JPH06109568A - Vacuum sensor - Google Patents

Vacuum sensor

Info

Publication number
JPH06109568A
JPH06109568A JP25499192A JP25499192A JPH06109568A JP H06109568 A JPH06109568 A JP H06109568A JP 25499192 A JP25499192 A JP 25499192A JP 25499192 A JP25499192 A JP 25499192A JP H06109568 A JPH06109568 A JP H06109568A
Authority
JP
Japan
Prior art keywords
diaphragm
vacuum
conductive thin
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25499192A
Other languages
Japanese (ja)
Other versions
JP3171410B2 (en
Inventor
Masaki Esashi
正喜 江刺
Masaki Moronuki
正樹 諸貫
Koji Henmi
浩二 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP25499192A priority Critical patent/JP3171410B2/en
Publication of JPH06109568A publication Critical patent/JPH06109568A/en
Application granted granted Critical
Publication of JP3171410B2 publication Critical patent/JP3171410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L15/00Devices or apparatus for measuring two or more fluid pressure values simultaneously

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To measure absolute pressure within a wide range of gas with only a device and achieve miniaturization in simple structure in regard to a vacuum sensor for detecting an absolute pressure value from the change of an electrostatic capacity value. CONSTITUTION:Diaphragm electrodes 3-5 composed of pairs of opposed conductive thin films 3A-5A sandwiching inside spaces 3B-5B are arranged to fix their circumferential edges on a board 1. A plurality of the pairs of the diaphragm electrodes 3-5 composed of structure respectively different in the areas of the conductive thin films 3A-5A are electrically insulated and serially provided on the board 1 in a condition where the spaces 3B-5B between each diaphragm electrode 3-5 are mutually made to communicate and sealed in a high vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空装置内の圧力を測
定するための真空センサに関し、詳しくは、絶対圧力の
値を静電容量の値の変化から検出する真空センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum sensor for measuring pressure in a vacuum device, and more particularly to a vacuum sensor for detecting an absolute pressure value from a change in capacitance value.

【0002】[0002]

【従来の技術】近年、プロセス工業等では、真空装置に
装着される真空センサは、信頼性,小型化等の機能の要
求が高まっており、真空装置内の圧力を測定するための
真空センサとして、従来、例えばピラニ真空計が良く使
用されている。
2. Description of the Related Art In recent years, in the process industry and the like, a vacuum sensor mounted on a vacuum device is required to have functions such as reliability and downsizing, and is used as a vacuum sensor for measuring the pressure inside the vacuum device. Conventionally, for example, a Pirani vacuum gauge is often used.

【0003】図5はピラニ真空計の検出部を示したもの
で、真空容器41の内部に白金製のフィラメント42が
張設され、このフィラメント42が通電加熱される。圧
力変化によりガス分子がフィラメント42から熱を奪う
量が変化するので、このフィラメント42を一定温度に
保つための電力が検出回路にフィードバックされる。こ
のフィードバック量によりガスの圧力が測定される。
FIG. 5 shows a detection part of a Pirani vacuum gauge. A platinum filament 42 is stretched inside a vacuum container 41, and the filament 42 is electrically heated. Since the amount of gas molecules taking heat from the filament 42 changes due to the pressure change, electric power for keeping the filament 42 at a constant temperature is fed back to the detection circuit. The gas pressure is measured by this feedback amount.

【0004】また、図6はダイヤフラム真空計の検出部
を示すもので、これは気密容器51の中央に金属薄膜の
可動ダイヤフラム電極52が設けられ、中央部に中央固
定電極53が、外周部に外周固定電極54がそれぞれ可
動ダイヤフラム電極52に対向して近接した状態で設け
られている。中央固定電極53と可動ダイヤフラム電極
52間の静電容量と、外周固定電極54と可動ダイヤフ
ラム電極52間の静電容量との差が交流ブリッジ回路に
より検出される。
FIG. 6 shows a detection part of a diaphragm vacuum gauge, in which a movable diaphragm electrode 52 of a metal thin film is provided in the center of an airtight container 51, a central fixed electrode 53 is provided in the central part, and an outer peripheral part is provided. Peripheral fixed electrodes 54 are provided so as to face and be close to the movable diaphragm electrode 52, respectively. The difference between the electrostatic capacitance between the central fixed electrode 53 and the movable diaphragm electrode 52 and the electrostatic capacitance between the outer peripheral fixed electrode 54 and the movable diaphragm electrode 52 is detected by the AC bridge circuit.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来のピラ
ニ真空計では、ガスの熱伝導率の違いにより感度が変っ
てしまうという欠点があり、測定対象のガスによりその
都度校正が必要であった。
However, the conventional Pirani vacuum gauge has a drawback in that the sensitivity changes due to the difference in the thermal conductivity of the gas, and it is necessary to calibrate each time depending on the gas to be measured.

【0006】また、通電された金属製のフィラメント4
2が直接測定対象のガスに触れる構造となっているた
め、腐食性ガスの圧力測定等では使用中にピラニ真空計
の出力が変化するという問題もあった。
Further, a metal filament 4 which is energized
There is also a problem that the output of the Pirani vacuum gauge changes during use in measuring the pressure of corrosive gas, etc., because 2 has a structure that directly contacts the gas to be measured.

【0007】一方、ダイヤフラム真空計では、ピラニ真
空計のようにガスの種類により出力が変化することな
く、また、可動ダイヤフラム電極52の材質を適当に選
ぶことにより、腐食性のガスの圧力測定も可能になる
が、圧力感度を高めるためには、可動ダイヤフラム電極
52の厚さを非常に薄くして10ミクロン程度の厚さに
したり、1辺が数センチメートルの面積にする必要があ
る。
On the other hand, in the diaphragm vacuum gauge, the output does not change depending on the type of gas unlike the Pirani vacuum gauge, and the pressure of corrosive gas can be measured by appropriately selecting the material of the movable diaphragm electrode 52. Although it becomes possible, in order to increase the pressure sensitivity, it is necessary to make the thickness of the movable diaphragm electrode 52 extremely thin to be about 10 microns or to have an area of several centimeters on each side.

【0008】ダイヤフラム電極の厚さを非常に薄くする
と、加工や気密容器51への固定が困難となり、可動ダ
イヤフラム電極52の面積を大きくすると、装置全体の
大きさが大きくなり、デッドスペースが増大し、所定の
真空度に到達するまでの時間が長かったり、圧力変化に
対する応答性が悪くなるという問題があった。
If the thickness of the diaphragm electrode is extremely thin, it becomes difficult to process or fix it to the airtight container 51. If the area of the movable diaphragm electrode 52 is increased, the size of the entire device is increased and the dead space is increased. However, there are problems that it takes a long time to reach a predetermined degree of vacuum and the responsiveness to pressure change deteriorates.

【0009】また、圧力感度を高めるためには、可動ダ
イヤフラム電極52の厚さを非常に薄く加工した精密機
器にする必要があるが、取扱いには充分な注意が必要
で、交流ブリッジ回路等の信号処理回路を組み込んだ真
空計は大きくなり、非常に高価であった。
Further, in order to increase the pressure sensitivity, it is necessary to make the movable diaphragm electrode 52 into a precision instrument in which the thickness of the movable diaphragm electrode 52 is processed to be very thin, but it is necessary to handle it with sufficient care, and it is necessary to handle it with an AC bridge circuit or the like. The vacuum gauge incorporating the signal processing circuit was large and very expensive.

【0010】さらに、1つのダイヤフラムでは広い範囲
の真空圧力を測定することは不可能で、真空の測定範囲
が広い場合には、複数台を必要とし、デッドスペースが
大きくなるという問題があった。
Further, it is impossible to measure a wide range of vacuum pressure with one diaphragm, and when the vacuum measurement range is wide, a plurality of units are required and the dead space becomes large.

【0011】本発明は、上述の問題点を解決するために
なされたもので、その目的は、ガスの広範囲の絶対圧力
を1つの装置で測定でき、且つ、簡単な構造で小型化を
達成できる真空センサを提供することである。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to measure the absolute pressure of a wide range of gas with one device, and to achieve miniaturization with a simple structure. It is to provide a vacuum sensor.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明は、
内部の空間を隔てて対向する一対の導電性薄膜からなる
ダイヤフラム電極をそれらの周縁を基板に固定して配置
し、導電性薄膜の面積がそれぞれ異なる上記構造の複数
組のダイヤフラム電極を、各ダイヤフラム電極の間の空
間を相互に連通させて高真空に封止した状態で基板に電
気的に絶縁させて連設したことを特徴とする。
The invention according to claim 1 is
Diaphragm electrodes consisting of a pair of conductive thin films facing each other across an internal space are arranged with their peripheral edges fixed to a substrate, and a plurality of sets of diaphragm electrodes with the above-mentioned structures having different conductive thin film areas are provided for each diaphragm. It is characterized in that the spaces between the electrodes are communicated with each other and are electrically insulated from the substrate in a state of being sealed in a high vacuum.

【0013】請求項2記載の発明は、請求項1記載の発
明において、複数組のダイヤフラム電極のうち少なくと
も1つに厚肉部を設けたことを特徴とする。請求項3記
載の発明は、請求項1記載の発明において、ダイヤフラ
ム電極の導電性薄膜の外側表面を耐食性皮膜で覆ったこ
とを特徴とする。
A second aspect of the invention is characterized in that, in the first aspect of the invention, at least one of the plurality of diaphragm electrodes has a thick portion. The invention according to claim 3 is characterized in that, in the invention according to claim 1, the outer surface of the conductive thin film of the diaphragm electrode is covered with a corrosion resistant film.

【0014】[0014]

【作用】本発明においては、導電性薄膜の面積の大きな
ダイヤフラム電極により、真空度の高い領域が測定さ
れ、また、導電性薄膜の面積の小さなダイヤフラム電極
により、真空度の低い領域が測定される。
In the present invention, the diaphragm electrode having a large area of the conductive thin film measures a high vacuum region, and the diaphragm electrode having a small area of the conductive thin film measures a low vacuum region. .

【0015】そして、導電性薄膜の面積が異なる上記構
造の複数組のダイヤフラム電極を、複数箇所に亘り各ダ
イヤフラム電極の間の空間が相互に連通するように基板
に配列したので、各ダイヤフラム電極の間の空間は、同
時に同じ真空圧力に保持される。
Since a plurality of sets of diaphragm electrodes having the above-mentioned structure in which the areas of the conductive thin films are different are arranged on the substrate so that the spaces between the diaphragm electrodes communicate with each other at a plurality of positions, the diaphragm electrodes of the respective diaphragm electrodes are arranged. The spaces in between are kept at the same vacuum pressure at the same time.

【0016】[0016]

【実施例】以下、図面により本発明の実施例について説
明する。図1,図2は本発明の実施例に係わる真空セン
サを示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a vacuum sensor according to an embodiment of the present invention.

【0017】図において、符号1はシリコン基板で、こ
のシリコン基板1の一端側には絶縁層2を介して3組の
ダイヤフラム電極3,4,5が複数箇所に亘り電気的に
絶縁して固定されている。各ダイヤフラム電極3,4,
5は、それぞれ一対の導電性薄膜3A,3A、4A,4
A、5A,5Aからなり、内部の空間を高真空に封止し
た状態で、それらの周縁がシリコン基板1に固定されて
いる。
In the figure, reference numeral 1 is a silicon substrate, and three sets of diaphragm electrodes 3, 4 and 5 are electrically insulated and fixed to one end side of the silicon substrate 1 via an insulating layer 2. Has been done. Each diaphragm electrode 3, 4,
5 is a pair of conductive thin films 3A, 3A, 4A, 4
A, 5A, 5A, and their peripheral edges are fixed to the silicon substrate 1 in a state where the internal space is sealed in a high vacuum.

【0018】上記3組のダイヤフラム電極3,4,5の
各導電性薄膜3A,4A,5Aは、面積が異なり、導電
性薄膜3Aの面積Sa>導電性薄膜4Aの面積Sb>導
電性薄膜4Cの面積Scとなっている。
The conductive thin films 3A, 4A, 5A of the three sets of diaphragm electrodes 3, 4, 5 have different areas, and the area Sa of the conductive thin film 3A> the area Sb of the conductive thin film 4A> the conductive thin film 4C. Area Sc.

【0019】そして、シリコン基板1の他端側に厚肉部
1Bが形成され、この厚肉部1Bの内部には、上記ダイ
ヤフラム電極5に隣接して一対の導電性薄膜6A,6A
からなる参照電極6が形成され、参照電極6は、内部の
空間6Bを高真空に封止した状態で、絶縁層2,2を介
してシリコン基板1と絶縁され、それらの周縁をシリコ
ン基板1に固定されている。
A thick portion 1B is formed on the other end side of the silicon substrate 1. Inside the thick portion 1B, a pair of conductive thin films 6A, 6A is formed adjacent to the diaphragm electrode 5.
The reference electrode 6 is formed of, and the reference electrode 6 is insulated from the silicon substrate 1 through the insulating layers 2 and 2 in a state where the internal space 6B is sealed in a high vacuum, and the peripheral edges of the reference electrode 6 and the silicon substrate 1 are formed. It is fixed to.

【0020】さらに、上記の厚肉部1Bの内部には、参
照電極6に隣接して絶対圧力の測定で基準圧力となる真
空室7が形成され、真空室7内にはゲッター材7Aが収
容されている。このゲッター材7Aにより、真空室7内
の基準圧力が高真空に保たれ、基準圧力の変動による当
該真空センサの出力の変動が防がれている。
Further, inside the thick portion 1B, a vacuum chamber 7 is formed adjacent to the reference electrode 6 and serving as a reference pressure when measuring the absolute pressure, and the getter material 7A is housed in the vacuum chamber 7. Has been done. The getter material 7A keeps the reference pressure in the vacuum chamber 7 at a high vacuum, and prevents the output of the vacuum sensor from changing due to the change in the reference pressure.

【0021】ダイヤフラム電極3の空間3Bとダイヤフ
ラム電極4の空間4Bは第1連通路8を介して相互に連
通し、ダイヤフラム電極4の空間4Bとダイヤフラム電
極5の空間5Bは第2連通路9を介して相互に連通して
いる。ダイヤフラム電極5の空間5Bと参照電極6内の
空間6Bは第3連通路10を介して相互に連通し、参照
電極6内の空間6Bと真空室7は第4連通路11を介し
て相互に連通している。従って、ダイヤフラム電極3,
4,5の空間3B,4B,5Bと、参照電極6内の空間
6Bと、真空室7とは相互に連通している。
The space 3B of the diaphragm electrode 3 and the space 4B of the diaphragm electrode 4 communicate with each other through the first communication passage 8, and the space 4B of the diaphragm electrode 4 and the space 5B of the diaphragm electrode 5 form the second communication passage 9. Communicate with each other through. The space 5B in the diaphragm electrode 5 and the space 6B in the reference electrode 6 communicate with each other via the third communication passage 10, and the space 6B in the reference electrode 6 and the vacuum chamber 7 communicate with each other via the fourth communication passage 11. It is in communication. Therefore, the diaphragm electrode 3,
The spaces 3B, 4B and 5B of 4, 5 and the space 6B in the reference electrode 6 and the vacuum chamber 7 communicate with each other.

【0022】また、真空室7とシリコン基板1の他端側
の端面との間には、第5連通路12が形成され、第5連
通路12の途中は、シリコン基板1の他端下側部に形成
した封止口13内に嵌め込んだ封止材14により閉塞さ
れている。
A fifth communication passage 12 is formed between the vacuum chamber 7 and the end surface on the other end side of the silicon substrate 1, and the middle of the fifth communication passage 12 is below the other end of the silicon substrate 1. It is closed by a sealing material 14 fitted in a sealing port 13 formed in the portion.

【0023】シリコン基板1上には、端子部15,1
5,15,15,15が設けられ、これらの端子部1
5,15,15,15,15とダイヤフラム電極3,
4,5は、リード線16を介して接続されている。
On the silicon substrate 1, terminals 15, 1 are provided.
5,15,15,15 are provided, and these terminal parts 1
5,15,15,15,15 and diaphragm electrode 3,
4, 5 are connected via a lead wire 16.

【0024】しかして、本実施例においては、真空セン
サを組み立る際に、最後の工程で高真空中でシリコン基
板1を構成する上下2枚の平板部の間の隙間を排気し
て、封止材14により封止口13が密閉されるが、この
時、参照電極6と同様にしてシリコン基板1内に同時に
一体的に形成された真空室7内にゲッター材7Aが収納
され、シリコン基板1におけるダイヤフラム電極3,
4,5の空間3B,4B,5Bと参照電極6内の空間6
Bと真空室7とが高真空状態に維持されている。
However, in this embodiment, when assembling the vacuum sensor, the gap between the upper and lower flat plate portions constituting the silicon substrate 1 is evacuated in the final step in a high vacuum to seal the vacuum sensor. The sealing member 13 is sealed by the stopper material 14. At this time, the getter material 7A is housed in the vacuum chamber 7 integrally formed in the silicon substrate 1 at the same time as the reference electrode 6, and the getter material 7A is housed in the silicon substrate 1. Diaphragm electrode 3,
Spaces 4 and 5 3B, 4B and 5B and a space 6 in the reference electrode 6
B and the vacuum chamber 7 are maintained in a high vacuum state.

【0025】かかる状態で、当該真空センサがガス中に
設置される。当該真空センサが置かれた周囲のガスの圧
力が低下すると、ガスの圧力の変化に対応して各ダイヤ
フラム電極3,4,5の導電性薄膜3A,3A、4A,
4A、5A,5A間の間隔が大きくなり、静電容量の値
が減少する。
In this state, the vacuum sensor is installed in the gas. When the pressure of the gas around the vacuum sensor is lowered, the conductive thin films 3A, 3A, 4A of the diaphragm electrodes 3, 4, 5 correspond to the change of the gas pressure.
The interval between 4A, 5A, and 5A becomes large, and the value of capacitance decreases.

【0026】ガスの圧力の変化に対応した各組のダイヤ
フラム電極3,4,5の変位量は、ダイヤフラム電極
3,4,5の導電性薄膜3A,4A,5Aの厚さが同じ
場合には、導電性薄膜3A,4A、5Aの面積に比例す
るので、面積の大きなダイヤフラム電極3では、静電容
量の値の変化は大きく、面積の小さなダイヤフラム電極
5では、静電容量の値の変化は小さくなる。ダイヤフラ
ム電極4では中間となる。
The amount of displacement of each set of diaphragm electrodes 3, 4, 5 corresponding to the change in gas pressure is as long as the conductive thin films 3A, 4A, 5A of the diaphragm electrodes 3, 4, 5 have the same thickness. , Is proportional to the areas of the conductive thin films 3A, 4A, 5A, the diaphragm electrode 3 having a large area has a large change in the electrostatic capacitance value, and the diaphragm electrode 5 having a small area has a large change in the electrostatic capacitance value. Get smaller. The diaphragm electrode 4 is in the middle.

【0027】従って、面積の大きなダイヤフラム電極3
により、真空度の高い領域が測定され、また、面積の小
さなダイヤフラム電極5により真空度の低い領域が測定
される。ダイヤフラム電極4により真空度が上記領域の
中間の領域が測定される。
Therefore, the diaphragm electrode 3 having a large area
Thus, a region having a high degree of vacuum is measured, and a region having a low degree of vacuum is measured by the diaphragm electrode 5 having a small area. The diaphragm electrode 4 measures the vacuum region in the middle of the above range.

【0028】そして、導電性薄膜3A,4A,5Aの面
積が異なる上記構造の3組のダイヤフラム電極3,4,
5を、3箇所に亘り各組のダイヤフラム電極3,4,5
の間の空間3B,4B,5Bが相互に連通するようにシ
リコン基板1に配列したので、各組のダイヤフラム電極
3,4,5の間の空間3B,4B,5Bが同時に同じ真
空圧力に保持される。
Then, the three sets of diaphragm electrodes 3, 4 having the above-mentioned structure in which the areas of the conductive thin films 3A, 4A, 5A are different from each other.
5, the diaphragm electrode 3, 4, 5 of each set over 3 places
Since the spaces 3B, 4B, 5B between them are arranged on the silicon substrate 1 so as to communicate with each other, the spaces 3B, 4B, 5B between the diaphragm electrodes 3, 4, 5 of each set are simultaneously maintained at the same vacuum pressure. To be done.

【0029】また、参照電極6の外側部分は、シリコン
基板1の厚肉部1Bで覆われているため、参照電極6の
周囲のガスの圧力により変形することが無く、従って、
参照電極6における静電容量の値は圧力によって変化し
ない。参照電極6における静電容量の値は、温度によっ
てのみ変化するので(電極間距離は構成している材料の
熱膨張係数の差により変化するため)、この値(温度に
よる変化分)を基準として、他のダイヤフラム電極3,
4,5間の静電容量の値の変化(圧力の変化分+温度に
よる変化分)を測定し、温度による静電容量の値の変化
分をキャンセルすれば、他のダイヤフラム電極3,4,
5間の静電容量の値の変化(圧力のみの変化分)が測定
される。即ち、ダイヤフラム電極3,4,5の静電容量
のうち、温度変化による分をキャンセルして温度補償さ
れる。
Since the outer portion of the reference electrode 6 is covered with the thick portion 1B of the silicon substrate 1, it is not deformed by the pressure of the gas around the reference electrode 6, and therefore,
The capacitance value of the reference electrode 6 does not change with pressure. Since the value of the capacitance in the reference electrode 6 changes only with the temperature (since the distance between the electrodes changes with the difference in the coefficient of thermal expansion of the constituent materials), this value (change amount due to temperature) is used as a reference. , Other diaphragm electrodes 3,
If the change in the value of the electrostatic capacitance between 4 and 5 (the change in the pressure + the change in the temperature) is measured and the change in the value of the electrostatic capacitance due to the temperature is canceled, the other diaphragm electrodes 3, 4,
The change in the capacitance value between 5 (the change in pressure only) is measured. That is, of the capacitances of the diaphragm electrodes 3, 4, and 5, the temperature compensation is performed by canceling out the capacitance due to temperature change.

【0030】以上の如き構成によれば、導電性薄膜3
A,4A,5Aが適当な面積の複数組のダイヤフラム電
極3,4,5を、複数箇所に亘って配列することによ
り、ガスの広範囲の絶対圧力を1つの真空センサにより
測定することができる。
According to the above construction, the conductive thin film 3
By arranging a plurality of sets of diaphragm electrodes 3, 4, 5 having appropriate areas A, 4A, 5A over a plurality of locations, the absolute pressure of a wide range of gas can be measured by one vacuum sensor.

【0031】しかも、各ダイヤフラム電極3,4,5の
間の空間3B,4B,5Bが相互に連通しているので、
それらの空間3B,4B,5Bを真空にするための装置
の構造を簡単にでき、従って、真空センサの大きさを数
ミリメートルとコンパクトに構成し、従来の真空センサ
に比して超小型を可能にしてデッドスペースを小さくで
きるので、真空装置全体の排気する時間を短くでき、圧
力変化に対するセンサの応答を速くすることができる。
Moreover, since the spaces 3B, 4B, 5B between the diaphragm electrodes 3, 4, 5 communicate with each other,
The structure of the device for creating a vacuum in those spaces 3B, 4B, 5B can be simplified. Therefore, the size of the vacuum sensor can be made compact with a few millimeters, and it is possible to make it ultra-compact compared to conventional vacuum sensors. Since the dead space can be reduced, the time required for exhausting the entire vacuum device can be shortened, and the response of the sensor to pressure changes can be accelerated.

【0032】このことにより、真空装置内部の多点測定
や圧力分布の測定が可能となり、より一層きめ細かいプ
ロセス制御や管理を可能にできる。また、真空センサの
センシング部分の周辺に半導体集積回路技術を利用して
信号処理回路を集積化することも容易である。
As a result, it becomes possible to perform multipoint measurement and pressure distribution measurement inside the vacuum apparatus, and to enable more detailed process control and management. Further, it is easy to integrate the signal processing circuit around the sensing portion of the vacuum sensor by using the semiconductor integrated circuit technology.

【0033】さらに、各ダイヤフラム電極3,4,5の
空間が相互に連通しているので、各空間3B,4B,5
Bを同時に高真空にし、各ダイヤフラム電極3,4,5
の空間をぞれぞれ独立に真空圧力にする必要を無くすこ
とができる。
Furthermore, since the spaces of the diaphragm electrodes 3, 4, 5 communicate with each other, the spaces 3B, 4B, 5
B is made into a high vacuum at the same time, and each diaphragm electrode
It is possible to eliminate the need to independently apply vacuum pressure to each space.

【0034】なお、本実施例においては、ダイヤフラム
電極の組数は3個となっているが、組数を2個または4
個以上にすることもできる。また、3組のダイヤフラム
電極3,4,5のうち少なくとも1つに厚肉部を設ける
ことができる。例えば、図3に示すように、導電性薄膜
5Aの面積の最も小さいダイヤフラム電極5の導電性薄
膜5A,5Aに厚肉部21,21をそれぞれ設けること
ができる。これにより、圧力変化によるダイヤフラム電
極5の変位が抑制され、ダイヤフラム電極5の絶対圧力
の検出範囲を更に拡大できる。
Although the number of diaphragm electrode sets is three in this embodiment, the number of sets is two or four.
It can be more than one. Further, a thick portion can be provided in at least one of the three sets of diaphragm electrodes 3, 4, 5. For example, as shown in FIG. 3, thick-walled portions 21 and 21 can be provided on the conductive thin films 5A and 5A of the diaphragm electrode 5 having the smallest area of the conductive thin film 5A. As a result, the displacement of the diaphragm electrode 5 due to the pressure change is suppressed, and the detection range of the absolute pressure of the diaphragm electrode 5 can be further expanded.

【0035】さらに、図4に示すように、3組のダイヤ
フラム電極3,4,5の各導電性薄膜3A,3A、4
A,4A、5A,5Aの外側表面をそれぞれ耐食性皮膜
31で覆った構造にすることができる。これにより、耐
食性ガスの圧力測定をすることができる。なお、ここで
用いる耐食性皮膜31としては、例えば高分子材料,貴
金属等が耐食性ガスに対応して使用される。
Further, as shown in FIG. 4, the conductive thin films 3A, 3A, 4 of the three diaphragm electrodes 3, 4, 5 are arranged.
The outer surface of each of A, 4A, 5A, and 5A may be covered with a corrosion-resistant coating 31. Thereby, the pressure of the corrosion resistant gas can be measured. As the corrosion resistant film 31 used here, for example, a polymer material, a noble metal or the like is used in correspondence with the corrosion resistant gas.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
適当な面積の導電性薄膜からなる複数組のダイヤフラム
電極を、複数箇所に亘って配列することにより、ガスの
広範囲の絶対圧力を1つの真空センサにより測定するこ
とができる。
As described above, according to the present invention,
By arranging a plurality of sets of diaphragm electrodes made of a conductive thin film having an appropriate area over a plurality of locations, it is possible to measure the absolute pressure of a wide range of gas with one vacuum sensor.

【0037】しかも、各組のダイヤフラム電極の間の空
間が相互に連通しているので、それらの空間を真空にす
るための装置の構造を簡単にでき、従って、真空センサ
の大きさを数ミリメートルとコンパクトに構成し、従来
の真空センサに比して超小型を可能にしてデッドスペー
スを小さくでき、排気速度,応答時間を速くすることが
できる。
Moreover, since the spaces between the diaphragm electrodes of each set are communicated with each other, the structure of the device for evacuating those spaces can be simplified, and therefore the size of the vacuum sensor can be several millimeters. It is possible to reduce the dead space and speed up the exhaust speed and the response time by making it compact and making it more compact than the conventional vacuum sensor.

【0038】また、各ダイヤフラム電極の空間が相互に
連通しているので、各空間を同時に高真空にし、各ダイ
ヤフラム電極の空間をぞれぞれ独立に真空圧力にする必
要を無くすことができる。
Further, since the spaces of the diaphragm electrodes are in communication with each other, it is possible to eliminate the need to simultaneously make the spaces into a high vacuum and to independently apply the vacuum pressure to the spaces of the diaphragm electrodes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる真空センサの縦断面図
である。
FIG. 1 is a vertical cross-sectional view of a vacuum sensor according to an embodiment of the present invention.

【図2】同真空センサの平面図である。FIG. 2 is a plan view of the vacuum sensor.

【図3】同真空センサの第1の変形例を示す縦断面図で
ある。
FIG. 3 is a vertical sectional view showing a first modification of the vacuum sensor.

【図4】同真空センサの第2の変形例を示す縦断面図で
ある。
FIG. 4 is a vertical cross-sectional view showing a second modified example of the vacuum sensor.

【図5】従来におけるピラニ真空計の検出部の構成図で
ある。
FIG. 5 is a configuration diagram of a detection unit of a conventional Pirani vacuum gauge.

【図6】従来におけるダイヤフラム真空計の検出部の構
成図である。
FIG. 6 is a configuration diagram of a detection unit of a conventional diaphragm vacuum gauge.

【符号の説明】[Explanation of symbols]

1 シリコン基板 3 ダイヤフラム電極 3A 導電性薄膜 3B 空間 4 ダイヤフラム電極 4A 導電性薄膜 4B 空間 5 ダイヤフラム電極 5A 導電性薄膜 5B 空間 1 Silicon Substrate 3 Diaphragm Electrode 3A Conductive Thin Film 3B Space 4 Diaphragm Electrode 4A Conductive Thin Film 4B Space 5 Diaphragm Electrode 5A Conductive Thin Film 5B Space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸貫 正樹 東京都千代田区九段北1丁目13番5号 株 式会社リケン内 (72)発明者 逸見 浩二 東京都千代田区九段北1丁目13番5号 株 式会社リケン内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masaki Moronuki 1-13-5 Kudankita, Chiyoda-ku, Tokyo 1-13-5 Riken Co., Ltd. (72) Inventor Koji Izumi 1-13-5, Kudankita, Chiyoda-ku, Tokyo In stock company Riken

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部の空間を隔てて対向する一対の導電
性薄膜からなるダイヤフラム電極をそれらの周縁を基板
に固定して配置し、 導電性薄膜の面積がそれぞれ異なる上記構造の複数組の
ダイヤフラム電極を、各ダイヤフラム電極の間の空間を
相互に連通させて高真空に封止した状態で基板に電気的
に絶縁させて連設したことを特徴とする真空センサ。
1. A plurality of sets of diaphragms of the above structure, wherein diaphragm electrodes made of a pair of conductive thin films facing each other with an internal space therebetween are arranged with their peripheral edges fixed to a substrate, and the conductive thin films have different areas. A vacuum sensor characterized in that electrodes are electrically insulated from a substrate in a state where spaces between respective diaphragm electrodes are communicated with each other and sealed in a high vacuum.
【請求項2】 複数組のダイヤフラム電極のうち少なく
とも1つに厚肉部を設けたことを特徴とする請求項1記
載の真空センサ。
2. The vacuum sensor according to claim 1, wherein at least one of the plurality of diaphragm electrodes has a thick portion.
【請求項3】 ダイヤフラム電極の導電性薄膜の外側表
面を耐食性皮膜で覆ったことを特徴とする請求項1記載
の真空センサ。
3. The vacuum sensor according to claim 1, wherein an outer surface of the conductive thin film of the diaphragm electrode is covered with a corrosion resistant film.
JP25499192A 1992-09-24 1992-09-24 Vacuum sensor Expired - Fee Related JP3171410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25499192A JP3171410B2 (en) 1992-09-24 1992-09-24 Vacuum sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25499192A JP3171410B2 (en) 1992-09-24 1992-09-24 Vacuum sensor

Publications (2)

Publication Number Publication Date
JPH06109568A true JPH06109568A (en) 1994-04-19
JP3171410B2 JP3171410B2 (en) 2001-05-28

Family

ID=17272695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25499192A Expired - Fee Related JP3171410B2 (en) 1992-09-24 1992-09-24 Vacuum sensor

Country Status (1)

Country Link
JP (1) JP3171410B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255225A (en) * 2000-03-10 2001-09-21 Anelva Corp Static capacitance type vacuum sensor
JP2001324398A (en) * 2000-03-07 2001-11-22 Anelva Corp Corrosion resistant vacuum sensor
JP2011242335A (en) * 2010-05-20 2011-12-01 Fuji Electric Co Ltd Vacuum gauge
WO2014205395A1 (en) * 2013-06-20 2014-12-24 The Regents Of The University Of Michigan Microdischarge-based transducer
WO2018168013A1 (en) * 2017-03-16 2018-09-20 日立オートモティブシステムズ株式会社 Mems sensor
JP2021501324A (en) * 2017-10-31 2021-01-14 エンサイト エルエルシー Wide range micro pressure sensor
CN115638916A (en) * 2022-10-18 2023-01-24 广州众纳科技有限公司 Device and detection method for sensing human body pressure by wearable product
WO2024008356A1 (en) * 2022-07-07 2024-01-11 Robert Bosch Gmbh Micromechanical pressure sensor having at least two membranes for determining a pressure value, and corresponding method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324398A (en) * 2000-03-07 2001-11-22 Anelva Corp Corrosion resistant vacuum sensor
JP2001255225A (en) * 2000-03-10 2001-09-21 Anelva Corp Static capacitance type vacuum sensor
JP2011242335A (en) * 2010-05-20 2011-12-01 Fuji Electric Co Ltd Vacuum gauge
WO2014205395A1 (en) * 2013-06-20 2014-12-24 The Regents Of The University Of Michigan Microdischarge-based transducer
US10006823B2 (en) 2013-06-20 2018-06-26 The Regents Of The University Of Michigan Microdischarge-based transducer
WO2018168013A1 (en) * 2017-03-16 2018-09-20 日立オートモティブシステムズ株式会社 Mems sensor
JP2018155526A (en) * 2017-03-16 2018-10-04 日立オートモティブシステムズ株式会社 MEMS sensor
JP2021501324A (en) * 2017-10-31 2021-01-14 エンサイト エルエルシー Wide range micro pressure sensor
WO2024008356A1 (en) * 2022-07-07 2024-01-11 Robert Bosch Gmbh Micromechanical pressure sensor having at least two membranes for determining a pressure value, and corresponding method
CN115638916A (en) * 2022-10-18 2023-01-24 广州众纳科技有限公司 Device and detection method for sensing human body pressure by wearable product
CN115638916B (en) * 2022-10-18 2024-01-23 广州众纳科技有限公司 Device and detection method for sensing human body pressure of wearable product

Also Published As

Publication number Publication date
JP3171410B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US5186054A (en) Capacitive pressure sensor
US4388668A (en) Capacitive pressure transducer
US4207604A (en) Capacitive pressure transducer with cut out conductive plate
US4628403A (en) Capacitive detector for absolute pressure
US4177496A (en) Capacitive pressure transducer
US3715638A (en) Temperature compensator for capacitive pressure transducers
CA1239806A (en) Capacitive sensing cell made of brittle material
US7757563B2 (en) Capacitance manometers and methods of making same
CN107655619A (en) Micro-electromechanical pressure transducer structure and pressure sensor
JP3171410B2 (en) Vacuum sensor
JP3385392B2 (en) Vacuum sensor
US3948102A (en) Trielectrode capacitive pressure transducer
US5444901A (en) Method of manufacturing silicon pressure sensor having dual elements simultaneously mounted
JP2019510239A (en) Capacitive vacuum measuring cell with multiple electrodes
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
JP2002055008A (en) Vacuum sensor with built-in thin-film getter
JPH07174652A (en) Semiconductor pressure sensor and its manufacture as well as pressure detection method
JP4540775B2 (en) Servo capacitive vacuum sensor
JP2896728B2 (en) Capacitive pressure sensor
JPS583081Y2 (en) Diffusion type semiconductor pressure sensor
JPH08105777A (en) Mass flow sensor
JP3106939B2 (en) Capacitive pressure detector
JP3144647B2 (en) Capacitive pressure sensor element
JP2000121475A (en) Electrostatic capacity type pressure detector
JPS5967437A (en) Quartz vibrator pressure sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080323

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080323

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080323

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110323

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees