転手段7の重量は通常数k
g以上であり、比較的重いので、これの回転速度を正確
に加減制御することは、必ずしも容易でなく、これがた
め、装置が大型、かつ高価になるという問題がある。
The weight of the recording plate rotating means 7 is usually several k.
Since it is more than g and is relatively heavy, it is not always easy to accurately control the rotation speed of the rotor, which causes a problem that the device becomes large and expensive.

【0016】本発明は、前記事情に鑑みてなされたもの
で、放射線画像記録板を一定回転数で回転させて同心円
状または渦巻き状の読取走査をした場合に、読み取り位
置の周速差に起因した読み取り感度の変動を防止するこ
とができ、従って、検出した画像情報を読み取り感度の
補正のために補正処理する演算処理回路が不要で、処理
時間の短縮と、装置の小型化や低コスト化を図ることの
できる放射線画像読取方法及び装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and is caused by the peripheral speed difference of the reading position when the radiation image recording plate is rotated at a constant number of rotations to perform concentric or spiral reading scanning. It is possible to prevent the fluctuation of the read sensitivity, and therefore, an arithmetic processing circuit for correcting the detected image information for correcting the read sensitivity is unnecessary, which shortens the processing time and downsizes the device and reduces the cost. It is an object of the present invention to provide a radiation image reading method and device capable of achieving the above.

【0017】[0017]

【課題を解決するための手段】請求項1に記載の放射線
画像読取方法は、放射線を吸収・蓄積するとともにその
後に励起光が照射されると蓄積した前記放射線の強弱に
応じて輝尽発光する蛍光体層を有して前記蛍光体層によ
って放射線画像を記録する放射線画像記録板と、前記励
起光を発生する光源と、この光源の発生した励起光を前
記蛍光体層に照射させるとともに、蛍光体層で反射した
励起光および蛍光体層の発光による光を所定位置に導く
光学系と、前記放射線画像記録板を回転操作する記録板
回転手段と、前記光学系と前記放射線画像記録板とを相
対移動させることによって前記放射線画像記録板上の励
起光の照射位置を放射線画像記録板の回転中心に対して
半径方向に移動させる励起光移動手段とを備えた環境に
おいて、前記記録板回転手段による放射線画像記録板の
回転と前記励起光移動手段による励起光の照射位置の移
動操作とによって、前記放射線画像記録板上を同心円状
または渦巻き状に読取走査するものである。
According to a first aspect of the present invention, there is provided a radiation image reading method, which absorbs and accumulates radiation, and emits stimulated emission depending on the intensity of the accumulated radiation when excitation light is irradiated thereafter. A radiation image recording plate having a phosphor layer for recording a radiation image by the phosphor layer, a light source for generating the excitation light, and irradiating the phosphor layer with the excitation light generated by the light source, An optical system that guides the excitation light reflected by the body layer and the light emitted by the phosphor layer to a predetermined position; a recording plate rotating means that rotates and operates the radiation image recording plate; and the optical system and the radiation image recording plate. The recording is performed in an environment provided with excitation light moving means for moving the irradiation position of the excitation light on the radiation image recording plate in a radial direction with respect to the rotation center of the radiation image recording plate by moving the recording device in the radial direction. By the operation of moving the irradiation position of the excitation light by the rotation of the radiation image recording plate according to the rotation means and the excitation light moving unit, the radiation image recording plate above is to scan reading concentrically or spirally.

【0018】ただし、前記放射線画像記録板に照射する
励起光の強度は、同心円状または渦巻き状走査における
最外周の走査時を最大値とし、走査半径の大きさに比例
させて内周側にいくほど弱める。
However, the intensity of the excitation light with which the radiation image recording plate is irradiated has a maximum value when scanning the outermost circumference in concentric or spiral scanning, and goes to the inner circumference side in proportion to the size of the scanning radius. Weaken.

【0019】請求項2に記載の放射線画像読取装置は、
前記請求項1に記載の放射線画像読取方法を実施するも
のである。
According to a second aspect of the radiation image reading apparatus,
The radiation image reading method according to claim 1 is implemented.

【0020】具体的には、放射線を吸収・蓄積するとと
もにその後に励起光が照射されると蓄積した前記放射線
の強弱に応じて輝尽発光する蛍光体層を有して前記蛍光
体層によって放射線画像を記録する放射線画像記録板
と、前記励起光を発生する光源と、この光源の発生した
励起光を前記蛍光体層に照射させるとともに、蛍光体層
で反射した励起光および蛍光体層の発光による光を所定
位置に導く光学系と、前記放射線画像記録板を回転操作
する記録板回転手段と、前記光学系と前記放射線画像記
録板とを相対移動させることによって前記放射線画像記
録板上の励起光の照射位置を放射線画像記録板の回転中
心に対して半径方向に移動させる励起光移動手段とを備
えた構成をなす。
Specifically, the phosphor layer has a phosphor layer that absorbs and stores the radiation and emits stimulated emission according to the intensity of the accumulated radiation when irradiated with excitation light after that. A radiation image recording plate for recording an image, a light source for generating the excitation light, and an excitation light generated by the light source for irradiating the phosphor layer, and excitation light reflected by the phosphor layer and emission of the phosphor layer An optical system for guiding the light to a predetermined position, a recording plate rotating means for rotating the radiation image recording plate, and an excitation on the radiation image recording plate by relatively moving the optical system and the radiation image recording plate. And an excitation light moving means for moving the light irradiation position in the radial direction with respect to the rotation center of the radiation image recording plate.

【0021】そして、前記記録板回転手段による放射線
画像記録板の回転と前記励起光移動手段による励起光の
照射位置の移動操作とによって、前記放射線画像記録板
上を同心円状または渦巻き状に読取走査するが、課題解
決のための手段として、前記光源として装備されて励起
光として半導体レーザを出力する半導体と、同心円状ま
たは渦巻き状の読取走査時の走査半径の大きさに比例し
て前記半導体に流す電流を制御することによって前記半
導体の出力する励起光の強度を直接変調する変調回路と
を装備している。
Then, the radiation image recording plate is read and scanned concentrically or spirally on the radiation image recording plate by rotating the radiation image recording plate by the recording plate rotating means and moving the excitation light irradiation position by the excitation light moving means. However, as a means for solving the problem, a semiconductor that is equipped as the light source and outputs a semiconductor laser as excitation light, and the semiconductor is proportional to the size of the scanning radius at the time of concentric or spiral reading scanning. It is equipped with a modulation circuit that directly modulates the intensity of the excitation light output from the semiconductor by controlling the flowing current.

【0022】そして、前記変調回路による直接変調によ
って、前記放射線画像記録板に照射する励起光の強度
を、同心円状または渦巻き状走査における最外周の走査
時を最大値とし、走査半径の大きさに比例させて内周側
にいくほど弱める。
By the direct modulation by the modulation circuit, the intensity of the excitation light with which the radiation image recording plate is irradiated is set to the maximum value at the time of scanning the outermost circumference in the concentric circular or spiral scanning, and the size of the scanning radius is set. Proportionalize and weaken toward the inner circumference.

【0023】[0023]

【作用】請求項2に記載の放射線画像読取装置によれ
ば、放射線画像記録板を記録板回転手段によって一定の
回転数で回転させておいて、この放射線画像記録板の一
回転毎に間欠的に前記光学系を放射線画像記録板の半径
方向に一定距離だけ移動させれば、同心円状の読取走査
が実現でき、また、光学系を放射線画像記録板の半径方
向に一定速度で連続的に移動させれば渦巻き状の読取走
査が実現できる。
According to the radiation image reading apparatus of the present invention, the radiation image recording plate is rotated at a constant number of rotations by the recording plate rotating means, and the radiation image recording plate is intermittently rotated every one rotation. By moving the optical system in the radial direction of the radiation image recording plate by a certain distance, concentric reading scanning can be realized, and the optical system is continuously moved in the radial direction of the radiation image recording plate at a constant speed. By doing so, the spiral scanning can be realized.

【0024】そして、このような同心円状または渦巻き
状の読取走査時には、変調回路による直接変調によっ
て、励起光の強度を走査半径の大きさに比例させて内周
側にいくほど弱めるという制御がなされて、請求項1に
記載の放射線画像読取方法が実現される。
During such concentric or spiral reading scanning, direct modulation by the modulation circuit controls the intensity of the excitation light to decrease toward the inner circumference in proportion to the size of the scanning radius. Thus, the radiation image reading method according to claim 1 is realized.

【0025】この請求項1に記載の放射線画像読取方法
は、励起光の強度を走査半径の大きさに比例して内周側
にいくほど弱まるように制御することによって、放射線
画像記録板上の単位面積当りの励起光の照射強度を均一
化したもので、放射線画像記録板を一定回転数で回転さ
せて同心円状または渦巻き状の読取走査を行う場合で
も、読み取り位置の周速差に起因した読み取り感度の変
動を防止することができる。
In the radiation image reading method according to the present invention, the intensity of the excitation light is controlled so as to become weaker toward the inner peripheral side in proportion to the size of the scanning radius, so that the radiation image is recorded on the radiation image recording plate. The irradiation intensity of excitation light per unit area is made uniform, and even when the radiation image recording plate is rotated at a constant number of revolutions to perform concentric or spiral reading scanning, it is caused by the difference in peripheral speed of the reading position. It is possible to prevent variations in reading sensitivity.

【0026】従って、放射線画像記録板から読み出した
画像情報を読み取り感度の補正のために補正処理する必
要がなくなり、処理時間の短縮を図ることが可能にな
る。
Therefore, it is not necessary to correct the image information read from the radiation image recording plate to correct the reading sensitivity, and the processing time can be shortened.

【0027】しかも、励起光の強度の制御は、励起光と
して半導体レーザを利用することとし、この半導体レー
ザを出力する光源(半導体)に流す電流値を走査半径に
応じて制御するという簡易な処理で実現することがで
き、読み取った画像情報に対して周速差に起因した読み
取り感度の補正のために補正処理する従来の場合と比較
すると、情報処理量が大幅に低減し、必要なハードウェ
アの小型化や低コスト化を図ることも可能になる。
Moreover, the intensity of the excitation light is controlled by using a semiconductor laser as the excitation light, and a simple process of controlling the value of the current flowing through the light source (semiconductor) that outputs the semiconductor laser according to the scanning radius. It is possible to realize the following, and the amount of information processing is significantly reduced compared to the conventional case in which the read image information is corrected to correct the reading sensitivity due to the peripheral speed difference, and the required hardware It is also possible to reduce the size and cost.

【0028】[0028]

【実施例】図1は、本発明の一実施例である放射線画像
読取装置が組込まれたX線回折装置の一例を示したもの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an X-ray diffractometer incorporating a radiation image reading apparatus according to an embodiment of the present invention.

【0029】このX線回折装置は、試料5にX線6を照
射して輝尽発光性の蛍光体層を利用した放射線画像記録
板7上にX線回折像を作るX線回折光学系8と、前記放
射線画像記録板7に作られたX線回折像を読み取る一実
施例の放射線画像読取装置21とで構成されている。
In this X-ray diffraction apparatus, an X-ray diffraction optical system 8 for irradiating a sample 5 with X-rays 6 to form an X-ray diffraction image on a radiation image recording plate 7 utilizing a photostimulable phosphor layer. And a radiation image reading device 21 of one embodiment for reading an X-ray diffraction image formed on the radiation image recording plate 7.

【0030】ここに、前記放射線画像記録板7およびX
線回折光学系8は、図2の従来例のものと同一の構成の
ものであるため、説明を省略する。
Here, the radiation image recording plate 7 and X
The line diffraction optical system 8 has the same configuration as that of the conventional example shown in FIG.

【0031】前記放射線画像読取装置21は、前記放射
線画像記録板7と、励起光22を発生する光源23と、
この光源23の発生した励起光22を前記放射線画像記
録板7の蛍光体層7aに照射させるとともに該蛍光体層
7aで反射した励起光および蛍光体層7aの発光による
光を所定位置に導く光学系17と、この光学系17によ
って所定位置に導かれた前記蛍光体層7aの発光光を検
出する発光光検出手段(光電子増倍管)18と、前記放
射線画像記録板7を回転操作する記録板回転手段19
と、前記光学系17と前記放射線画像記録板7とを相対
移動させることによって前記放射線画像記録板7上の励
起光22の照射位置を放射線画像記録板7の回転中心に
対して半径方向(図では、矢印ハに示す方向)に移動さ
せる励起光移動手段(図示略)と、前記光源23の出力
する励起光の強度を調節するための変調回路24と、前
記発光光検出手段18の出力信号を処理するとともに前
記記録板回転手段19や励起光移動手段や変調回路24
などの動作を制御する制御ユニット25とを具備した構
成とされている。
The radiation image reading device 21 includes the radiation image recording plate 7, a light source 23 for generating excitation light 22,
An optical system that irradiates the phosphor layer 7a of the radiation image recording plate 7 with the excitation light 22 generated by the light source 23 and guides the excitation light reflected by the phosphor layer 7a and the light emitted by the phosphor layer 7a to a predetermined position. System 17, emission light detection means (photomultiplier tube) 18 for detecting emission light of the phosphor layer 7a guided to a predetermined position by the optical system 17, and recording for rotating the radiation image recording plate 7. Plate rotating means 19
By moving the optical system 17 and the radiation image recording plate 7 relative to each other, the irradiation position of the excitation light 22 on the radiation image recording plate 7 is set in a radial direction with respect to the rotation center of the radiation image recording plate 7 (see FIG. Then, excitation light moving means (not shown) for moving in the direction indicated by the arrow C), a modulation circuit 24 for adjusting the intensity of the excitation light output from the light source 23, and an output signal of the emitted light detecting means 18. The recording plate rotating means 19, the excitation light moving means, and the modulation circuit 24.
And a control unit 25 for controlling the operations such as.

【0032】ここに、前記光学系17は、図2の従来例
と同一構成のもので、半透過ミラー等による第1の光線
反射部材17a、全反射ミラー等による第2の光線反射
部材17b、集光レンズ17cなどを構成要素としてい
る。この光学系17における集光レンズ17cは、非球
面レンズを利用したもので、前記励起光22を所定のビ
ーム径で放射線画像記録板7にスポット照射する役割
と、励起光22の照射によって生じる発光光や励起光の
反射光を第2の光線反射部材17bに導く役割を果た
す。また、第1の光線反射部材17aは、励起光22は
透過させるが放射線画像記録板7上の発光光は反射させ
る性質のもので、集光レンズ17cおよび第2の光線反
射部材17bによって導かれた発光光を発光光検出手段
18に送る。前記光源23には半導体レーザが使用され
ており、従って、光源23より出力される励起光22は
半導体レーザ光である。半導体レーザは、固体レーザや
気体レーザと比較して、小型,高効率,高信頼性である
上に、流す電流によって出力光の強度を高速に直接変調
することができるという利点を有している。
Here, the optical system 17 has the same structure as that of the conventional example shown in FIG. 2, and includes a first light ray reflecting member 17a such as a semi-transmissive mirror and a second light ray reflecting member 17b such as a total reflection mirror. The condenser lens 17c and the like are used as constituent elements. The condensing lens 17c in the optical system 17 uses an aspherical lens, and has a role of spot-irradiating the radiation image recording plate 7 with the excitation light 22 with a predetermined beam diameter and light emission caused by the irradiation of the excitation light 22. It plays a role of guiding the reflected light of light or excitation light to the second light ray reflecting member 17b. The first light ray reflecting member 17a has a property of transmitting the excitation light 22 but reflecting the emitted light on the radiation image recording plate 7, and is guided by the condenser lens 17c and the second light ray reflecting member 17b. The emitted light is sent to the emitted light detecting means 18. A semiconductor laser is used for the light source 23. Therefore, the excitation light 22 output from the light source 23 is semiconductor laser light. The semiconductor laser has advantages that it is smaller, more efficient, and more reliable than a solid-state laser or a gas laser, and that the intensity of output light can be directly modulated at high speed by a flowing current. .

【0033】また、図示略の励起光移動手段は、この一
実施例の場合は、光学系17と発光光検出手段18と光
源23とを一定の位置関係に支持した基台と、この基台
を前記放射線画像記録板7の表面に沿って進退移動させ
る直線移動機構とを具備した構成とされ、前記基台の移
動によって、蛍光体層7a上の励起光22の照射位置を
半径方向に移動させる。
In this embodiment, the excitation light moving means (not shown) is a base for supporting the optical system 17, the emitted light detecting means 18, and the light source 23 in a fixed positional relationship, and this base. And a linear movement mechanism for moving back and forth along the surface of the radiation image recording plate 7, and the irradiation position of the excitation light 22 on the phosphor layer 7a is moved in the radial direction by the movement of the base. Let

【0034】前記変調回路24は、半導体である光源2
3に流す電流を制御することによって、励起光22の強
度を直接変調する回路である。
The modulation circuit 24 is a light source 2 which is a semiconductor.
It is a circuit that directly modulates the intensity of the pumping light 22 by controlling the current flowing through the pump 3.

【0035】前記制御ユニット25は、放射線画像記録
板7から読み取った放射線画像をCRT等の画像表示装
置に表示させるために、前記発光光検出手段18の出力
信号(画像情報信号)に対して所定の処理を実行する。
また、制御ユニット25は、発光光検出手段18を介し
て読み取った画像情報をプリンタや磁気記憶装置等に送
出するための処理も行う。さらに、制御ユニット25
は、記録板回転手段19および励起光移動手段の動作を
制御しており、励起光22による蛍光体層7a上の励起
光22による読取走査が同心円状または渦巻き状になさ
れるように、記録板回転手段19による放射線画像記録
板7の回転動作と励起光移動手段による光学系17等の
移動動作とを連動させるが、その際、変調回路24の動
作も制御する。
The control unit 25 determines a predetermined output signal (image information signal) from the emitted light detecting means 18 in order to display a radiation image read from the radiation image recording plate 7 on an image display device such as a CRT. The process of is executed.
The control unit 25 also performs processing for sending the image information read via the emitted light detection means 18 to a printer, a magnetic storage device, or the like. Furthermore, the control unit 25
Controls the operations of the recording plate rotating means 19 and the excitation light moving means, so that the reading scan by the excitation light 22 on the phosphor layer 7a by the excitation light 22 is made concentric or spiral. The rotating operation of the radiation image recording plate 7 by the rotating means 19 and the moving operation of the optical system 17 etc. by the excitation light moving means are interlocked with each other, and at that time, the operation of the modulation circuit 24 is also controlled.

【0036】即ち、制御ユニット25は、同心円状また
は渦巻き状の読取走査時には走査半径(放射線画像記録
板7の回転中心軸から励起光22の照射位置までの距
離)を把握していて、光源23に流れる電流が前記走査
半径の大きさに比例して変化するように、変調回路24
に対して動作制御信号を出力する。
That is, the control unit 25 grasps the scanning radius (distance from the central axis of rotation of the radiation image recording plate 7 to the irradiation position of the excitation light 22) at the time of concentric or spiral reading scanning, and the light source 23 Modulation circuit 24 so that the current flowing through the circuit changes in proportion to the size of the scanning radius.
An operation control signal is output to.

【0037】この制御ユニット25からの動作制御信号
によって、前記変調回路24は、前記放射線画像記録板
7に照射する励起光22の強度を、同心円状または渦巻
き状走査における最外周の走査時を最大値とし、走査半
径の大きさに比例させて内周側にいくほど弱まるよう
に、直接変調を行う。
In response to the operation control signal from the control unit 25, the modulation circuit 24 maximizes the intensity of the excitation light 22 with which the radiation image recording plate 7 is irradiated during the concentric circular or spiral scanning. As a value, the direct modulation is performed in proportion to the size of the scanning radius so as to weaken toward the inner circumference side.

【0038】以上に説明した一実施例の放射線画像読取
装置21では、前記放射線画像記録板7を記録板回転手
段19によって一定の回転数で回転させておいて、この
放射線画像記録板7の一回転毎に間欠的に前記光学系1
7を放射線画像記録板7の半径方向に一定距離だけ移動
させれば、同心円状の読取走査が実現でき、また、光学
系17を放射線画像記録板7の半径方向に一定速度で連
続的に移動させれば渦巻き状の読取走査が実現できる。
In the radiation image reading apparatus 21 of the above-described embodiment, the radiation image recording plate 7 is rotated at a constant rotation speed by the recording plate rotating means 19, and the radiation image recording plate 7 is rotated. The optical system 1 is intermittently provided for each rotation.
By moving 7 in the radial direction of the radiation image recording plate 7 by a constant distance, concentric reading scanning can be realized, and the optical system 17 is continuously moved in the radial direction of the radiation image recording plate 7 at a constant speed. By doing so, the spiral scanning can be realized.

【0039】そして、このように放射線画像記録板7の
回転数を一定として同心円状または渦巻き状の読取走査
を行った場合には、回転する放射線画像記録板7上で
は、内周側になるほど周速が小さくなり、単位時間当り
の励起光22の照射面積は、周速差によって内周側ほど
小さくなる。
When the concentric or spiral reading scanning is performed with the rotation number of the radiation image recording plate 7 being constant as described above, on the rotating radiation image recording plate 7, the inner circumference side becomes closer. The speed becomes smaller, and the irradiation area of the excitation light 22 per unit time becomes smaller toward the inner peripheral side due to the peripheral speed difference.

【0040】しかし、この一実施例では、前記放射線画
像記録板7に照射する励起光22の強度は、同心円状ま
たは渦巻き状走査における最外周の走査時を最大値と
し、かつ、走査半径の大きさに比例して内周側にいくほ
ど弱まるように、前記変調回路24によって直接変調さ
れている。
However, in this embodiment, the intensity of the excitation light 22 with which the radiation image recording plate 7 is irradiated has a maximum value at the time of scanning the outermost circumference in the concentric circular or spiral scanning, and has a large scanning radius. It is directly modulated by the modulation circuit 24 so that it becomes weaker toward the inner peripheral side in proportion to this.

【0041】そのため、放射線画像記録板7上の単位面
積当りの励起光22の照射強度は、読取走査の範囲内で
あればどの放射線画像記録板7上のどの位置でも一定と
なり、読み取り位置の周速差に起因した読み取り感度の
変動を防止することができる。従って、発光光検出手段
18で検出した画像情報を読み取り感度の補正のために
補正処理する必要がなくなり、処理時間の短縮を図るこ
とが可能になる。
Therefore, the irradiation intensity of the excitation light 22 per unit area on the radiation image recording plate 7 is constant at any position on any radiation image recording plate 7 within the range of the reading scan, and the circumference of the reading position. It is possible to prevent the fluctuation of the reading sensitivity due to the speed difference. Therefore, it is not necessary to correct the image information detected by the emitted light detecting means 18 to correct the reading sensitivity, and the processing time can be shortened.

【0042】また、変調回路24による励起光22の直
接変調は、光源23に流す電流値を走査半径に応じて制
御するという簡易な処理で実現することができ、発光光
検出手段18で検出した画像情報を読み取り感度の補正
のために補正処理する従来の場合と比較すると、情報処
理量が大幅に低減し、必要なハードウェアの小型化や低
コスト化を図ることも可能になる。
Further, the direct modulation of the excitation light 22 by the modulation circuit 24 can be realized by a simple process of controlling the current value flowing through the light source 23 according to the scanning radius, and detected by the emission light detecting means 18. Compared with the conventional case in which image information is corrected to correct the reading sensitivity, the amount of information processing is significantly reduced, and the required hardware can be downsized and the cost can be reduced.

【0043】なお、本発明では、放射線画像記録板の形
状を一実施例のものに限定するものではない。一実施例
の放射線画像記録板7は平坦な円板状であったが、例え
ば、蛍光体層による画像記録面を、画像蓄積処理時にお
ける試料位置を曲率中心とした球面状にしたものも考え
られる。また、光学系17の構成や励起光移動手段の機
構等は、放射線画像記録板の形状に応じて、設計変更す
るとよい。
In the present invention, the shape of the radiation image recording plate is not limited to that of the embodiment. The radiation image recording plate 7 of one embodiment has a flat disk shape, but, for example, it is conceivable that the image recording surface of the phosphor layer has a spherical shape with the sample position at the time of image storage processing as the center of curvature. To be The design of the configuration of the optical system 17, the mechanism of the excitation light moving means, etc. may be changed according to the shape of the radiation image recording plate.

【0044】[0044]

【発明の効果】請求項2に記載の放射線画像読取装置に
よれば、放射線画像記録板を記録板回転手段によって一
定の回転数で回転させておいて、この放射線画像記録板
の一回転毎に間欠的に前記光学系を放射線画像記録板の
半径方向に一定距離だけ移動させれば、同心円状の読取
走査が実現でき、また、光学系を放射線画像記録板の半
径方向に一定速度で連続的に移動させれば渦巻き状の読
取走査が実現できる。
According to the radiation image reading apparatus of the second aspect, the radiation image recording plate is rotated at a constant rotation speed by the recording plate rotating means, and the radiation image recording plate is rotated every one rotation. If the optical system is intermittently moved in the radial direction of the radiation image recording plate by a constant distance, concentric reading scanning can be realized, and the optical system can be continuously moved in the radial direction of the radiation image recording plate at a constant speed. If it is moved to, the spiral scanning can be realized.

【0045】そして、このような同心円状または渦巻き
状の読取走査時には、変調回路による直接変調によっ
て、励起光の強度を走査半径の大きさに比例させて内周
側にいくほど弱めるという制御がなされて、請求項1に
記載の放射線画像読取方法が実現される。
During such concentric or spiral reading scanning, the intensity of the excitation light is controlled in proportion to the scan radius by the direct modulation by the modulation circuit so that the intensity is weakened toward the inner peripheral side. Thus, the radiation image reading method according to claim 1 is realized.

【0046】この請求項1に記載の放射線画像読取方法
は、励起光の強度を走査半径の大きさに比例して内周側
にいくほど弱まるように制御することによって、放射線
画像記録板上の単位面積当りの励起光の照射強度を均一
化したもので、放射線画像記録板を一定回転数で回転さ
せて同心円状または渦巻き状の読取走査を行う場合で
も、読み取り位置の周速差に起因した読み取り感度の変
動を防止することができる。
In the radiation image reading method according to the present invention, the intensity of the excitation light is controlled so as to become weaker toward the inner peripheral side in proportion to the size of the scanning radius, so that the radiation image is recorded on the radiation image recording plate. The irradiation intensity of excitation light per unit area is made uniform, and even when the radiation image recording plate is rotated at a constant number of revolutions to perform concentric or spiral reading scanning, it is caused by the difference in peripheral speed of the reading position. It is possible to prevent variations in reading sensitivity.

【0047】従って、放射線画像記録板から読み出した
画像情報を読み取り感度の補正のために補正処理する必
要がなくなり、処理時間の短縮を図ることが可能にな
る。
Therefore, it is not necessary to correct the image information read from the radiation image recording plate to correct the reading sensitivity, and the processing time can be shortened.

【0048】しかも、励起光の強度の制御は、励起光と
して半導体レーザを利用することとし、この半導体レー
ザを出力する光源(半導体)に流す電流値を走査半径に
応じて制御するという簡易な処理で実現することがで
き、読み取った画像情報に対して周速差に起因した読み
取り感度の補正のために補正処理する従来の場合と比較
すると、情報処理量が大幅に低減し、必要なハードウェ
アの小型化や低コスト化を図ることも可能になる。
Moreover, the intensity of the excitation light is controlled by using a semiconductor laser as the excitation light, and a simple process of controlling the value of the current flowing through the light source (semiconductor) that outputs the semiconductor laser according to the scanning radius. It is possible to realize the following, and the amount of information processing is significantly reduced compared to the conventional case in which the read image information is corrected to correct the reading sensitivity due to the peripheral speed difference, and the required hardware It is also possible to reduce the size and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来の放射線画像読取装置の説明図である。FIG. 2 is an explanatory diagram of a conventional radiation image reading device.

【符号の説明】[Explanation of symbols]

7 放射線画像記録板 7a 蛍光体層 17 光学系 18 発光光検出手段 19 記録板回転手段 21 放射線画像読取装置 22 励起光 23 光源 24 変調回路 25 制御ユニット 7 Radiation Image Recording Plate 7a Phosphor Layer 17 Optical System 18 Emission Light Detection Means 19 Recording Plate Rotating Means 21 Radiation Image Reading Device 22 Excitation Light 23 Light Source 24 Modulation Circuit 25 Control Unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放射線を吸収・蓄積するとともにその後
に励起光が照射されると蓄積した前記放射線の強弱に応
じて輝尽発光する蛍光体層を有して前記蛍光体層によっ
て放射線画像を記録する放射線画像記録板と、 前記励起光を発生する光源と、 この光源の発生した励起光を前記蛍光体層に照射させる
とともに、蛍光体層で反射した励起光および蛍光体層の
発光による光を所定位置に導く光学系と、 前記放射線画像記録板を回転操作する記録板回転手段
と、 前記光学系と前記放射線画像記録板とを相対移動させる
ことによって前記放射線画像記録板上の励起光の照射位
置を放射線画像記録板の回転中心に対して半径方向に移
動させる励起光移動手段とを備え、 前記記録板回転手段による放射線画像記録板の回転と前
記励起光移動手段による励起光の照射位置の移動操作と
によって、前記放射線画像記録板上を同心円状または渦
巻き状に読取走査する放射線画像読取方法であって、 前記放射線画像記録板に照射する励起光の強度は、同心
円状または渦巻き状走査における最外周の走査時を最大
値とし、走査半径の大きさに比例させて内周側にいくほ
ど弱めることを特徴とした放射線画像読取方法。
1. A radiation image is recorded by the phosphor layer, which has a phosphor layer that absorbs and stores the radiation and emits stimulated emission according to the intensity of the accumulated radiation when irradiated with excitation light after that. A radiation image recording plate, a light source for generating the excitation light, and the excitation light generated by the light source is applied to the phosphor layer, and the excitation light reflected by the phosphor layer and the light emitted by the phosphor layer are emitted. Optical system for guiding to a predetermined position, recording plate rotating means for rotating the radiation image recording plate, and irradiation of excitation light on the radiation image recording plate by relatively moving the optical system and the radiation image recording plate. Excitation light moving means for moving the position in the radial direction with respect to the rotation center of the radiation image recording plate, the rotation of the radiation image recording plate by the recording plate rotating means and the excitation light moving means. A radiation image reading method of reading and scanning the radiation image recording plate in a concentric or spiral shape by moving the irradiation position of the light, and the intensity of the excitation light applied to the radiation image recording plate is a concentric circle. A radiation image reading method characterized in that the maximum value is set at the time of scanning the outermost circumference in the circular or spiral scanning, and the value is weakened toward the inner circumference side in proportion to the size of the scanning radius.
【請求項2】 放射線を吸収・蓄積するとともにその後
に励起光が照射されると蓄積した前記放射線の強弱に応
じて輝尽発光する蛍光体層を有して前記蛍光体層によっ
て放射線画像を記録する放射線画像記録板と、 前記励起光を発生する光源と、 この光源の発生した励起光を前記蛍光体層に照射させる
とともに、蛍光体層で反射した励起光および蛍光体層の
発光による光を所定位置に導く光学系と、 前記放射線画像記録板を回転操作する記録板回転手段
と、 前記光学系と前記放射線画像記録板とを相対移動させる
ことによって前記放射線画像記録板上の励起光の照射位
置を放射線画像記録板の回転中心に対して半径方向に移
動させる励起光移動手段とを備え、 前記記録板回転手段による放射線画像記録板の回転と前
記励起光移動手段による励起光の照射位置の移動操作と
によって、前記放射線画像記録板上を同心円状または渦
巻き状に読取走査する放射線画像読取装置であって、 前記光源として装備されて励起光として半導体レーザを
出力する半導体と、 同心円状または渦巻き状の読取走査時の走査半径の大き
さに比例して前記半導体に流す電流を制御することによ
って前記半導体の出力する励起光の強度を直接変調する
変調回路とを装備し、 前記変調回路による直接変調によって、前記放射線画像
記録板に照射する励起光の強度を、同心円状または渦巻
き状走査における最外周の走査時を最大値とし、走査半
径の大きさに比例させて内周側にいくほど弱めることを
特徴とした放射線画像読取装置。
2. A radiation image is recorded by the phosphor layer, which has a phosphor layer that absorbs and stores the radiation and emits stimulated emission depending on the intensity of the accumulated radiation when irradiated with excitation light after that. A radiation image recording plate, a light source that generates the excitation light, and the excitation light generated by the light source is applied to the phosphor layer, and the excitation light reflected by the phosphor layer and the light emitted by the phosphor layer are emitted. An optical system for guiding the radiation image recording plate to a predetermined position, a recording plate rotating means for rotating the radiation image recording plate, and irradiation of excitation light on the radiation image recording plate by relatively moving the optical system and the radiation image recording plate. Excitation light moving means for moving the position in the radial direction with respect to the rotation center of the radiation image recording plate, the rotation of the radiation image recording plate by the recording plate rotating means and the excitation light moving means. A radiation image reading device for reading and scanning the radiation image recording plate in a concentric or spiral shape by a movement operation of an irradiation position of a luminescent light, the semiconductor being equipped as the light source and outputting a semiconductor laser as excitation light. And a modulation circuit that directly modulates the intensity of the excitation light output from the semiconductor by controlling the current flowing through the semiconductor in proportion to the size of the scanning radius during concentric or spiral scanning. By the direct modulation by the modulation circuit, the intensity of the excitation light with which the radiation image recording plate is irradiated is set to a maximum value when scanning the outermost circumference in concentric or spiral scanning, and is proportional to the size of the scanning radius. A radiation image reading device characterized by weakening toward the periphery.
JP4256285A 1992-09-25 1992-09-25 Method and apparatus for reading radioactive image Pending JPH06109664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4256285A JPH06109664A (en) 1992-09-25 1992-09-25 Method and apparatus for reading radioactive image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4256285A JPH06109664A (en) 1992-09-25 1992-09-25 Method and apparatus for reading radioactive image

Publications (1)

Publication Number Publication Date
JPH06109664A true JPH06109664A (en) 1994-04-22

Family

ID=17290531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4256285A Pending JPH06109664A (en) 1992-09-25 1992-09-25 Method and apparatus for reading radioactive image

Country Status (1)

Country Link
JP (1) JPH06109664A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708357B1 (en) * 2004-08-05 2007-04-17 미츠비시 쥬고교 가부시키가이샤 Nondestructive inspecting device and crane with the same
JP2012225796A (en) * 2011-04-20 2012-11-15 Pulstec Industrial Co Ltd X-ray diffraction apparatus
JP2012251775A (en) * 2011-05-31 2012-12-20 Pulstec Industrial Co Ltd X-ray diffraction measurement device
JP2013015414A (en) * 2011-07-04 2013-01-24 Pulstec Industrial Co Ltd X-ray diffraction measurement device
JP2013015415A (en) * 2011-07-04 2013-01-24 Pulstec Industrial Co Ltd X-ray diffraction measurement device and imaging plate management method
JP2013104673A (en) * 2011-11-10 2013-05-30 Pulstec Industrial Co Ltd Apparatus and method for measuring x-ray diffraction
JP2013113737A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument
JP2013113734A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument and residual stress measuring method
JP2014066545A (en) * 2012-09-25 2014-04-17 Pulstec Industrial Co Ltd X-ray diffraction measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708357B1 (en) * 2004-08-05 2007-04-17 미츠비시 쥬고교 가부시키가이샤 Nondestructive inspecting device and crane with the same
JP2012225796A (en) * 2011-04-20 2012-11-15 Pulstec Industrial Co Ltd X-ray diffraction apparatus
JP2012251775A (en) * 2011-05-31 2012-12-20 Pulstec Industrial Co Ltd X-ray diffraction measurement device
JP2013015414A (en) * 2011-07-04 2013-01-24 Pulstec Industrial Co Ltd X-ray diffraction measurement device
JP2013015415A (en) * 2011-07-04 2013-01-24 Pulstec Industrial Co Ltd X-ray diffraction measurement device and imaging plate management method
JP2013104673A (en) * 2011-11-10 2013-05-30 Pulstec Industrial Co Ltd Apparatus and method for measuring x-ray diffraction
JP2013113737A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument
JP2013113734A (en) * 2011-11-29 2013-06-10 Pulstec Industrial Co Ltd X-ray diffraction measuring instrument and residual stress measuring method
JP2014066545A (en) * 2012-09-25 2014-04-17 Pulstec Industrial Co Ltd X-ray diffraction measurement device

Similar Documents

Publication Publication Date Title
US6268613B1 (en) Multiple-head phosphor screen scanner
US5635728A (en) Rotating scanner system for reading multiple storage layer radiation screens
JPH06109664A (en) Method and apparatus for reading radioactive image
US20030201411A1 (en) Scanning apparatus
US6291831B1 (en) Scanning apparatus
US20090086910A1 (en) X-Ray Diffraction Measuring Apparatus Having Debye-Scherrer Optical System Therein, and an X-ray Diffraction Measuring Method for the Same
US4922102A (en) Radiation-image reading apparatus
JP2019066336A (en) X-ray diffraction measurement device and x-ray diffraction measurement method
US4882488A (en) Radiation image read-out and reproducing method
JPH01106566A (en) Image reading method
US6600807B2 (en) Method of and apparatus for taking radiation images
JPH0670687B2 (en) Radiation image reader
JPS63292098A (en) Radiation image reader
JP3626965B2 (en) X-ray apparatus and X-ray measurement method
JPS5975243A (en) Radiation picture reader
JPH0654125A (en) Radiation picture reading method
JPH0510892A (en) Radiation image recording plate
Niemann The Göttingen Scanning X-Ray Microscope
JPH06160998A (en) Radiograph reader
JPH06130526A (en) Reading device for stimulable phosphor
JPH06282023A (en) Latent image reader
JP2003045367A (en) Beam estimation method and beam estimation device
JPS60219510A (en) Optical encoder
JP4155538B2 (en) X-ray measuring apparatus and X-ray measuring method
JPH01105936A (en) Image reading and reproducing method