JPH06109445A - Interferometer device - Google Patents

Interferometer device

Info

Publication number
JPH06109445A
JPH06109445A JP28068292A JP28068292A JPH06109445A JP H06109445 A JPH06109445 A JP H06109445A JP 28068292 A JP28068292 A JP 28068292A JP 28068292 A JP28068292 A JP 28068292A JP H06109445 A JPH06109445 A JP H06109445A
Authority
JP
Japan
Prior art keywords
interferometer
tool
stage
pinhole
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28068292A
Other languages
Japanese (ja)
Inventor
Masashi Kobayashi
正史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28068292A priority Critical patent/JPH06109445A/en
Publication of JPH06109445A publication Critical patent/JPH06109445A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform an adjustment easily and quickly by a simple constitution by a method wherein a tool is constituted of a pinhole-shaped spatial filter which can be mounted on a movement stage and of a concave mirror whose curvature central position coincides with the center of a pinhole. CONSTITUTION:A tool 101 for optical-axis adjustment is constituted of a pinhole-shaped spatial filter which can be replaced and of a high-surface-accuracy concave mirror 2 which is provided with a high-accuracy polished spherical surface and with a rough- planed plane in such a way that they are held by a tube 3. A pinhole in the filter 1 is arranged so as to coincide with the central position of the convex mirror 2. The tool 101 is fixed onto a movement stage 102 in a state that the filter 1 is detached and that is it mounted, interference fringes are observed from the side of an interferometer, the front-faced relationship between the interferometer and the tool 101 and the parallelism dislocation at the right and the left as well as the upper part and the lower part of the tool 101 and the inclination of the stage 102 are adjusted. Then, a final lens for the interferometer is replaced by a lens 6 whose back focus is long and which is provided with a reference spherical surface 6a, the interference fringes are observed, and the parallelism displacement and the inclination of a rail 5 for movement are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粗面の形状測定等を行な
う干渉計装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer device for measuring the shape of a rough surface.

【0002】[0002]

【従来の技術】干渉計(干渉計装置)は、従来、精度は
高いものの微妙な調整が必要な測定器とされ、設定に熟
練と労力を必要とするという認識がなされている。しか
し近年、光学系の精度がますます必要とされるようにな
るにつれ、レンズ等の曲率半径の測定はスフェロメ−タ
などのメカニカルな接触式の測定から、より精度の高い
干渉計を用いた測定法が主流に変わりつつある。また、
光学系の波面収差等の収差測定も干渉計が多用されてい
る。
2. Description of the Related Art An interferometer (interferometer device) has conventionally been recognized as a measuring instrument which has high precision but requires fine adjustment, and requires skill and labor for setting. However, in recent years, as the accuracy of the optical system has become more and more required, the measurement of the radius of curvature of the lens, etc. is changed from the mechanical contact type measurement such as the spherometer to the measurement using an interferometer with higher accuracy. The law is changing to the mainstream. Also,
Interferometers are often used to measure aberrations such as wavefront aberrations of optical systems.

【0003】このような通常の形態での干渉計は、使用
時に干渉計本体に付随して干渉計の光軸方向に移動可能
なステ−ジと、該ステ−ジの移動量を読み取れるスケ−
ルを有する移動用のレ−ルが必要とされる。微妙な調整
が必要とされるというのは要求される精度が使用波長の
オ−ダ−、即ちミクロン以下の精度であるためで、干渉
計の光軸とステ−ジ、レ−ルとの軸は極めて高精度で合
致させる必要がある。
In such an ordinary interferometer, a stage that can be moved along the interferometer main body in the optical axis direction of the interferometer at the time of use, and a scale that can read the amount of movement of the stage.
A moving rail with a rule is required. The delicate adjustment is necessary because the required accuracy is the order of the wavelength used, that is, the accuracy of less than a micron. Therefore, the optical axis of the interferometer and the axis of the stage and rail are required. Must be matched with extremely high precision.

【0004】従来はこの精度を達成するためレ−ザビ−
ムで基準を作って合わせ込んだり、曲面の反射による干
渉縞を観察しながら試行錯誤を繰り返して、光軸調整を
行ったりしている。
Conventionally, laser beams have been used to achieve this accuracy.
I make adjustments by making a reference with a lens, or by repeating trial and error while observing the interference fringes due to the reflection on the curved surface, and adjusting the optical axis.

【0005】一方、干渉計による測定は別の分野、特に
通常の鏡面反射による干渉測定では観察できない粗面の
ガラスや金属等の平面度測定の分野への応用も期待され
ている。
On the other hand, it is expected that the measurement by the interferometer will be applied to another field, in particular, the field of flatness measurement of glass or metal having a rough surface which cannot be observed by the normal interferometric measurement by specular reflection.

【0006】従来、鏡面反射で測定できない物体の平面
性の干渉測定としては、斜入射による測定が知られてい
る。斜入射には被検物表面の細かい凹凸の影響を除去
し、表面からの鏡面反射成分のみを抽出する効果があ
る。
[0006] Conventionally, as an interferometric measurement of the flatness of an object that cannot be measured by specular reflection, measurement by oblique incidence is known. The oblique incidence has an effect of removing the influence of fine irregularities on the surface of the test object and extracting only the specular reflection component from the surface.

【0007】図5はプリズム22を用いて平面波を被検
物20に斜入射させて干渉縞を形成させる従来の方法を
示す概略図である。プリズム22は被検物20に近接ま
たは少し離して配置され、被検物20と対向するプリズ
ム22の下面22aが参照面となっている。被検物20
を広く観察するためには、被検物20の大きさに応じて
プリズム22を大きくすることが必要である。
FIG. 5 is a schematic diagram showing a conventional method of forming an interference fringe by making a plane wave obliquely incident on a test object 20 using a prism 22. The prism 22 is arranged close to or slightly apart from the test object 20, and the lower surface 22a of the prism 22 facing the test object 20 serves as a reference surface. Object 20
In order to observe widely, it is necessary to enlarge the prism 22 according to the size of the test object 20.

【0008】斜入射による方法では粗面の程度によって
必要とされる入射角が異なり、粗面の程度がひどい、即
ち表面の凹凸が大きいほど大きな入射角が必要とされ
る。図5のプリズム法はプリズム22で予め角度関係が
はっきり決まっているため、装置構成上の自由度が少な
く入射角に制限を受け、種々の粗面に対応するフレキシ
ビリティにかけるという欠点がある。
In the method of oblique incidence, the required incident angle differs depending on the degree of rough surface, and the greater the degree of rough surface, that is, the larger the unevenness of the surface, the larger the incident angle is required. In the prism method of FIG. 5, since the angular relationship is clearly determined in advance by the prism 22, the degree of freedom in the device configuration is small, the incident angle is limited, and there is a drawback in that flexibility is applied to various rough surfaces.

【0009】このような粗面の形状測定上の制約を除去
する方法として、図6に示すように半透鏡29、30や
反射鏡24、参照ミラ−27を組み合わせて、フィゾ−
干渉計を構成し、光源25からの光をレンズ26でコリ
メ−トして被検物20に斜入射させ、観察面31で干渉
縞を観察する方法などが知られている。
As a method of removing such a restriction on the shape measurement of the rough surface, as shown in FIG. 6, a semi-transparent mirror 29, 30, a reflecting mirror 24, and a reference mirror 27 are combined to obtain a physique.
There is known a method of forming an interferometer, collimating light from a light source 25 with a lens 26 to make the light obliquely incident on an object 20 to be inspected, and observing interference fringes on an observation surface 31.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
例では干渉計の光軸の調整が微妙で、不確定要素が多い
という欠点が存在していた。通常の干渉計の使用法の場
合で言えば、干渉計本体の上下左右方向の傾き、平行ず
れという要素があり、一方、ステ−ジ及びレ−ル側にも
傾き、平行ずれがあるなど、多くの光軸ずれの要素があ
る。調整に波長オ−ダ−の精度が必要ということから、
装置の設置、使用時または定期的なメンテナンス時の光
学調整に試行錯誤的な従来の方法を用いると、光軸の再
調整に多大な労力と時間が必要とされる。また、熟練し
た人間しか高精度な調整ができないという問題があっ
た。
However, the above-mentioned conventional example has a drawback that the adjustment of the optical axis of the interferometer is delicate and there are many uncertain factors. In the case of using a normal interferometer, there are factors such as vertical and horizontal tilts and parallel shifts of the interferometer body, while there are tilts and parallel shifts on the stage and rail sides. There are many optical axis misalignment factors. Since the wavelength order accuracy is required for adjustment,
If a conventional trial-and-error method is used for optical adjustment during installation, use, or periodic maintenance of the apparatus, re-adjustment of the optical axis requires a great deal of labor and time. In addition, there is a problem that only a skilled person can make highly accurate adjustments.

【0011】粗面の形状測定のため、汎用性のある、プ
リズム型ではない干渉計を構成する場合も同様である。
図6に見られるように構成部品が多いため調整が複雑で
大変であり、熟練も必要とされる。更に粗面の形状測定
の場合には、粗面干渉計の部分を既存の干渉計上に設置
しようとすると、装置が大型してしまうという別な問題
点も存在している。
The same applies to the case of constructing a general-purpose non-prism type interferometer for measuring the shape of a rough surface.
As shown in FIG. 6, since the number of components is large, adjustment is complicated and difficult, and skill is also required. Further, in the case of measuring the shape of a rough surface, there is another problem that the apparatus becomes large in size when the rough surface interferometer portion is installed on an existing interferometer.

【0012】[0012]

【課題を解決するための手段】本発明は上記の問題点を
解決するため、光軸調整のための特別な工具または機構
を干渉計につけ加えることを特徴とする。干渉計と移動
ステ−ジ、レ−ルとの相対位置合わせについては種々交
換可能なピンホ−ル状のスペ−シャルフィルタと凹面鏡
とを有する工具を用いることが特徴である。
In order to solve the above problems, the present invention is characterized by adding a special tool or mechanism for adjusting the optical axis to an interferometer. The relative position of the interferometer with the moving stage and the rail is characterized by using a tool having a pinhole-shaped special filter and a concave mirror that can be exchanged.

【0013】また粗面計測の場合には斜入射干渉計を構
成する干渉計の構成を変更し、干渉計の光軸に垂直な方
向の軸に関して回転可能なア−ム機構を回転角度のモニ
タとともに設け、該ア−ム機構上の回転軸近傍に回転可
能で傾き調整可能な被検物ホ−ルダと、該ア−ム機構端
に傾き調整可能な高精度平面鏡を配置したことを特徴と
する。該ア−ム機構は従来の干渉計に取り付けられ、全
体として粗面物体の干渉計を構成する。
In the case of rough surface measurement, the structure of the interferometer constituting the oblique incidence interferometer is changed to monitor the rotation angle of the arm mechanism rotatable about the axis perpendicular to the optical axis of the interferometer. And an object holder that is rotatable and has a tilt adjustable in the vicinity of a rotation axis on the arm mechanism, and a tilt-adjustable high-precision plane mirror at the end of the arm mechanism. To do. The arm mechanism is attached to a conventional interferometer and together constitutes an interferometer for rough objects.

【0014】本発明では従来の干渉計に簡単な構成の工
具或はステ−ジ機構を付け加えた結果、熟練が必要であ
った調整が容易化され、熟練者でなくても短時間で調整
可能なようにしたものである。
According to the present invention, as a result of adding a tool or a stage mechanism having a simple structure to the conventional interferometer, the adjustment which requires skill is facilitated, and the adjustment can be performed in a short time even by a non-expert. It was done like this.

【0015】[0015]

【実施例】図1は本発明の干渉計装置に用いる工具10
1の実施例1の概略図で、通常の干渉計の構成における
光軸調整工具を示すものである。図中1は種々交換可能
なピンホ−ル状のスペ−シャルフィルタ、2は高精度な
球面に研磨された凹面鏡で、球面ではないもう一方の面
は平面で、図1の場合には荒ずり面となっている。3は
スペーシャルフィルタ1と凹面鏡2を保持する鏡筒であ
る。スペ−シャルフィルタ1のピンホ−ルは凹面鏡2の
中心位置と合致するように配置される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a tool 10 used in the interferometer device of the present invention.
1 is a schematic diagram of Embodiment 1 of Example 1 and shows an optical axis adjusting tool in the configuration of a normal interferometer. In the figure, reference numeral 1 denotes various interchangeable pinhole-shaped special filters, 2 denotes a concave mirror polished to a highly accurate spherical surface, and the other surface which is not a spherical surface is a flat surface. Is a face. A lens barrel 3 holds the spatial filter 1 and the concave mirror 2. The pinhole of the special filter 1 is arranged so as to coincide with the central position of the concave mirror 2.

【0016】図2は図1の光軸調整2の工具101を用
いて干渉計の光軸と移動用ステ−ジとレ−ルの軸を合
致、調整させる方法を示したものである。図1の工具1
01は先ず図2(A)のように移動ステ−ジ102上に
スペ−シャルフィルタ1が外された状態で固定される。
FIG. 2 shows a method of aligning and adjusting the optical axis of the interferometer and the axes of the moving stage and the rail by using the tool 101 of the optical axis adjustment 2 of FIG. Tool 1 in Figure 1
First, 01 is fixed on the moving stage 102 with the special filter 1 removed as shown in FIG.

【0017】4は干渉計の最終レンズで最終面が参照球
面となっており、図2(A)の配置の場合、該参照球面
4aはバックフォ−カスの短いものである。次いで凹面
鏡2の面精度を見る要領で干渉縞を観察し、干渉計側で
観察される干渉縞が1本以下になるように調整を行う。
調整が完了した状態で干渉計と光軸調整工具の傾きは位
置Aにおいて正対関係に調整されたことになる。これが
干渉計と移動ステ−ジ5、レ−ルの相対関係の初期状態
の粗調となる。
Reference numeral 4 denotes a final lens of the interferometer, the final surface of which is a reference spherical surface. In the arrangement of FIG. 2A, the reference spherical surface 4a has a short back focus. Next, the interference fringes are observed in the same manner as the surface accuracy of the concave mirror 2 is observed, and adjustment is performed so that the number of interference fringes observed on the interferometer side is one or less.
It means that the tilt of the interferometer and the optical axis adjusting tool has been adjusted in a face-to-face relationship at the position A when the adjustment is completed. This is a rough adjustment in the initial state of the relative relationship between the interferometer, the moving stage 5, and the rail.

【0018】次いで調整は図2(B)の状態に進む。図
2(B)では光軸調整の工具101にスペ−シャルフィ
ルタ1が装着され、図2(A)と同様な干渉縞の観察が
行われる。スペ−シャルフィルタ1の中心は予め凹面鏡
2の中心と一致するようになっている。
Then, the adjustment proceeds to the state shown in FIG. In FIG. 2B, the special filter 1 is attached to the tool 101 for adjusting the optical axis, and the same interference fringes as in FIG. 2A are observed. The center of the special filter 1 is made to coincide with the center of the concave mirror 2 in advance.

【0019】図2(A)の調整は粗調なので、干渉計か
ら生成される参照球面4aからの光の収束点が1の中心
と一致することが必ずしも保証されていない。干渉計と
光軸調整の工具101に平行ずれがあると、参照球面か
らの光束はスペ−シャルフィルタ1を通過することがで
きず、干渉縞を確認することができない。干渉縞が確認
できない場合には工具101の上下左右の平行ずれをス
テ−ジ102の移動により調整し、干渉縞がワンカラ−
以下になるようにステ−ジ102の傾きも調整する。
Since the adjustment of FIG. 2A is a rough adjustment, it is not always guaranteed that the convergence point of the light from the reference spherical surface 4a generated from the interferometer coincides with the center of 1. If the interferometer and the tool 101 for adjusting the optical axis have a parallel shift, the light flux from the reference spherical surface cannot pass through the special filter 1 and the interference fringes cannot be confirmed. If the interference fringes cannot be confirmed, the parallel displacement of the tool 101 in the vertical and horizontal directions is adjusted by moving the stage 102, and the interference fringes become one color.
The inclination of the stage 102 is also adjusted so that it becomes as follows.

【0020】図2(B)の調整において光軸ずれが大き
いときには、最初大きい径のスペ−シャルフィルタ1で
調整を始め、順次小さい径のものに交換しながら手順を
進めていくとよい。また、調整用の工具101の反射鏡
2の第2面側は荒ずり面となっているため、スペ−シャ
ルフィルタ1を光線が通過できると、参照球面4aから
の光が荒ずり面に到達して散乱され、光線の通過状態が
モニタできる。従って反射鏡の第2面を観察できるよう
にしておくと、粗調に使用することができる。以上の手
順で干渉計に近い位置での干渉計とステ−ジの相対関係
の調整が終了する。
When the optical axis shift is large in the adjustment of FIG. 2B, it is advisable to start the adjustment with the special filter 1 having a larger diameter first and then proceed with the procedure while replacing the filter with a smaller diameter one by one. Further, since the second surface side of the reflecting mirror 2 of the adjusting tool 101 is a rough surface, when the light beam can pass through the special filter 1, the light from the reference spherical surface 4a reaches the rough surface. Then, it is scattered and the passing state of the light beam can be monitored. Therefore, if the second surface of the reflecting mirror can be observed, it can be used for rough adjustment. The above procedure completes the adjustment of the relative relationship between the interferometer and the stage at a position close to the interferometer.

【0021】続いて、調整は図2(C)の光軸方向の異
なる位置での干渉計とステ−ジ102の相対関係の調整
に移る。図2(C)ではまず参照球面4をバックフォ−
カスの長い参照球面6aを有するレンズ6に変更し、位
置Bにおいて凹面鏡2の干渉縞が観察できるように干渉
計及びステ−ジ102を移動させ、レ−ルの平行ずれ、
傾きを調整する。
Then, the adjustment proceeds to the adjustment of the relative relationship between the interferometer and the stage 102 at different positions in the optical axis direction of FIG. 2C. In FIG. 2 (C), first, the reference spherical surface 4 is back-focused.
The lens 6 is changed to a reference spherical surface 6a having a long dregs, and the interferometer and the stage 102 are moved so that the interference fringes of the concave mirror 2 can be observed at the position B, and the parallel shift of the rails,
Adjust the tilt.

【0022】一連の図2(A)〜(C)の手順は一つの
ル−プをなし、これらの調整を繰り返し行って位置Aか
ら位置Bにステ−ジ102を移動したとき、両方の位置
で干渉縞が観察される状態になって、光軸の調整が完了
する。平行ずれ、傾きという3次元的に多くのパラメ−
タを操って装置の調整を行うには、本発明のような工具
101を用いて徐々に追い込んでいくことが最も確実
で、熟練を必要としない手法といえる。
The series of steps shown in FIGS. 2A to 2C constitutes one loop, and when these operations are repeated to move the stage 102 from the position A to the position B, both positions are moved. Then, the interference fringes are observed, and the adjustment of the optical axis is completed. Many three-dimensional parameters such as parallel shift and tilt
In order to manipulate the device to adjust the device, it is most certain that the tool 101 as in the present invention is used to gradually drive in, and this is a technique that does not require skill.

【0023】一方、粗面の形状測定における干渉計の構
成も熟練を要するものであった。図3は本発明の実施例
2の要部概略図で、新たなステ−ジの機構と構成を取る
ことによって粗面の干渉計測定を簡易化したものであ
る。
On the other hand, the construction of an interferometer for measuring the shape of a rough surface also requires skill. FIG. 3 is a schematic view of the essential portions of Embodiment 2 of the present invention, in which interferometer measurement of a rough surface is simplified by adopting a new stage mechanism and configuration.

【0024】図中、11は干渉計の透過参照平面、12
は干渉計の光軸で、該光軸12に対し垂直な軸13を回
転中心とする回転ア−ム16が配置され、回動アーム1
6上の回転軸13近傍には回転及び傾き調整可能な被検
物ホルダ14が取りつけられている。また、回転ア−ム
16の先端には傾き調整可能なミラ−ホルダ17が取り
つけられている。15は目盛り付きの回転ステ−ジで、
被検物ホルダ14とア−ム16の回転角度が直読できる
ようになっている。
In the figure, 11 is a transmission reference plane of the interferometer, and 12
Is an optical axis of the interferometer, and a rotary arm 16 having a shaft 13 perpendicular to the optical axis 12 as a center of rotation is arranged.
An object holder 14 that can be rotated and tilted is attached near the rotary shaft 13 on the position 6. Further, a mirror holder 17 whose tilt can be adjusted is attached to the tip of the rotary arm 16. 15 is a rotary stage with a scale,
The rotation angles of the object holder 14 and the arm 16 can be directly read.

【0025】図4は図3の系の作用の説明図である。使
用する干渉計18は本体内部にアライメント構造を持つ
一般的なフィゾ−型干渉計としている。先ず、干渉計1
8に透過参照平面11を取り付け、干渉計18自体の内
部のアライメントが行われる。
FIG. 4 is an explanatory view of the operation of the system of FIG. The interferometer 18 used is a general Fizeau interferometer having an alignment structure inside the main body. First, interferometer 1
The transmission reference plane 11 is attached to 8 and the internal alignment of the interferometer 18 itself is performed.

【0026】次いで被検物ホルダ14に被検粗面体20
を取り付け、粗面体20の粗度に応じて適当な角度被検
物を回転させて、干渉計からの光線が被検面に対し斜入
射するように系をセットする。粗度に応じて適当な角度
というのは、斜入射によって表面の凹凸の影響がなくな
り、表面からの鏡面反射が支配的になる角度のことを言
う。但し被検面への入射角は大きくなるほど測定感度が
落ちるという関係があるため、精度が必要なときにはで
きるだけ小さくすることが好ましい。
Next, the test object holder 14 is attached to the test rough surface member 20.
Is attached, the test object is rotated by an appropriate angle according to the roughness of the rough surface member 20, and the system is set so that the light beam from the interferometer is obliquely incident on the test surface. The appropriate angle according to the roughness means the angle at which the influence of surface irregularities is eliminated by oblique incidence and the specular reflection from the surface becomes dominant. However, since the measurement sensitivity decreases as the angle of incidence on the surface to be inspected increases, it is preferable to make the angle as small as possible when accuracy is required.

【0027】干渉計をアライメントの状態にしてア−ム
16を回転し、ミラ−ホルダ17に取り付けられた平面
鏡21を調整すると、粗面20からの反射光は平面鏡2
1により反射、逆行して干渉計に戻り、粗面干渉計全体
としてのアライメントが可能となる。粗面干渉計の場合
は斜入射の効果で粗面は単なるミラ−面と考えることが
できる。
When the arm 16 is rotated with the interferometer in alignment and the plane mirror 21 attached to the mirror holder 17 is adjusted, the reflected light from the rough surface 20 is reflected by the plane mirror 2.
By 1, the light is reflected, goes backward, and returns to the interferometer, so that the alignment of the entire rough surface interferometer becomes possible. In the case of a rough surface interferometer, the rough surface can be considered as a simple mirror surface due to the effect of oblique incidence.

【0028】アライメントが終了し、干渉縞が観察され
た時点で被検物の干渉計光軸に対する角度を回転ステ−
ジ15のスケ−ルから読み取る。読み取った角度をθと
すると、観察される干渉縞は光路差が、 mλ/ 4cosθ m=1,2,3,… を満足する条件のところで現われるため、λ/ 4cosθピ
ッチの等高線となる。従って干渉縞から粗面20の面精
度を読み取ることができる。
When alignment is completed and interference fringes are observed, the angle of rotation of the object to be measured with respect to the interferometer optical axis is rotated.
Read from the scale on page 15. When the read angle is θ, the observed interference fringes appear under the condition that the optical path difference satisfies mλ / 4cosθ m = 1,2,3, ... Therefore, the surface accuracy of the rough surface 20 can be read from the interference fringes.

【0029】角度θは大きくするほど干渉縞のピッチが
粗くなるため、前述のように粗面20の粗度と測定精度
との兼ね合いで決定される。図3の実施例では被検物に
対する入射角を自由に変更するでき、フレキシビリティ
に富んだ干渉計を組むことができる。
Since the pitch of the interference fringes becomes coarser as the angle θ becomes larger, it is determined in consideration of the roughness of the rough surface 20 and the measurement accuracy as described above. In the embodiment shown in FIG. 3, the incident angle with respect to the object to be inspected can be freely changed, and an interferometer with high flexibility can be assembled.

【0030】図3の実施例は被写体が検査光束に対して
斜めに置かれるため、従来のプリズム系のように被検物
と同じ大きさのプリズムを作る必要がない。この結果、
従来の干渉計を粗面干渉計として容易に流用することが
可能となる。
In the embodiment shown in FIG. 3, since the subject is placed obliquely with respect to the inspection light beam, it is not necessary to form a prism having the same size as the object to be inspected, unlike the conventional prism system. As a result,
The conventional interferometer can be easily used as a rough surface interferometer.

【0031】本実施例では回転ステ−ジ15は軸13の
回りにだけ設けたが、回転ステージ15に加えてミラ−
ホルダ17にも回転ステ−ジ15を設け、回転ステージ
15がθ度回転したとき、ア−ム16上のミラ−ホルダ
17もθ度回転するようにすれば、被検物20の回転に
伴う光軸の傾きが自動的に補正され、平面鏡21の微調
が残るだけになって、操作性は更に改善される。
In this embodiment, the rotary stage 15 is provided only around the shaft 13, but in addition to the rotary stage 15, a mirror is provided.
If the holder 17 is also provided with the rotation stage 15 and the mirror holder 17 on the arm 16 is rotated by θ degrees when the rotation stage 15 is rotated by θ degrees, the rotation of the test object 20 is accompanied. The tilt of the optical axis is automatically corrected, and only the fine adjustment of the plane mirror 21 remains, so that the operability is further improved.

【0032】また干渉縞が予めλ/ 4cosθで現われるこ
とが分かっているため、測定に都合が良いように、干渉
縞のピッチが扱いやすい数値になるように、前もって回
転ステ−ジ15に印をつけて、セットしやすくしておく
とか、回転を自動化した際にはピッチがきれのよい数値
になるところを自動的に選べるようにするなどしてもよ
い。
Since it is known that the interference fringes appear in λ / 4cosθ in advance, the rotary stage 15 is marked in advance so that the pitch of the interference fringes can be easily handled so that the measurement is convenient. It may be attached to make it easier to set, or when the rotation is automated, it is possible to automatically select a place where the pitch becomes a sharp numerical value.

【0033】[0033]

【発明の効果】以上説明したように本発明では従来の干
渉計にスペ−シャルフィルタと凹面鏡という簡単な構成
の工具をつけ加えたり、回転ステ−ジと一枚の平面鏡と
いう構成の簡単な機構を付け加えるだけで、従来複雑で
熟練と時間を要するといわれた干渉計の調整を大幅に簡
素化し、容易化させることができる。
As described above, according to the present invention, the conventional interferometer is provided with a tool having a simple structure of a special filter and a concave mirror, and a simple mechanism having a structure of a rotary stage and a single plane mirror. Only by adding, it is possible to greatly simplify and facilitate the adjustment of the interferometer, which has conventionally been said to be complicated and requires skill and time.

【0034】この結果、干渉計の光軸と移動用ステ−ジ
のレ−ルの軸との合致調整が容易になり、また通常の干
渉計を用いて粗面のガラス、金属等の平面性を感度を調
節しながら容易に測定することが可能となった。
As a result, it becomes easy to match the optical axis of the interferometer with the axis of the rail of the moving stage, and the flatness of rough glass, metal, etc. can be obtained by using an ordinary interferometer. It became possible to easily measure while adjusting the sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の光軸調整工具を示す概略
FIG. 1 is a schematic view showing an optical axis adjusting tool according to a first embodiment of the present invention.

【図2】 実施例1の調整工具の使用法を説明する説明
FIG. 2 is an explanatory diagram illustrating a method of using the adjusting tool according to the first embodiment.

【図3】 本発明の実施例2の粗面測定を行うためのス
テ−ジを示す要部概略図
FIG. 3 is a schematic view of a main part showing a stage for measuring a rough surface according to a second embodiment of the present invention.

【図4】 実施例2のステ−ジを用いて行う測定法を説
明する要部概略図
FIG. 4 is a schematic view of a main part for explaining a measuring method performed by using the stage of Example 2.

【図5】 従来のプリズムを用いて行う斜入射干渉法を
示す説明図
FIG. 5 is an explanatory view showing an oblique incidence interferometry method using a conventional prism.

【図6】 従来の反射鏡、半透鏡を用いて行う斜入射干
渉法を示す説明図
FIG. 6 is an explanatory diagram showing oblique incidence interferometry using a conventional reflecting mirror and semi-transparent mirror.

【符号の説明】[Explanation of symbols]

1 スペ−シャルフィルタ 2 高面精度凹面鏡 3 鏡筒 4,6 透過参照球面 5 移動用レ−ル 11 干渉計の透過参照平面 12 干渉計の光軸 13 干渉計の光軸に垂直な被検物ホルダの回転軸 14 被検物ホルダ 15 回転ステ−ジ 16 回転ア−ム 17 ミラ−ホルダ 18 干渉計 20 被検物(粗面物体) 21 平面反射鏡 22 プリズム 25 レ−ザ光源 26 コリメ−タレンズ 27,28 平面鏡 29,30 半透鏡 31 観察面 DESCRIPTION OF SYMBOLS 1 Special filter 2 High-accuracy concave mirror 3 Lens barrel 4, 6 Transmission reference spherical surface 5 Moving rail 11 Transmission reference plane of interferometer 12 Optical axis of interferometer 13 DUT perpendicular to optical axis of interferometer Rotation axis of holder 14 Test object holder 15 Rotation stage 16 Rotation arm 17 Miller holder 18 Interferometer 20 Test object (rough surface object) 21 Planar reflecting mirror 22 Prism 25 Laser light source 26 Collimator lens 27, 28 plane mirror 29, 30 semi-transparent mirror 31 observation surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 干渉計と、該干渉計の光軸上の種々の位
置に被検物を載置するための移動ステ−ジと該移動ステ
−ジをガイドするレ−ルを有する干渉装置において、該
移動ステ−ジの上に載置可能で、ピンホ−ルの形状をし
たスペ−シャルフィルタと該ピンホ−ルの中心と曲率中
心位置が合致した凹面鏡からなり、該干渉計と該移動ス
テ−ジの前記光軸方向の位置合わせを行う際の干渉縞の
観察を可能としたことを特徴とする干渉計装置。
1. An interferometer having an interferometer, a moving stage for placing an object to be examined at various positions on the optical axis of the interferometer, and a rail for guiding the moving stage. , A pinhole-shaped special filter mountable on the moving stage and a concave mirror whose center of curvature coincides with the center of curvature of the pinhole. An interferometer device capable of observing interference fringes when aligning a stage in the optical axis direction.
【請求項2】 斜入射により粗面体の面形状を測定する
干渉計装置において、参照波となる平面波を発生する干
渉計と、該干渉計の光軸に対して垂直な軸に関し回転可
能なア−ム機構と該回転角のモニタ機構、該ア−ム機構
の回転軸近傍に被検物である粗面体を配置して入射角を
可変にするホ−ルド機構を有するとともに、該ア−ム機
構の先端に前記粗面体からの反射光を反射し、再び前記
粗面体に戻す平面鏡を備えたことを特徴とする干渉計装
置。
2. In an interferometer device for measuring the surface shape of a rough surface body by oblique incidence, an interferometer that generates a plane wave that serves as a reference wave, and an interferometer that is rotatable about an axis perpendicular to the optical axis of the interferometer. An arm mechanism and a monitor mechanism for the rotation angle; and a hold mechanism for arranging a rough surface body, which is an object to be inspected, near the rotation axis of the arm mechanism to make the incident angle variable. An interferometer device comprising a plane mirror at a tip of a mechanism for reflecting light reflected from the rough surface body and returning the light to the rough surface body again.
JP28068292A 1992-09-25 1992-09-25 Interferometer device Pending JPH06109445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28068292A JPH06109445A (en) 1992-09-25 1992-09-25 Interferometer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28068292A JPH06109445A (en) 1992-09-25 1992-09-25 Interferometer device

Publications (1)

Publication Number Publication Date
JPH06109445A true JPH06109445A (en) 1994-04-19

Family

ID=17628469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28068292A Pending JPH06109445A (en) 1992-09-25 1992-09-25 Interferometer device

Country Status (1)

Country Link
JP (1) JPH06109445A (en)

Similar Documents

Publication Publication Date Title
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
US7605926B1 (en) Optical system, method of manufacturing an optical system and method of manufacturing an optical element
CN101865670B (en) Plane surface shape measurement method of optical fiber point-diffraction phase-shifting interferometer
US4884697A (en) Surface profiling interferometer
JPH102714A (en) Method and device for measurement
US4818108A (en) Phase modulated ronchi testing of aspheric surfaces
JPH01284704A (en) Method and device for measuring microstructure of surface
US2880644A (en) Alignement interferometer
US20030107722A1 (en) Process for measuring the surface of a polished precious stone
JPH06109445A (en) Interferometer device
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
KR101379677B1 (en) Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
CN205957916U (en) Detection apparatus for concave cylinder and cylindrical divergence system
JPH06174430A (en) Center thickness measuring method and device used for it
JP4007473B2 (en) Wavefront shape measurement method
Callender et al. A swing arm profilometer for large telescope mirror element metrology
JP3282229B2 (en) Interferometer device
CN201974286U (en) 30 DEG optical splitter checking device for checking lens face shape deflection
JPH0610643B2 (en) Measuring method of lens axis tilt, etc.
JP3219494B2 (en) End face shape measuring device for obliquely polished optical connector ferrule and method for measuring end face shape of obliquely polished optical connector ferrule
JPS6298205A (en) Method and instrument for measuring shape
JP2527176B2 (en) Fringe scanning shearing interferometer
SU1762118A1 (en) Interference technique of testing of parts
Langenbeck Aspheric Surfaces Centration (Rotary Scan Interferometer)
Herriott Laser Interferometry