JPH06109444A - Noncontact measuring method for tooth-surface shape of gear - Google Patents

Noncontact measuring method for tooth-surface shape of gear

Info

Publication number
JPH06109444A
JPH06109444A JP4262034A JP26203492A JPH06109444A JP H06109444 A JPH06109444 A JP H06109444A JP 4262034 A JP4262034 A JP 4262034A JP 26203492 A JP26203492 A JP 26203492A JP H06109444 A JPH06109444 A JP H06109444A
Authority
JP
Japan
Prior art keywords
gear
tooth surface
tooth
light
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4262034A
Other languages
Japanese (ja)
Other versions
JPH0786411B2 (en
Inventor
Toyohiko Yatagai
豊彦 谷田貝
Aizo Kubo
愛三 久保
Hiroshige Fujio
博重 藤尾
Mitsuo Suzuki
充男 鈴木
Yoshiaki Saito
義昭 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Osaka Seimitsu Kikai Co Ltd
Original Assignee
Osaka Seimitsu Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Seimitsu Kikai Co Ltd filed Critical Osaka Seimitsu Kikai Co Ltd
Priority to JP4262034A priority Critical patent/JPH0786411B2/en
Publication of JPH06109444A publication Critical patent/JPH06109444A/en
Publication of JPH0786411B2 publication Critical patent/JPH0786411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To measure a gear accurately and quickly without using a reference gear by a method wherein a gear under test is turned and set automatically in a proper measuring position and interference fringe data on the gear is taken directly into a computer. CONSTITUTION:When the central point of a tooth groove in a gear 6 under test is decided, a gear support device 7 selects a proper setting position on the basis of data which has been learnt, the gear is turned by a prescribed angle by a servo driving gear 9 and comes to a standstill, and taking the photograph of the gear 6 is started. That is to say, a laser beam which is radiated from a light source 1 is divided 2 into two beams, a beam of reference light R which has been fringe-scanned by a reflecting mirror 3 which is moved fine by a piezoelement 3a and a beam of object (measuring) light S with which a tooth surface 6a has been irradiated via a reflecting mirror 4 and which has been transmitted through a photographing lens 5 are picked up by a CCD camera 8 provided with a camera photodetection face 8a in an interference position. Interference-fringe data which has been photodetected as a light quantity is analyzed by a computer 12, the phase of each picture element is computed, a length (a height) is computed according to an effective wavelength by an incidence angle, and the shape of the tooth surface 6a is found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、歯車の歯面形状を非接
触式にかつ、精密に測定する方法に関し、特に、干渉法
により自由曲面形状を非接触に測定する自由曲面形状測
定装置を用いた平歯車、はすば歯車等の各種歯車の歯面
形状の測定方法において、従来のホログラムによる方法
の際必要とされた個々の歯車の基準面を全く要しないよ
うにした非接触自由曲面測定装置を用いた歯車の歯面形
状測定方法と、その実施に使用する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact method for precisely measuring the tooth surface shape of a gear and, more particularly, to a free-form surface shape measuring apparatus for non-contact measurement of a free-form surface shape by an interferometry method. A non-contact free-form surface that does not require the reference surface of each gear that was required in the conventional hologram method in the method of measuring the tooth surface shape of various gears such as spur gears and helical gears. The present invention relates to a method for measuring the tooth flank shape of a gear using a measuring device, and an apparatus used for carrying out the method.

【0002】[0002]

【従来の技術】一般に駆動源、例えばモータやエンジン
等から出力される動力はそのままの回転を利用すること
は殆どなく、すべて歯車を組込んだ減速装置又は増速装
置を介して被駆動部分へ出力駆動系が構成される。然
し、この駆動系では、歯車の幾何学的性質、機械的性質
または加工・組み立て上の是非等によって、振動や騒音
を発する問題点がある。これらの問題点の解決のため、
歯車には幾何学的形状に複雑な修正を加えて、振動や騒
音の少ない減速・増速装置を製作しようと種々の工夫、
改善が行われているのが現状である。従って、加工され
た歯車がどのような形状を備え、かつ、その場合にどの
ような振動や騒音を発するかを探求し、その結果のデー
タを得ることができれば、加工々程に適切な加工データ
のフィードバックが可能になり、延いては歯車製造にお
ける品質の向上に寄与すること大であるので、このよう
な測定・解析機が従来から求められている。
2. Description of the Related Art Generally, the power output from a drive source such as a motor or an engine rarely uses the rotation as it is, and all the power is transmitted to a driven portion through a speed reducer or a speed increasing device incorporating gears. An output drive system is configured. However, in this drive system, there is a problem in that vibration and noise are generated due to the geometrical properties, mechanical properties of the gears, and whether or not they are processed / assembled. To solve these problems,
Various ingenuity was added to the gears to make complicated modifications to the geometrical shapes, and to produce a deceleration / acceleration device with less vibration and noise.
The current situation is that improvements are being made. Therefore, if we can find out what shape the machined gear has and what kind of vibration and noise it produces, and if we can obtain the resulting data, then we can obtain suitable machining data. Since such a measurement / analysis machine can contribute to the improvement of quality in gear manufacturing, there is a demand for such a measuring / analyzing machine.

【0003】さて、従来の機械創成法の接触式の測定子
による測定、つまり、歯面上の1本の線上をトレースす
ることで測定する方法では、本質的に角度伝達やトルク
伝達の作用面として機能する歯車の情報としてはいかに
も少なく、かつ長時間を要する。このような接触式歯車
形状測定方法の不備を改善すべく提案された本出願人の
先願(特願昭62−273492号及び特開平1−11
6403号)等の非接触方式による測定方法がある。つ
まり、ホログラフィック干渉による、歯面の非接触測定
を可能ならしめた方法及びその方法の実施に用いること
ができる自由曲面形状測定装置がある。
Now, in the conventional measurement method using a contact-type stylus, that is, by tracing one line on the tooth surface, the angle transmission or torque transmission surface is essentially used. The information on the gears that function as is extremely small and takes a long time. The applicant's prior application (Japanese Patent Application No. 62-273492 and Japanese Patent Laid-Open No. 1-11) proposed to improve the deficiency of the contact type gear shape measuring method.
6403) and the like, which are non-contact measurement methods. That is, there is a method that allows non-contact measurement of the tooth surface by holographic interference and a free-form surface shape measuring device that can be used for implementing the method.

【0004】[0004]

【発明が解決しようとする課題】然しながら、このホロ
グラフィック干渉を利用し、自由曲面形状測定装置を用
いた測定方法では、基準面となる歯面を用意し、そのホ
ログラム像を撮影してから、被測定対象歯面の歯形測定
に入ることが必要であり、基準歯面の製作に長時間を要
し、撮影等準備にも、かなりの時間を必要とする煩瑣が
ある。また、基準面との比較測定であるので、基準面の
加工精度も問題になる。依って、本発明の主目的は上述
のような煩瑣や精度面での問題点を解決せんとすること
にある。本発明の他の目的は、上述した自由曲面形状測
定装置の構造を改変して、同機上に取付けた被測定歯車
の歯面形状に応じた干渉縞データを直接、コンピュータ
に取り込んで自動的に測定結果を得ると共に歯車加工々
程へのフィードバックを可能にした歯車の形状測定方法
を提供せんとするものである。
However, in the measuring method using the holographic interference and using the free curved surface shape measuring apparatus, the tooth surface to be the reference surface is prepared, and the hologram image thereof is photographed. Since it is necessary to start measuring the tooth profile of the tooth surface to be measured, it takes a long time to manufacture the reference tooth surface, and it takes a considerable amount of time to prepare for imaging and the like. Further, since the measurement is performed by comparison with the reference surface, the processing accuracy of the reference surface also becomes a problem. Therefore, the main object of the present invention is to solve the above-mentioned problems of trouble and accuracy. Another object of the present invention is to modify the structure of the above-mentioned free-form surface shape measuring device so that the interference fringe data corresponding to the tooth surface shape of the gear to be measured mounted on the same machine is directly loaded into the computer and automatically. An object of the present invention is to provide a method for measuring the shape of a gear that obtains a measurement result and enables feedback to the gear machining process.

【0005】[0005]

【課題を解決するための手段】上述の目的に鑑みて、本
発明は、特開平1−116403号公報に開示された本
出願に係る自由曲面形状測定装置の構造を改変して、同
機上に取付けた被測定歯車が適切な測定位置に自動的に
回転設定されるようにし、また測定機構を適正な位置に
移動、設定し、高密度のCCDカメラを利用して直接歯
面の干渉縞をコンピュータに取込み歯面形状の測定デー
タを解析、演算により得るようにしたものである。ま
た、同時に上述の方法を利用して、歯車の複数の被測定
歯面について、自動的に次々と測定し、連続的に歯面形
状誤差を算出する。更に同様に、噛み合い相手の歯車の
歯面誤差も測定し、これらの歯面によって構成された両
歯車を仮定して、その噛み合いの状態シミュレーション
プログラムに入力し、減速又は増速歯車系の負荷状態に
おける伝達誤差、起振力、各種応力状態の解析を行って
動力伝達特性を予め解析し、歯車の強度、振動・騒音の
問題に対して適切な分析を行う方法を可能ならしめるの
である。
SUMMARY OF THE INVENTION In view of the above-mentioned object, the present invention has a structure in which the free curved surface shape measuring apparatus according to the present application disclosed in Japanese Patent Application Laid-Open No. 1-116403 is modified to have the same structure. Make sure that the attached gear to be measured is automatically set to the proper measurement position, and the measurement mechanism is moved and set to the proper position, and the interference fringes on the tooth surface are directly measured using the high-density CCD camera. The measurement data of the tooth surface shape taken in by the computer is analyzed and obtained by calculation. Further, at the same time, the above-mentioned method is simultaneously used to automatically and successively measure a plurality of tooth flanks of the gear to be measured and continuously calculate the tooth flank shape error. Similarly, measure the tooth flank error of the gear to be meshed, and assume both gears composed of these tooth flanks, input them to the mesh state simulation program, and load the deceleration or acceleration gear system. In this way, it becomes possible to analyze the transmission error, the vibration force, and various stress states in advance to analyze the power transmission characteristics, and to appropriately analyze the problems of gear strength, vibration, and noise.

【0006】即ち、本発明は、非接触自由曲面測定装置
の回転支軸に被測定対象歯車を取付けると共に光源から
発した可干渉光を参照光と物体光に分離し、その物体光
を被測定歯車の目標歯面に照射することにより、参照光
と、物体光の反射光とから該目標歯面の干渉縞像を得
て、該目標歯面の形状誤差を測定する歯面形状の非接触
測定法において、干渉計の一部のピンホール光路を利用
して、前記被測定歯車の回転中心に関する測定原点を自
動的に設定し、次いで、前記被測定歯車の歯面形状仕様
に基づいて予め入力された測定のパラメータに従って、
前記測定原点から測定位置決めを行って、物体光を1つ
の歯面に照射してその反射光を画素数の極めて多いCC
Dカメラ受光面に結像させ、同時に、該CCDカメラ受
光面上で、先に分離した参照光と、該物体光の反射光と
を直接干渉させて歯面の干渉縞を得るようにし、更に、
参照光の途中に挿入されている鏡をピエゾ素子等の駆動
手段によって、前記可干渉光の1/2波長の数分割づつ
微動させて、いわゆるフリンジスキャン法により干渉縞
を1ピッチ分移動させることにより、各分割毎の縞の移
動をCCDカメラの各ピクセル毎に取り出して位相を解
析し、また、予め被測定歯車の仕様と、測定機上の歯車
取付け位置関係と物体光の照射位置からカメラにより撮
影を期待される像をコンピュータによりシミュレーショ
ンして理論的歯面形状を作成し、該作成した理論的歯面
形状と比較、演算することにより各ピクセルにおける差
を算出し、その点の入射角による実効波長から表面形状
の高さに換算して歯面全体の形状に対する歯面誤差を求
め、該求めた歯面誤差を歯車の基本形状の上に、地図状
の彩色による等高線で誤差表示をおこなうようにした、
測定ステップを備えてなる歯車の歯面形状の非接触測定
方法を提供するものである。
That is, according to the present invention, a gear to be measured is attached to a rotation spindle of a non-contact free curved surface measuring apparatus, coherent light emitted from a light source is separated into reference light and object light, and the object light is measured. By irradiating the target tooth surface of the gear, an interference fringe image of the target tooth surface is obtained from the reference light and the reflected light of the object light, and the shape error of the target tooth surface is measured. In the measurement method, a pinhole optical path of a part of an interferometer is used to automatically set a measurement origin with respect to a rotation center of the gear to be measured, and then based on a tooth surface shape specification of the gear to be measured in advance. According to the input measurement parameters,
The measurement positioning is performed from the measurement origin, and the object light is irradiated to one tooth surface, and the reflected light is CC having a large number of pixels
An image is formed on the light receiving surface of the D camera, and at the same time, the reference light separated previously and the reflected light of the object light are directly interfered with each other on the light receiving surface of the CCD camera to obtain interference fringes on the tooth surface. ,
A mirror inserted in the middle of the reference light is finely moved by a driving means such as a piezo element in several divisions of 1/2 wavelength of the coherent light, and an interference fringe is moved by one pitch by a so-called fringe scan method. By this, the movement of stripes for each division is taken out for each pixel of the CCD camera and the phase is analyzed. In addition, the camera is determined in advance from the specifications of the gear to be measured, the gear mounting position relationship on the measuring machine, and the irradiation position of the object light. The image that is expected to be captured is simulated by a computer to create a theoretical tooth surface shape, and the difference in each pixel is calculated by comparing and operating with the created theoretical tooth surface shape, and the incident angle at that point is calculated. By converting the effective wavelength by the height of the surface shape to obtain the tooth surface error for the entire tooth surface shape, the obtained tooth surface error is placed on the basic shape of the gear, and the contour height by map coloring is calculated. In was to perform error display,
It is intended to provide a non-contact measuring method of a tooth flank shape of a gear, which includes a measuring step.

【0007】これを詳述すると、光源から発した可干渉
光を参照光と物体光とに分離し、物体光を被測定歯車の
予め選定した基準歯面に照射し、その反射光と参照光か
ら該基準歯面のホログラムを得るようにし、次に基準曲
面を被測定歯面に置換して得たホログラフィック干渉か
ら、測定歯面の面精度を得る非接触自由曲面測定機を用
いた歯面形状の測定方法において、
More specifically, the coherent light emitted from the light source is separated into reference light and object light, and the object light is applied to a preselected reference tooth surface of the gear to be measured. From the holographic interference obtained by replacing the reference curved surface with the tooth surface to be measured, and then using the non-contact free curved surface measuring machine to obtain the surface accuracy of the measured tooth surface. In the surface shape measurement method,

【0008】先ず、光学測定子の左右歯面に対応する2
ケの偏光プリズムの間の中点に微細な孔を明け、偏光プ
リズムを通らず光がCCDカメラに直進するようにし、
被測定歯車を測定機上に設定した際、その光が歯溝空間
を透過するようにする。この孔は、座標のO点にあるよ
うに、予め、治具によって測定機を検定しておく。この
ようにすると、被測定歯車を回転したとき、左右の歯面
によりこの光線は遮られる。そして、被測定歯車を緩や
かに回転させ、CCDカメラ上でこの孔を測定すると、
歯溝が現れてから消えるまでの、同歯車の回転角が測定
され、この角度の中心の位置が歯車の歯面形状を測定す
る際の原点位置となる。
First, 2 corresponding to the left and right tooth flanks of the optical probe.
Make a fine hole at the middle point between the polarizing prisms so that the light goes straight to the CCD camera without passing through the polarizing prism.
When the gear to be measured is set on the measuring machine, the light is transmitted through the tooth space. The measuring instrument is previously verified by a jig so that this hole is at the point O of the coordinates. By doing so, when the gear to be measured is rotated, the light beam is blocked by the left and right tooth surfaces. Then, slowly rotate the gear to be measured and measure this hole on the CCD camera.
The rotation angle of the gear from the time the tooth groove appears to the time it disappears is measured, and the center position of this angle is the origin position when measuring the tooth surface shape of the gear.

【0009】理想歯面の解析は、この歯溝中心から歯面
が照射される最適の状態の位置までの回転角τをパラメ
ータとして行われる。従って、本発明では、測定機上で
の設定にもシミュレーションにもこのτの測定が重要で
あり、歯車仕様からこの適切なτの値がコンピュータ内
に記憶されている経験値で決められる。次に、本発明で
は、非接触自由曲面形状測定装置におけるホログラム面
に、参照光と歯面から来た物体光との干渉縞輝度を測定
するセンサーとして高密度のCCD受光面を置き、該物
体光の歯面からの反射光と、参照光との干渉像を直接コ
ンピュータに取込む。
The analysis of the ideal tooth surface is performed by using the rotation angle τ from the tooth groove center to the position of the optimum state where the tooth surface is irradiated as a parameter. Therefore, in the present invention, the measurement of τ is important for both the setting on the measuring machine and the simulation, and the appropriate value of τ is determined by the empirical value stored in the computer from the gear specification. Next, in the present invention, a high-density CCD light-receiving surface is placed as a sensor for measuring the interference fringe brightness between the reference light and the object light coming from the tooth surface on the hologram surface in the non-contact free-form surface shape measuring device, and the object is The interference image of the light reflected from the tooth surface and the reference light is directly captured by the computer.

【0010】即ち、非接触自由曲面形状測定装置を用い
た従来の歯面形状測定方法では、一度基準面のホログラ
ムを作り、それを測定面からの物体光の反射光と干渉さ
せる手法を用いたから、言わば、基準面との比較測定で
あるが、本発明は、直接測定歯面の干渉像をコンピュー
タに取込み、形状を解析し、コンピュータの内蔵機能に
よるシミュレーション法で得る理論歯面と比較すること
により歯面誤差を求める方法をとっている。
That is, in the conventional tooth surface shape measuring method using the non-contact free curved surface shape measuring apparatus, the method of forming the hologram of the reference surface once and making it interfere with the reflected light of the object light from the measuring surface is used. In other words, it is a comparison measurement with a reference surface, but in the present invention, the interference image of the measurement tooth surface is directly taken into a computer, the shape is analyzed, and the comparison is made with a theoretical tooth surface obtained by a simulation method by a built-in function of the computer. Is used to obtain the tooth surface error.

【0011】また、本発明の方法は、一対の駆動、被動
歯車について、各歯を次々と自動測定し、その結果から
それぞれ代表的な誤差を持つ歯面を一つ選んで、このデ
ータを振動解析ソフトプログラムに入れ、シミュレーシ
ョンによって、噛み合いの振動解析を行う。このように
して、実際に誤差を持つ歯面の実用時の振動や騒音のデ
ータを予め求めることが可能となり、従って、そのよう
な振動や騒音のデータが規定範囲内に成るように歯車製
作工程へ歯面形状の測定データとしてフィードバック
し、歯車製作データを修正すれば、負荷条件下での噛み
合い運動時に振動、騒音レベルが充分に低減された歯車
の製作が可能になる。本発明は上述のような非接触自由
曲面測定機による歯車の歯面形状測定解析法を提供する
ものである。以下、本発明を添付図面に示す実施例に基
づいて、更に詳細に説明する。
In the method of the present invention, each tooth of a pair of driving and driven gears is automatically measured one after another, and one tooth surface having a typical error is selected from the results, and this data is vibrated. Put it into an analysis software program and perform meshing vibration analysis by simulation. In this way, it is possible to obtain in advance vibration and noise data for the tooth surface that actually has an error, so that the gear manufacturing process should be performed so that such vibration and noise data fall within the specified range. By feeding back the measurement data of the tooth surface shape and correcting the gear manufacturing data, it is possible to manufacture a gear in which vibration and noise levels are sufficiently reduced during the meshing motion under load conditions. The present invention provides a method for measuring and analyzing the tooth flank shape of a gear by the above-mentioned non-contact free curved surface measuring machine. Hereinafter, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings.

【0012】[0012]

【実施例】図1は本発明による歯面形状測定方法の実施
に用いる非接触自由曲面測定装置の光学的構成を示す機
構図、図2は先願に係る曲面形状測定機の構成図で、本
発明と相違する部分の図、図3は、本発明に係る測定方
法の実施に用いる測定装置の全体的な構成を示す斜視
図、図4は同測定装置の一部である干渉計定盤を示す機
構図、図5は、被測定歯面に物体光を照射する回転メカ
ニズムを略示する機構立体図、図6(a),(b)は物
体光の光路をカメラに導くためのプリズム及びミラーを
駆動するサーボ機構を示す略示機構図、図7(a),
(b)はシミュレーションによる歯面解析図と実際の撮
影像を関連づけるのに必要なパラメータを示す説明図、
図8は、測定・解析のフローチャート、図9および図1
0は測定フローの内部における、シミュレーション像と
撮影像の比較の2種の異なった手法を示す測定フローチ
ャート、図11(a),(b)は、測定された歯車の誤
差を理解し易く左右の基準歯面上に表示する例を示した
説明図、図12は、歯車設定の中心を測定する光学測定
子の構造を示す斜視図、図13(a),(b)は歯車設
定の中心を測定する光学測定子の平面図と正面図、図1
4(a)〜(c)は、その測定子を使用して、中心を求
める関係を示す説明図、図15は、コンピュータとその
関連のインターフェイス及び周辺機器との関連を示した
ダイヤグラム、図16(a),(b)は、歯面の展開図
と噛み合いの位置関係を示した解説図、図17は、歯面
の負荷の状態を作用面上で示すグラフ図、図18は図1
9〜図21の結合関係を示す説明図、図19〜図21
は、歯車の動力伝達状態の解析過程のフローチャートで
ある。先ず、本発明による歯面形状の非接触式測定方法
の原理と作用説明に当たり、非接触式自由曲面形状測定
装置の構成に就いて、本願発明に係る上記方法の実施に
直接使用する装置例と、既に提案済みの装置例とを図1
から図6の図示に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a mechanism diagram showing an optical configuration of a non-contact free curved surface measuring apparatus used for carrying out a tooth surface shape measuring method according to the present invention, and FIG. 2 is a block diagram of a curved surface shape measuring machine according to a prior application. 3 is a perspective view showing an overall configuration of a measuring apparatus used for carrying out the measuring method according to the present invention, and FIG. 4 is an interferometer surface plate which is a part of the measuring apparatus. FIG. 5 is a mechanical three-dimensional view that schematically shows the rotation mechanism that irradiates the measured tooth surface with object light. FIGS. 6A and 6B are prisms for guiding the optical path of the object light to the camera. And a schematic mechanism diagram showing a servo mechanism for driving the mirror, FIG.
(B) is an explanatory diagram showing parameters necessary for associating a tooth surface analysis diagram by simulation with an actual captured image,
FIG. 8 is a flow chart of measurement / analysis, FIG. 9 and FIG.
0 is a measurement flow chart showing two different methods for comparing a simulation image and a captured image in the measurement flow, and FIGS. 11A and 11B show left and right of the measurement gear error for easy understanding. Explanatory drawing showing an example of displaying on the reference tooth surface, FIG. 12 is a perspective view showing the structure of an optical probe for measuring the center of gear setting, and FIGS. 13 (a) and 13 (b) show the center of gear setting. A plan view and a front view of the optical probe to be measured, FIG.
4 (a) to (c) are explanatory views showing a relationship for obtaining a center by using the probe, FIG. 15 is a diagram showing a relationship between a computer and its related interface and peripheral devices, and FIG. (A) and (b) are explanatory views showing the development view of the tooth surface and the positional relationship of meshing, FIG. 17 is a graph showing the load state of the tooth surface on the operating surface, and FIG. 18 is FIG.
Explanatory drawing which shows the connection relation of 9-FIG. 21, FIG. 19-FIG.
3 is a flowchart of an analysis process of a power transmission state of a gear. First, in explaining the principle and operation of the non-contact type measurement method of tooth surface shape according to the present invention, regarding the configuration of the non-contact type free-form surface shape measuring apparatus, an example of an apparatus directly used for carrying out the method according to the present invention will be described. Figure 1 shows an example of an already proposed device.
From now on, description will be made based on the illustration of FIG.

【0013】さて、本発明に係る非接触式測定方法に用
いる非接触式自由曲面形状測定装置における光学的構成
は、図1に詳示するように、レーザ光源1、同レーザ光
源1から発する可干渉光であるレーザ光を参照レーザ光
R(以下、単に参照光R)と測定用レーザ光S(以下物
体光S)とに分離するビームスプリッタ2、同参照光R
と物体光Sとの反射ミラー3、4、反射ミラー3を経て
到達した参照光Rと、反射ミラー4を経て、被測定歯車
6の歯面6aを照射し、その物体光Sの反射光を撮影す
る撮影レンズ5を透過した物体光Sの両者の干渉位置に
おかれたカメラ受光面8aを持つCCDカメラ8、被測
定歯車6を両端で回転可能に支持する支軸を備えた支持
装置7、上述した参照光Rの反射ミラー3に結合され、
同反射ミラー3に所定の微動を与えるピエゾ素子3a等
を具備して構成されている。
The optical configuration of the non-contact type free-form curved surface shape measuring apparatus used in the non-contact type measuring method according to the present invention is, as shown in detail in FIG. A beam splitter 2 that splits a laser beam that is interference light into a reference laser beam R (hereinafter, simply referred to as reference beam R) and a measurement laser beam S (hereinafter, referred to as object beam S), and the reference beam R
And the reference light R that has reached the object light S through the reflection mirrors 3, 4 and the reflection mirror 3, and the tooth surface 6a of the gear 6 to be measured is irradiated through the reflection mirror 4 to reflect the reflected light of the object light S. A CCD camera 8 having a camera light-receiving surface 8a placed at an interference position of both the object light S transmitted through the photographing lens 5 for photographing, and a supporting device 7 having a spindle for rotatably supporting the gear 6 to be measured at both ends. Is coupled to the reflection mirror 3 for the reference light R described above,
The reflection mirror 3 is provided with a piezo element 3a or the like that gives a predetermined fine movement.

【0014】上述した図1の装置は、本発明では本出願
人が、特願平3−20084号の図1に記載した測定装
置を更に改良したもので、同特願平3−20084号の
図1に記載した従前の非接触式自由曲面形状測定装置
は、図2に基本的構成を示してある。理解を容易にする
ために、図1と図2において、両装置に用いられている
同構造要素は同一参照番号で示してある。つまり、図1
に示した本発明の測定に用いる装置は、図2の従前の測
定装置における受光面5の位置に直接、CCDカメラ8
の受光面8aを置き、撮影レンズ5によって歯面の正反
射光の像を受光面8aに結ばせるようにしている。
In the present invention, the above-mentioned apparatus of FIG. 1 is a further improvement of the measuring apparatus shown in FIG. 1 of Japanese Patent Application No. 3-20084 by the present applicant. The conventional non-contact type free-form surface shape measuring device shown in FIG. 1 has a basic configuration shown in FIG. For ease of understanding, in FIGS. 1 and 2, the same structural elements used in both devices are designated with the same reference numerals. That is, FIG.
The apparatus used for the measurement of the present invention shown in FIG. 2 is directly connected to the CCD camera 8 at the position of the light receiving surface 5 in the conventional measuring apparatus of FIG.
The light receiving surface 8a is placed, and the image of the specularly reflected light from the tooth surface is formed by the taking lens 5 on the light receiving surface 8a.

【0015】図3は、図1に示した本発明に用いる非接
触式自由曲面測定装置の全体的構成を同測定装置の背後
から示した斜視図であり、機台14にはサーボ駆動装置
9が内蔵され、支持装置7に支持された被測定歯車6を
駆動する。また、同被測定歯車6を支持する歯車支持装
置7と反対側に歯車の大きさに対応して、測定部分をサ
ーボ機構により調節できる半径方向設定台15が設けら
れ、寸法の異なる種々の被測定歯車に対応して、左右、
上下に干渉計定盤16を移動させることができるように
なっている。
FIG. 3 is a perspective view showing the overall structure of the non-contact type free-form curved surface measuring apparatus used in the present invention shown in FIG. 1 from the rear side of the measuring apparatus. Drives the gear to be measured 6 supported by the support device 7. Further, on the side opposite to the gear supporting device 7 that supports the gear 6 to be measured, a radial direction setting table 15 that can adjust the measurement portion by a servo mechanism is provided corresponding to the size of the gear, and various types of gears having different dimensions can be provided. Corresponding to the measurement gear, left and right,
The interferometer surface plate 16 can be moved up and down.

【0016】ここで、図4に示す如く、干渉計定盤16
には、レーザ光源1、1/2波長板19、ビームスプリ
ッタ2、ミラー4(本例では1対のミラー4aと4
b)、フリンジスキャン用のピエゾ素子3a、ミラー
3、1/4波長板21、ビームスプリッタ20、光路長
調整用ミラー群22とビーム進行方向を変えるためのミ
ラー35、CCDカメラ8及び回転機構17等が取り付
けられている。
Here, as shown in FIG. 4, the interferometer base 16
Includes a laser light source 1, a half-wave plate 19, a beam splitter 2, and a mirror 4 (in this example, a pair of mirrors 4a and 4a).
b), piezo element 3a for fringe scanning, mirror 3, quarter wave plate 21, beam splitter 20, optical path length adjusting mirror group 22, mirror 35 for changing beam traveling direction, CCD camera 8 and rotating mechanism 17 Etc. are attached.

【0017】上記の回転機構17は、図1においてはミ
ラー4と撮影レンズ5の間に配置され、被測定歯面6a
に物体光Sを照射する目的で設けられている。被測定歯
車6は一般に多様な右ねじれ、左ねじれに設計されてい
るが、図5に図示のように、ねじれ角に対応して被測定
歯面6aを照射できるように、回転機構17はリニヤ−
サーボモータを備えたサーボ機構26(図4)によって
回転できるが、物体光Sはミラー4から本メカニズムの
中心の固定ミラー27aに入り、回転ミラー28aから
空間フィルタ24、1対のエキスパンダ・レンズ29を
経て光学測定子30に入る。すなわち、後述の図12、
図13に示した偏角プリズム31により被測定歯面6a
を照射した後、偏角プリズム32を経て同軸回転中心の
回転ミラー28bおよび固定ミラー27bから撮影レン
ズ5に透過する。
The rotating mechanism 17 is arranged between the mirror 4 and the taking lens 5 in FIG.
It is provided for the purpose of irradiating the object light S on the. The gear 6 to be measured is generally designed to have various right twists and left twists, but as shown in FIG. 5, the rotating mechanism 17 has a linear mechanism so that the tooth flank 6a to be measured can be irradiated in accordance with the twist angle. −
Although it can be rotated by a servo mechanism 26 (FIG. 4) equipped with a servo motor, the object light S enters the fixed mirror 27a at the center of the mechanism from the mirror 4, and the spatial filter 24, a pair of expander lenses from the rotating mirror 28a. After passing through 29, the optical probe 30 is entered. That is, FIG.
With the deflection angle prism 31 shown in FIG. 13, the tooth surface 6a to be measured is measured.
After passing through the deflection angle prism 32, the light is transmitted from the rotating mirror 28b and the fixed mirror 27b, which are coaxial rotation centers, to the taking lens 5.

【0018】このように、固定ミラー27a、27bが
回転中心に置かれている故、この機構17が被測定歯車
6のねじれ角に対応した角度分回転しても、物体光Sは
確実に撮影レンズ5を透過することができる。この間に
光学測定子30が設けられているが、これは後述のよう
に、右歯面、左歯面に対応でき、モータ33と歯車機構
33aとで切換えて測定する。歯面6aの反射光は、こ
の光路系およびメカニズムを経て撮影レンズ5によっ
て、CCDカメラ8の受光面8aに結像する。また、干
渉計定盤16上にあるピエゾ素子3aは、コンピュータ
12からの指令でミラー3を微動させ、フリンジャスキ
ャンを行う。
As described above, since the fixed mirrors 27a and 27b are placed at the center of rotation, even if the mechanism 17 rotates by an angle corresponding to the twist angle of the gear 6 to be measured, the object light S can be reliably photographed. It can pass through the lens 5. An optical tracing stylus 30 is provided between them, which can correspond to the right tooth surface and the left tooth surface, as will be described later, and the measurement is performed by switching between the motor 33 and the gear mechanism 33a. The reflected light from the tooth surface 6a forms an image on the light receiving surface 8a of the CCD camera 8 by the taking lens 5 through this optical path system and mechanism. Further, the piezo element 3a on the interferometer base 16 finely moves the mirror 3 in response to a command from the computer 12 to perform fringer scanning.

【0019】この像に参照光Rを重ねることによって、
生じた干渉縞の歯面像データは図1に示される通り、フ
レームメモリ10によって記憶されると共に、インター
フェース11を介して周知のパーソナルコンピュータ、
或いはマイクロコンピュータからなるコンピュータ12
に入力されて記憶され、演算される。CCDカメラ8に
よる撮影像は、必要に応じてCRT13の画面に表示さ
れる。
By superimposing the reference light R on this image,
The tooth surface image data of the generated interference fringes is stored in the frame memory 10 as shown in FIG.
Alternatively, a computer 12 including a microcomputer
Is input, stored, and calculated. The image captured by the CCD camera 8 is displayed on the screen of the CRT 13 as needed.

【0020】コンピュータ12は、画像処理に必要な容
量の記憶装置、各種出力機器を有するが、一方、インタ
ーフェース11を介して、サーボモーター9aを駆動源
とすると共にウォーム歯車機構の回転角度量を精密測定
して出力するエンコーダ装置9bを有したサーボ駆動装
置9を制御することができるが、更に、図3のように、
測定装置を歯車のx,y,z座標系上でそれぞれ駆動装
置9c,9d,9eのサーボモータで適切な測定位置に
設定できる。
The computer 12 has a storage device having various capacities necessary for image processing and various output devices. On the other hand, the computer 12 uses the servo motor 9a as a drive source via the interface 11 and precisely controls the rotation angle amount of the worm gear mechanism. The servo drive device 9 having the encoder device 9b for measuring and outputting can be controlled, and further, as shown in FIG.
The measuring device can be set to an appropriate measuring position on the x, y, z coordinate system of the gear by the servomotors of the driving devices 9c, 9d, 9e, respectively.

【0021】上記回転機構17のねじれ角の設定は、図
4に示すように、リニヤサーボモータ26を有したサー
ボ駆動機構で±45°の間に設定できる。また、光学測
定子30の左右歯面用のプリズム切換えをモータ33と
歯車機構33aとで行う。はすば歯車のねじれ面によっ
て、反射方向を微妙に変える物体光Sをレンズ5および
CCDカメラ8に導くために、図6(a)のように、小
プリズム34をX軸,Z軸まわりに微動回転制御する機
構34a、34b、図6の(b)のようにハーフミラー
25をy軸、x−z軸のまわりに微動回転制御させるサ
ーボ機構25a,25bが有り、何れもジンバル機構を
備えた構造になっており、コンピュータ12から制御で
きる。これらは歯車仕様が決まり、コンピュータの測定
プログラムがスタートすると、コンピュータ12内の経
験値により、緒元が決定されて、それぞれ適切な位置に
移動して既述したプリズム、ミラー等を設定し、測定に
備える。
The twist angle of the rotating mechanism 17 can be set within ± 45 ° by a servo drive mechanism having a linear servo motor 26, as shown in FIG. Further, the prisms for the right and left tooth surfaces of the optical probe 30 are switched by the motor 33 and the gear mechanism 33a. In order to guide the object light S that slightly changes the reflection direction to the lens 5 and the CCD camera 8 by the twisted surface of the helical gear, as shown in FIG. 6A, the small prism 34 is rotated around the X and Z axes. There are mechanisms 34a and 34b for controlling the fine movement rotation, and servo mechanisms 25a and 25b for controlling the fine movement rotation of the half mirror 25 around the y axis and the xz axis as shown in FIG. 6B, both of which are provided with a gimbal mechanism. The structure is such that it can be controlled from the computer 12. The specifications of these gears are determined, and when the measurement program of the computer is started, the specifications are determined based on the empirical values in the computer 12, and each is moved to an appropriate position to set the above-mentioned prism, mirror, etc., and measured. Prepare for

【0022】CCDカメラ8は、受光面8aの各ピクセ
ル毎に輝度に従った信号出力を出すので、光量として受
光した干渉縞を例えば、周知のフリンジスキャン法等に
よって、コンピュータ12で解析して、各ピクセルの位
相を算出し、入射角による実効波長に従って長さ(高
さ)を計算して歯面6aの形状を得る。この演算の過程
は、先願の特願平3−20084号に開示れているもの
と同様に行い得るものであり、かつ、ここでは本発明に
直接、関係がないので、記載を省略する。
Since the CCD camera 8 outputs a signal output according to the brightness for each pixel of the light receiving surface 8a, the interference fringes received as the amount of light are analyzed by the computer 12 by, for example, the well-known fringe scan method, The phase of each pixel is calculated, and the length (height) is calculated according to the effective wavelength depending on the incident angle to obtain the shape of the tooth surface 6a. This calculation process can be performed in the same manner as that disclosed in Japanese Patent Application No. 3-20084 of the prior application, and since it is not directly related to the present invention, its description is omitted.

【0023】この測定結果の歯面の位相は、実際の被測
定歯面6aの形状を示しているものであるから、先のパ
ラメーターによる理想歯面のシミュレーションと比較し
て、誤差を得る。前述のように、各座標点の位相差は、
その点の実効長さによって長さ、即ち、形状誤差量に置
換して得られる。図7は、歯車座標系における撮影歯面
像6aとシミュレーションによる理論的歯面像18との
座標位置、パラメータの関係を示している。この際の重
ね合せは、歯車の歯面の歯先と、歯巾の上限、下限が基
準となるが、インボリュート・ヘリコイド面を持つ、は
すば歯車の歯面に対する入射角は、歯面上の各点でかな
り変化しているので、測定精度を向上させるために、次
のようなA、B2種の手法を取ることが出来る。
Since the phase of the tooth flank of this measurement result shows the actual shape of the tooth flank 6a to be measured, an error is obtained as compared with the simulation of the ideal tooth flank using the above parameters. As mentioned above, the phase difference of each coordinate point is
It is obtained by replacing the length with the effective length of the point, that is, the shape error amount. FIG. 7 shows the relationship between the coordinate positions and parameters of the photographed tooth surface image 6a in the gear coordinate system and the simulated theoretical tooth surface image 18. The superposition at this time is based on the tooth tip of the gear tooth surface and the upper and lower limits of the tooth width, but the angle of incidence on the tooth surface of a helical gear that has an involute helicoid surface is on the tooth surface. Since there is a considerable change at each point, the following methods A and B can be used in order to improve the measurement accuracy.

【0024】手法A CCDカメラ8による撮影像とシ
ミュレーション像を重ね合わせて測定誤差が得られた時
に、重ね合わせ精度が必要な値以内に収まらなければ、
得られた面形状から、逆光線追跡を行い、第1次近似と
しての縞の感度等、歯面シミュレーションの最初の理想
値のパラメーターを修正し、再度、修正シミュレーショ
ン像を計算して、撮影像と重ね合わせる。この際、前回
の誤差より収斂していれば、さらに同様の作業を繰り返
し行って、精度を向上させる。この過程は、図10のフ
ローチャートのように示される。手法B CCDカメラ8による撮影像とシミュレーショ
ン像を重ね合わせて、得られた面形状から、各ピクセル
における位相差をサンプリングし、平行膜干渉の原理に
基づき、誤差の第1次近似値を求める。シミュレーショ
ン像の各ピクセルから法線方向に若干ずらせた新しい歯
形曲面に対するシミュレーション像を作成する。これを
同様に撮影像と重ね合わせた時の誤差が前回の誤差より
収斂していれば、繰り返して必要な誤差精度まで続け
る。このようにして歯面誤差を得るが、その過程は、図
9のフローチャートに記載されている。
Method A : When a measurement error is obtained by superimposing the image taken by the CCD camera 8 and the simulation image, if the overlay accuracy does not fall within the required value,
Reverse ray tracing is performed from the obtained surface shape, the parameters of the first ideal value of the tooth surface simulation, such as the sensitivity of the fringes as the first approximation, are corrected, and the corrected simulation image is calculated again to obtain the captured image. Overlap. At this time, if the error is converged from the previous error, the same work is repeated to improve the accuracy. This process is shown as the flowchart of FIG. Method B The image captured by the CCD camera 8 and the simulation image are superposed, the phase difference in each pixel is sampled from the obtained surface shape, and the first-order approximation value of the error is obtained based on the principle of parallel film interference. A simulation image is created for a new tooth profile curved surface that is slightly shifted in the normal direction from each pixel of the simulation image. If the error when this is superimposed on the captured image is more convergent than the previous error, the process is repeated until the required error accuracy is reached. In this way, the tooth surface error is obtained, and the process thereof is described in the flowchart of FIG.

【0025】被測定歯車6が、平歯車、はすば歯車に限
らず、ねじれた面を有するものであっても、測定者が誤
差の把握をし易いように測定結果を図11の(a)、
(b)のように、p,q,s,rで囲まれた平歯車の形
状の上に地図のような等高線と色彩とで表示される。p
−q間は、歯幅を、p−r間は、従来の測定装置と同様
に、基礎円筒上のころがり長さ、あるいはころがり角に
比例しているので、誤差を把握し易い。右歯面と左歯面
はそれぞれの方向に見易いように示される。ねじれ角に
したがって、ピッチ円を通る作用線が描かれているの
で、この線のまわりの誤差分布も一目瞭然に把握でき
る。
Even if the measured gear 6 is not limited to a spur gear or a helical gear and has a twisted surface, the measurement result is shown in FIG. 11 (a) so that the operator can easily understand the error. ),
As shown in (b), contour lines and colors like a map are displayed on the shape of the spur gear surrounded by p, q, s, and r. p
The error is easy to grasp because the tooth width is between -q and the width between pr is proportional to the rolling length or rolling angle on the basic cylinder, as in the conventional measuring device. The right flank and the left flank are shown for easy viewing in their respective directions. Since the action line passing through the pitch circle is drawn according to the twist angle, the error distribution around this line can be grasped at a glance.

【0026】図12、図13は、光学測定子30の形状
と構成を示している。測定に当たっては、サーボ機構9
の各部9a,9b,9c,9d,9eおよび26(図3
を参照)が作動して、“コ”の字形の形状の測定子本体
30の間に被測定歯車6を挟むように移動し、歯面に物
体光を照射する。31L、32Lと31R、32Rはそ
れぞれ左歯面用、右歯面用の偏角プリズムである。図1
における歯面への物体光の入射角θは、このプリズムの
角度αで決定される。被測定歯車6の測定歯面を右歯面
とするか左歯面とするかの左右歯面の選定はコンピュー
タの測定プログラムで決定され、モータ33で切換え
る。この測定子本体30の中央部分にはピンホール30
aが穿設されており、この中央ピンホール30aを真っ
直ぐに物体光Sが透過するようになっている。測定子本
体30が中央にあるときは、y軸上の原点位置にあるよ
うに調整されるので、コンピュータのCRT上には、ピ
ンホールが映し出される。
FIG. 12 and FIG. 13 show the shape and configuration of the optical probe 30. Servo mechanism 9
9a, 9b, 9c, 9d, 9e and 26 of FIG.
Is operated to move so as to sandwich the gear 6 to be measured between the measuring element bodies 30 having a U-shape, and irradiate the tooth surface with the object light. Reference numerals 31L, 32L and 31R, 32R are deflection prisms for the left tooth surface and the right tooth surface, respectively. Figure 1
The incident angle θ of the object light on the tooth surface at is determined by the angle α of this prism. The selection of the left and right tooth flanks, that is, whether the measured tooth flank of the measured gear 6 is the right tooth flank or the left tooth flank, is determined by the measurement program of the computer, and is switched by the motor 33. A pinhole 30 is provided in the central portion of the probe main body 30.
The object light S is straightly transmitted through the central pinhole 30a. When the tracing stylus body 30 is in the center, it is adjusted so as to be at the origin position on the y-axis, so that a pinhole is projected on the CRT of the computer.

【0027】図14(a)に図示のようにピンホールが
中央にある状態に測定子30を設定して歯車6を回転す
ると、ピンホールを通過する物体光Sは歯面によって遮
断されるのがCCDカメラ8で捉えられ、CRT上で観
測される。CCDカメラ8でこの通過時の出力を見る
と、ピンホール30aはある大きさを持っているから図
14(b)のように出力が回転に伴って変化する。この
データを図14(c)のように、2値化して、回転角の
u,v点を決め、その中心点を歯車の座標上の中心点、
即ち、歯溝の中心点と定める。この中心点かち測定位置
までの回転角がシミュレーション上のパラメーターτで
ある。
When the tracing stylus 30 is set in a state where the pinhole is at the center as shown in FIG. 14A and the gear 6 is rotated, the object light S passing through the pinhole is blocked by the tooth surface. Is captured by the CCD camera 8 and observed on the CRT. Looking at the output when passing through the CCD camera 8, since the pinhole 30a has a certain size, the output changes with rotation as shown in FIG. 14B. This data is binarized as shown in FIG. 14 (c) to determine the u and v points of the rotation angle, and the center point thereof is the center point on the coordinate of the gear,
That is, it is defined as the center point of the tooth space. The rotation angle from the center point to the measurement position is the parameter τ on the simulation.

【0028】測定の手順は次のように要約され、そのフ
ローは、図8に図示されている。また、コンピュータ1
2と周辺機器との詳細な構成は、図15に明示してあ
り、CCDカメラ8の歯面像の撮影関係と、サーボ駆動
系がそれぞれインターフェイス11を介して、コンピュ
ータ12により制御される。先ず、被測定歯車6を測定
装置の機台14上の歯車支持装置7に取り付ける。次い
で、コンピュータ12に歯車仕様を入力する。もし、新
たな歯車であれば、同コンピュータ12の指示に従っ
て、必要項目を逐次入力する。予め登録してある仕様に
ついては、歯番号によって呼び出す。歯面を物体光Sで
照射するには、非接触自由曲面測定装置の座標上で適切
な位置があり、コンピュータ12は、予め光線追跡法に
よって最適位置を学習しているので、サーボ駆動装置9
により歯車直径方向y軸、即ち歯車ピッチ円径Do、y
軸回りの回転である基礎円筒ねじれ角βg 、およびx軸
方向にオフセットされる照射位置xをパラメータとして
歯車6および測定装置の光学測定子30が動き、計算さ
れた位置にて照射するように測定装置が設定される。同
時に、測定基準となる、カメラ8で撮影されるべき歯面
の三次元の立体像のシミュレーション計算を行う。
The measurement procedure is summarized as follows, and its flow is shown in FIG. Also, computer 1
The detailed configuration of the device 2 and peripheral devices is clearly shown in FIG. 15, and the relationship between the imaging of the tooth surface image of the CCD camera 8 and the servo drive system are controlled by the computer 12 via the interface 11, respectively. First, the gear 6 to be measured is attached to the gear supporting device 7 on the machine base 14 of the measuring device. Next, the gear specifications are input to the computer 12. If it is a new gear, the necessary items are sequentially input according to the instruction of the computer 12. The specifications registered in advance are called by the tooth number. In order to irradiate the tooth surface with the object light S, there is an appropriate position on the coordinates of the non-contact free curved surface measuring device, and the computer 12 has learned the optimum position in advance by the ray tracing method.
By the gear diameter direction y axis, that is, the gear pitch circle diameter Do, y
The gear 6 and the optical probe 30 of the measuring device move using the basic cylindrical twist angle β g , which is a rotation about the axis, and the irradiation position x offset in the x-axis direction as parameters, and the irradiation is performed at the calculated position. The measuring device is set. At the same time, a simulation calculation of a three-dimensional stereoscopic image of the tooth surface to be captured by the camera 8, which is a measurement reference, is performed.

【0029】次いで、光学測定子30の中央のピンホー
ル30aを利用し、上述のように歯車の歯みぞの中心を
設定し、回転角τの原点を定める。歯みぞの中心点が決
定されると、測定装置の支持装置7が予め学習している
データに基づいて適切な測定位置を選び、角度τだけ回
転した点で静止し、歯面の撮影が開始される。フリンジ
スキャン法によって、λ/2nづつ、n回、ピエゾ素子
3を駆動して全部でn枚の1ピッチの縞のシフトされた
影像が次々とコンピュータ12に取り込まれる。次に、
位相計算過程に進み、各座標位置の歯面の位相が演算さ
れるが、フリンジスキャン法は、必要に応じて縞の間の
さらに細かい内挿も可能である。演算結果は、先に述べ
たように、位相シミュレーションの結果と比較、演算さ
れ差分が得られる。例えば、ある部分をより高精度で測
定する必要があるならば、図9および図10の手法で誤
差を収斂させて、より高い精度を得ることが可能であ
る。次に、歯面への物体光Sの入射角に従ってその位置
の実効波長がわかるので、高さに換算され、歯面全体の
各点における誤差の計算が行われて、それらの点を連ね
てゆくと、測定歯面の3次元立体像が完成する。測定誤
差量の段階に従って、色を割り当てると、これらのデー
タは、歯車測定担当者に直ちに理解できるように、図1
1のような基本歯面上に、線状の等高線或いは地図のよ
うに、高地、低地を色分けして、視覚的に一目瞭然のデ
ータとしてディスプレ上に表示され、或いはカラープリ
ントすることが可能となる。
Then, using the pinhole 30a at the center of the optical probe 30, the center of the tooth groove of the gear is set as described above, and the origin of the rotation angle τ is determined. When the center point of the tooth groove is determined, the supporting device 7 of the measuring device selects an appropriate measurement position based on the data learned in advance, stops at the point rotated by the angle τ, and starts imaging the tooth surface. To be done. By the fringe scan method, the piezo element 3 is driven n times by λ / 2n, and a total of n 1-pitch stripe-shifted images are sequentially captured by the computer 12. next,
The phase of the tooth surface at each coordinate position is calculated in the phase calculation process, but the fringe scan method can also perform finer interpolation between the fringes if necessary. As described above, the calculation result is compared and calculated with the result of the phase simulation to obtain the difference. For example, if it is necessary to measure a certain portion with higher accuracy, the error can be converged by the method of FIGS. 9 and 10 to obtain higher accuracy. Next, since the effective wavelength at that position can be known according to the angle of incidence of the object light S on the tooth surface, it is converted to the height, the error at each point on the entire tooth surface is calculated, and these points are connected. Then, the three-dimensional image of the measurement tooth surface is completed. When the colors are assigned according to the measurement error amount step, these data are shown in FIG.
On the basic tooth surface such as 1, the highland and the lowland are color-coded like a linear contour line or a map, and can be displayed on the display as visually obvious data or can be color printed. .

【0030】次に、本測定装置を利用して、測定された
歯車の歯面形状から、歯車にとって重要な振動・騒音の
シミュレーション解析を実行する手順について述べる。
図16は、測定された等高線データを歯車のかみ合い状
態に従ってって並べたものである。歯車の噛み合いの原
理から、噛み合いの際、歯は2π/z毎に各歯が現れ
て、噛み合いに参加して行く。従って、2つのデータが
重なるところは、2歯かみ合い、1つの所は1歯かみ合
いである。2歯かみ合いの部分は、両データの同じ部分
を比較して誤差のプラスの歯の方が、かみ合いに参画す
る。
Next, the procedure for executing the simulation analysis of the vibration and noise important for the gear from the measured tooth surface shape of the gear by using the present measuring device will be described.
FIG. 16 shows the measured contour data arranged according to the meshing state of the gears. According to the principle of meshing of gears, when meshing, each tooth appears every 2π / z and participates in meshing. Therefore, where two pieces of data overlap, there is meshing of two teeth, and one area is meshing of one tooth. For the two-tooth meshing part, the same part of both data is compared, and the tooth with a positive error participates in the meshing.

【0031】しかし、動力を伝達する場合には、歯は片
持ちのように荷重を受けて撓む。静的には誤差のない幾
何学的な理想歯車でも、動力伝達の際に荷重を受ける
と、撓み、噛み合いが終了すると、負荷から解放され
て、元に戻る作用を繰り返し受けて振動を伴う状態にな
る。従って、静的な誤差のみでは歯車の伝達精度を評価
できない。つまり、その状況が、測定結果から予めシミ
ュレーションによって予測ができれば、騒音の少ない歯
車の設計・製作に大いに寄与することになる。そこで、
駆動・被駆動両歯車について、上述の様な測定を行った
後、その中から代表的な誤差内容を持つ歯のデータを選
び、これをコンピュータによってシミュレーションし、
負荷による歯の撓みを考慮して解析して、ある負荷のか
かった状態のもとで、詳細な振動起動力・伝達誤差、各
種応力状態の解析を行う。
However, when transmitting power, the teeth bend under load like a cantilever. Even in the case of a geometrically ideal gear that has no static error, when a load is applied during power transmission, it flexes, and when meshing ends, it is released from the load and repeatedly returned to its original state, causing vibration. become. Therefore, the transmission accuracy of the gear cannot be evaluated only by the static error. That is, if the situation can be predicted in advance from the measurement result by simulation, it will greatly contribute to the design and manufacture of a gear with less noise. Therefore,
After performing the above-mentioned measurement for both the driven and driven gears, select the tooth data with typical error content from them and simulate it with a computer,
Analysis is performed in consideration of the bending of the tooth due to the load, and under a certain load, detailed vibration starting force / transmission error and various stress states are analyzed.

【0032】この解析手法では、上述の測定により得ら
れた歯面形状の誤差の等高線から同時接触線の数と、そ
の位置により接触線上の荷重分布を算出し、接触変形と
荷重分布の収束度から荷重修正ループにより繰り返し演
算を行い、これを積み重ねて全荷重を算出、最終的に起
振力指標値や各種発生応力等を出力する。図17におい
て、一歯の作用平面は歯元、歯の両側端で囲まれる図の
矩形で示され、或る回転角度位置の接触線をLj とする
と、噛み合いは点Sから点Eの方に進む。更に詳細に説
明すると、誤差をもつはすば歯車の歯面のある負荷状態
における座標点の分布荷重をPj(ξ)とすると、振動
の起振力指標値は下記の式(1)を式(2)の条件下で
解くことによって得られる。
In this analysis method, the load distribution on the contact line is calculated from the number of simultaneous contact lines and their positions from the contour lines of the error of the tooth surface shape obtained by the above measurement, and the contact deformation and the degree of convergence of the load distribution are calculated. Then, a load correction loop is repeatedly used to calculate the total load by stacking the calculations, and finally the excitation force index value and various generated stresses are output. In FIG. 17, the action plane of one tooth is shown by a rectangle in the figure surrounded by the root and both side ends of the tooth, and if the contact line at a certain rotation angle position is L j , the meshing is from point S to point E. Proceed to. More specifically, when the distributed load at the coordinate points in a loaded state with a tooth surface of a helical gear having an error is Pj (ξ), the vibration excitation force index value is given by the following equation (1). It is obtained by solving under the condition of (2).

【数1】 [Equation 1]

【0033】これをフローチャートで示すと、図19〜
図21の歯車動力伝達状態の解析プログラムの流れ図の
ようなループを解くことになる。シミュレーションの結
果は、歯当り状態の図、歯元応力、荷重分布図、歯面接
触応力、瞬間歯面温度上昇等の解析値として、また、振
動起振力伝達誤差線図として出力できる。更に、これら
のデータをフーリエ解析して表示することができる。既
に、伝達誤差および振動起振力は、歯車の噛み合い騒音
と相関があることが知られているので、予め本手法のシ
ミュレーションによって、あるトルク下での振動の状況
を知ることができ、設計或いは加工部門に対して切削工
具、研削工具も含めて適切な加工情報のフィードバック
が迅速に行えるので、時間的、経済的に大きな利益が得
られる。
This is shown in a flow chart in FIG.
The loop as shown in the flow chart of the gear power transmission state analysis program of FIG. 21 will be solved. The result of the simulation can be output as an analysis value of a tooth contact state diagram, a root stress, a load distribution chart, a tooth surface contact stress, an instantaneous tooth surface temperature rise, and the like, and a vibration excitation force transmission error diagram. Further, these data can be Fourier analyzed and displayed. It is already known that the transmission error and the vibration excitation force have a correlation with the meshing noise of the gears, so it is possible to know the vibration situation under a certain torque by the simulation of this method in advance. Appropriate processing information including cutting tools and grinding tools can be promptly fed back to the processing department, so that large time and economic benefits can be obtained.

【0034】なお、図18に示す解析フローのループの
内容は下記の通りである。 Aのループ:一噛み合いピッチをN分割した繰り返しの
ルーチン。 Bのループ:回転遅れ角Δを基にして計算した伝達荷重
と入力荷重を一致させるルーチン。 Cのループ:同時に噛み合っている各歯面の接触線上の
荷重分布を求めるルーチン。 Dのループ:一本の接触線上での真実接触範囲を確定す
るルーチン。 Eのループ:歯の変形に対する非線形コンプライアンス
の収束と荷重分布の計算ルーチン。なお、ここで、nは
同時噛み合い歯数。xは歯の対のたわみを考えている点
の座標(接線上Lj )。ξは接触線Lj 上の荷重分布を
考えている点。Cbj(x,ξ)は、ξ点に働く単位荷重
により生ずるx点の曲げおよび剪断変形と歯の基底部の
傾きによるたわみ。Ccj(x)はx点の単位荷重に対す
る接触近寄り量。Δは駆動歯車に対する被動歯車の回転
遅れ角を作用線上の歯面移動距離に換算した値。e
j (x)は駆動歯車に対する被動歯車の理想インボリュ
ート・ヘリコイド面からの正面断面法線方向の狂いの和
(合成誤差)。βg は基礎円筒上のねじれ角。Wは伝達
法線力。TQ1,TQ2は駆動、被動歯車の伝達トルク。r
g1,rg2は駆動、被動歯車の基礎円半径。
The contents of the loop of the analysis flow shown in FIG. 18 are as follows. Loop A: A repetitive routine in which one meshing pitch is divided into N parts. Loop B: A routine for matching the transmission load calculated based on the rotation delay angle Δ and the input load. C loop: A routine for obtaining the load distribution on the contact line of each tooth surface that is meshing at the same time. Loop of D: A routine for determining the true contact area on one contact line. Loop E: Convergence of non-linear compliance to tooth deformation and calculation routine for load distribution. Here, n is the number of teeth simultaneously meshed. x is the coordinate of the point where the deflection of the pair of teeth is considered (tangential line L j ). ξ is a point considering the load distribution on the contact line L j . C bj (x, ξ) is the bending and shear deformation of the x point caused by the unit load acting on the ξ point, and the deflection due to the inclination of the tooth base. C cj (x) is the amount of contact approach to the unit load at point x. Δ is a value obtained by converting the rotation delay angle of the driven gear with respect to the driving gear into the tooth surface movement distance on the line of action. e
j (x) is the sum of deviations (combined error) of the driven gear from the ideal involute helicoid surface relative to the driving gear in the direction of the normal to the front cross section. β g is the twist angle on the base cylinder. W is the transmission normal force. T Q1 and T Q2 are transmission torques of driving and driven gears. r
g1 and r g2 are the basic circle radii of the driving and driven gears.

【0035】[0035]

【発明の効果】以上の実施例の説明を介して明らかなよ
うに、従来の方法によると、基準歯面を製作しなければ
ならなかったが、本発明によれば、歯面の干渉像をコン
ピュータによってシミュレーションされる理論値と比較
することによって、精密にかつ極めて迅速に測定が可能
になり、特に、コンピュータやCCDカメラ等の著しい
発展にともなって、その測定時間やデータ処理法等の高
速化は更に期待することができる。また、測定結果を振
動シミュレーションに入力することによって、いままで
にない画期的な解析が短時間に可能になり、歯車の設
計、製作に貴重なデータを提供し、品質の向上に大きく
寄与することになる。
As is apparent from the above description of the embodiments, according to the conventional method, the reference tooth surface has to be manufactured. However, according to the present invention, the interference image of the tooth surface is obtained. By comparing with theoretical values simulated by a computer, precise and extremely rapid measurement is possible, and especially with the remarkable development of computers and CCD cameras, the measurement time and data processing method are speeded up. Can expect more. In addition, by inputting the measurement results to the vibration simulation, it will be possible to perform unprecedented epoch-making analysis in a short time, provide valuable data for gear design and manufacturing, and greatly contribute to quality improvement. It will be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による歯面形状の非接触式測定方法の実
施に用いる非接触自由曲面測定装置の基本的な機構の構
成を示したブロック図である。
FIG. 1 is a block diagram showing a configuration of a basic mechanism of a non-contact free-form curved surface measuring apparatus used for carrying out a non-contact tooth surface shape measuring method according to the present invention.

【図2】従来の非接触自由曲面測定装置の構成を示すブ
ロック図で、本発明に用いる装置との差を明示するため
の図。
FIG. 2 is a block diagram showing a configuration of a conventional non-contact free-form curved surface measuring device, and a diagram for clearly showing a difference from the device used in the present invention.

【図3】本発明で使用する非接触自由曲面測定装置の全
体的構成を示す立体図。
FIG. 3 is a three-dimensional view showing the overall configuration of the non-contact free-form surface measuring device used in the present invention.

【図4】同測定装置の一部である干渉計定盤の構成を示
すブロック図。
FIG. 4 is a block diagram showing a configuration of an interferometer surface plate which is a part of the measuring apparatus.

【図5】同装置の回転機構の内部の構成を示す斜視図。FIG. 5 is a perspective view showing an internal configuration of a rotation mechanism of the device.

【図6】(a)と(b)は、同測定装置の内、小プリズ
ムのジンバル・サーボ装置と、最終くさび形ハーフミラ
ーの同じくジンバル・サーボ装置とを示した斜視図。
6A and 6B are perspective views showing a small prism gimbal servo device and a final wedge-shaped half mirror gimbal servo device of the same measuring apparatus.

【図7】シミュレーションによる歯車の座標と実際に撮
影された歯面の座標とを関連づけるために必要なパラメ
ータを表示した説明用の斜視図。
FIG. 7 is an explanatory perspective view showing parameters necessary for associating the coordinate of the gear by simulation and the coordinate of the tooth surface actually photographed.

【図8】測定フローを示すフローチャート。FIG. 8 is a flowchart showing a measurement flow.

【図9】測定のフローチャートの一部で、シミュレーシ
ョン像とカメラで撮影された像を比較し、誤差を算出す
る他の1種類の方法を示した部分的フローチャート。
FIG. 9 is a partial flowchart showing a part of the measurement flowchart and showing another kind of method for calculating an error by comparing a simulation image with an image captured by a camera.

【図10】測定のフローチャートの一部で、シミュレー
ション像とカメラで撮影された像を比較し、誤差を算出
する図9のフローと異なる他の1種類の方法を示す部分
的フローチャート。
FIG. 10 is a partial flowchart showing a part of the measurement flowchart and showing another kind of method different from the flow of FIG. 9 for comparing the simulation image with the image captured by the camera and calculating the error.

【図11】(a)、(b)は歯車技術者に歯面の状況を
一目瞭然に理解できるような基準歯面を示し、この上に
誤差を表示した状態を示す図。
11A and 11B are views showing a reference tooth surface which allows a gear engineer to understand the condition of the tooth surface at a glance, and a state in which an error is displayed on the reference tooth surface.

【図12】光学測定子の構造と、左右の被測定歯面の測
定のための、偏角プリズム及び歯車の基準点測定用のピ
ンホールを示す機構斜視図。
FIG. 12 is a mechanism perspective view showing a structure of an optical probe and a pinhole for measuring a reference point of a deviation angle prism and a gear for measuring left and right tooth surfaces to be measured.

【図13】(a)、(b)は、図12の光学測定子の上
面図と正面図である。
13A and 13B are a top view and a front view of the optical probe shown in FIG.

【図14】歯車の原点の設定要領を示す説明図であり、
(a)は光学測定子が歯車のねじれ角に沿って設定さ
れ、歯車の基準点を測定する関係図。(b)は、歯車回
転角と、受光量の関係を示す図で、ピンホールを通過し
た光が、カメラの受光面で捉えられ、回転に従って歯面
によって切られ、光量が変化することを示している。
(c)は、光量を2値化して、歯みぞ中心を設定するこ
とを示す図。
FIG. 14 is an explanatory diagram showing a procedure for setting the origin of the gear,
FIG. 6A is a relational diagram in which an optical tracing stylus is set along a twist angle of a gear and a reference point of the gear is measured. (B) is a diagram showing the relationship between the gear rotation angle and the amount of received light, and shows that the light that has passed through the pinhole is captured by the light receiving surface of the camera and cut by the tooth surface as it rotates, resulting in a change in the amount of light. ing.
FIG. 6C is a diagram showing that the center of the tooth groove is set by binarizing the light amount.

【図15】コンピュータとインターフェイス及び周辺機
器の構成を示すダイヤグラム。
FIG. 15 is a diagram showing the configuration of a computer, an interface, and peripheral devices.

【図16】駆動・被動両歯車の噛み合い条件を入れて歯
面の連続した伝達作用誤差面を合成し歯車の振動解析の
資料とする状況を示す示す説明図。
FIG. 16 is an explanatory diagram showing a situation in which meshing conditions of both driving and driven gears are included and combined continuous transmission action error surfaces of tooth surfaces are used as data for vibration analysis of gears.

【図17】1歯面上の負荷が掛かった時の歯面上の負荷
分布を示す説明図。
FIG. 17 is an explanatory diagram showing a load distribution on a tooth surface when a load is applied on one tooth surface.

【図18】図19から図21の結合関係を説明する図。FIG. 18 is a view for explaining the connection relationship of FIGS. 19 to 21.

【図19】コンピュータによる振動解析のフローチャー
トで、解析のループの状況を示す説明用フローチャート
の前段部分。
FIG. 19 is a flowchart of a vibration analysis by a computer, which is a former part of an explanatory flowchart showing a situation of an analysis loop.

【図20】同フローチャートの中段部分。FIG. 20 is the middle part of the flowchart.

【図21】同フローチャートの後段部分。FIG. 21 is a latter part of the flowchart.

【符号の説明】[Explanation of symbols]

1…光源 2…ビームスプリッタ 3…ミラー 3a…ピエゾ素子 4…ミラー 6…被測定歯車 7…歯車支持装置 8…CCDカメラ 8a…受光面 9…サーボ駆動装置 10…フレーム・メモリ 11…インターフェイス 12…コンピューター 13…CRT 14…測定装置の機台 15…半径方向設定台 16…干渉計定盤 17…回転機構 19…1/2波長板 20…ビームスプリッタ 21…1/4波長板 22…光路長調整ミラー 23…エキスパンダー 24…空間フィルター 25…くさび形ハーフミラー 26…リニヤサーボモータ 27…固定ミラー 28…回転ミラー 29…エンキスパンダー・レンズ 30…光学測定子 31…偏角プリズム 32…偏角プリズム 33…左右歯面切換え用モータ 34…光路変換プリズム 35…光路変換ミラー DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Beam splitter 3 ... Mirror 3a ... Piezo element 4 ... Mirror 6 ... Gear to be measured 7 ... Gear support 8 ... CCD camera 8a ... Light receiving surface 9 ... Servo drive 10 ... Frame memory 11 ... Interface 12 ... Computer 13 ... CRT 14 ... Measuring device base 15 ... Radial direction setting base 16 ... Interferometer surface plate 17 ... Rotation mechanism 19 ... 1/2 wavelength plate 20 ... Beam splitter 21 ... Quarter wavelength plate 22 ... Optical path length adjustment Mirror 23 ... Expander 24 ... Spatial filter 25 ... Wedge-shaped half mirror 26 ... Linear servo motor 27 ... Fixed mirror 28 ... Rotating mirror 29 ... Expander lens 30 ... Optical probe 31 ... Deviation prism 32 ... Deviation prism 33 ... Left / right tooth surface switching motor 34 ... Optical path conversion prism 35 ... Optical path conversion mirror

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非接触自由曲面測定装置の回転支軸に被
測定対象歯車を取付けると共に光源から発した可干渉光
を参照光と物体光に分離し、その物体光を被測定歯車の
目標歯面に照射することにより、参照光と、物体光の反
射光とから該目標歯面の干渉縞像を得て、該目標歯面の
形状誤差を測定する歯面形状の非接触測定法において、 干渉計の一部のピンホール光路を利用して、前記被測定
歯車の回転中心に関する測定原点を自動的に設定し、 次いで、前記被測定歯車の歯車仕様に基づいて予め入力
された測定のパラメータに従って、前記測定原点から測
定位置決めを行って、物体光を1つの歯面に照射してそ
の反射光を画素数の極めて多いCCDカメラ受光面に導
き、 同時に、該CCDカメラ受光面上で、先に分離した参照
光と、該物体光の反射光とを直接干渉させて歯面の干渉
縞を得るようにし、 更に、参照光の途中に挿入されている鏡をピエゾ素子等
の駆動手段によって、前記可干渉光の波長の数分割づつ
微動させて干渉縞を1ピッチ分移動させることにより、
各分割毎の縞の移動をCCDカメラの各ピクセル毎に取
り出して該縞の位相を解析し、 又、予め被測定歯車の仕様と、測定機上の歯車取付け位
置関係と物体光の照射位置からカメラにより撮影を期待
される像をコンピュータによりシミュレーションして理
論的歯面形状を作成し、該作成した理論的歯面形状と比
較、演算することにより各ピクセルにおける前記縞の位
相差を算出し、その点の入射角による実効波長から表面
形状の高さに換算して歯面全体の形状に対する歯面誤差
を求め、 該求めた歯面誤差を、歯車の基本形状の上に、地図状の
彩色による等高線で誤差表示を行うようにした、測定ス
テップを具備したことを特徴とした歯車の歯面形状の非
接触測定方法。
1. A gear to be measured is attached to a rotation spindle of a non-contact free-form surface measuring device, coherent light emitted from a light source is separated into reference light and object light, and the object light is a target tooth of the gear to be measured. By irradiating the surface, to obtain the interference fringe image of the target tooth surface from the reference light and the reflected light of the object light, in the non-contact measurement method of the tooth surface shape to measure the shape error of the target tooth surface, Using a part of the pinhole optical path of the interferometer, automatically set the measurement origin for the center of rotation of the gear to be measured, then, the parameters of the measurement entered in advance based on the gear specifications of the gear to be measured According to the above, the measurement positioning is performed from the measurement origin, and the object light is irradiated to one tooth surface, and the reflected light is guided to the CCD camera light-receiving surface having an extremely large number of pixels. At the same time, on the CCD camera light-receiving surface, Reference light and the object light To directly interfere with the reflected light of the reference light so as to obtain interference fringes on the tooth surface, and a mirror inserted in the middle of the reference light is divided into several wavelengths of the coherent light by a driving means such as a piezo element. By finely moving and moving the interference fringes by one pitch,
The movement of the stripes for each division is taken out for each pixel of the CCD camera and the phase of the stripes is analyzed. Also, from the specifications of the gear to be measured, the gear mounting position relationship on the measuring machine, and the irradiation position of the object light in advance. A theoretical tooth surface shape is created by simulating an image expected to be captured by a camera by a computer, and the phase difference of the stripes in each pixel is calculated by comparing and calculating with the created theoretical tooth surface shape, Converting the effective wavelength due to the incident angle at that point into the height of the surface shape, the tooth surface error for the entire shape of the tooth surface is obtained, and the obtained tooth surface error is applied to the basic shape of the gear and colored in a map shape. A non-contact measuring method of a tooth flank shape of a gear, comprising a measuring step for displaying an error by contour lines according to.
【請求項2】 更に、前記被測定歯車の歯面の撮影像と
前記シミュレーションによる理論的歯面形状との比較・
演算のときに起きる両者の比較位置の誤差を前記撮影像
の光線追跡法および逆光線追跡法を適用して、高精度の
歯面誤差情報を求めるようにすることを特徴とした請求
項1に記載の歯車の歯面の非接触形状測定方法。
2. A comparison between a photographed image of the tooth surface of the gear to be measured and a theoretical tooth surface shape obtained by the simulation.
2. The high precision tooth surface error information is obtained by applying the ray tracing method and the inverse ray tracing method of the photographed image to the error of the comparison positions of the two occurring at the time of calculation. Method for measuring the non-contact shape of the tooth flanks of gears.
【請求項3】 前記1つの歯面の歯面誤差の測定を、駆
動、被動の一対の被測定歯車の次々の歯面に就いて実行
することにより該被測定歯車の全歯の歯面形状誤差を測
定し、 駆動、被動歯面の代表的誤差形状の組合せを選択し、コ
ンピュータの歯車動力伝達状態の解析シミュレーション
プログラムに入力することによって、前記一対の代表形
状歯面の場合の噛み合い歯車の動力伝達時の伝達誤差、
振動起振力、各種応力状態等の特性を解析することを特
徴とする請求項1に記載の歯車の歯面形状の非接触測定
方法。
3. The tooth surface shape of all the teeth of the gear to be measured by measuring the tooth surface error of the one tooth surface for each tooth surface of a pair of driven and driven gears to be measured. By measuring the error, selecting the combination of the typical error shapes of the driving and driven tooth flanks, and inputting it to the computer simulation analysis program for the gear power transmission state, Transmission error during power transmission,
The non-contact measuring method of the tooth flank shape of the gear according to claim 1, wherein characteristics such as vibration excitation force and various stress states are analyzed.
JP4262034A 1992-09-30 1992-09-30 Non-contact measuring method of tooth flank shape of gear Expired - Lifetime JPH0786411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4262034A JPH0786411B2 (en) 1992-09-30 1992-09-30 Non-contact measuring method of tooth flank shape of gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4262034A JPH0786411B2 (en) 1992-09-30 1992-09-30 Non-contact measuring method of tooth flank shape of gear

Publications (2)

Publication Number Publication Date
JPH06109444A true JPH06109444A (en) 1994-04-19
JPH0786411B2 JPH0786411B2 (en) 1995-09-20

Family

ID=17370112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4262034A Expired - Lifetime JPH0786411B2 (en) 1992-09-30 1992-09-30 Non-contact measuring method of tooth flank shape of gear

Country Status (1)

Country Link
JP (1) JPH0786411B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481808B1 (en) * 2002-04-12 2005-04-11 한국기계연구원 A untouchable type apparatus for measuring a gear
CN103223628A (en) * 2013-03-19 2013-07-31 中信重工机械股份有限公司 Method for detecting tooth profile error of big gear wheel on line
JP2013221845A (en) * 2012-04-16 2013-10-28 Mitsubishi Heavy Ind Ltd Device and method for gear inspection
JP2013252582A (en) * 2012-06-06 2013-12-19 Hamai Co Ltd Gear processing machine
CN107328444A (en) * 2017-08-18 2017-11-07 洛阳理工学院 Meshing zone of gears contact stress under dynamic conditions, strain-Sensing device
CN112648943A (en) * 2020-10-10 2021-04-13 嘉兴学院 Swing type three-dimensional detector for measuring static flatness
CN114803294A (en) * 2022-05-06 2022-07-29 南通巨大机械制造有限公司 Gear assembly line is with going up unloading structure that has quality testing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129711A (en) * 1985-11-29 1987-06-12 Toshiba Corp Method and apparatus for measuring configurational error of object
JPH04258709A (en) * 1991-02-13 1992-09-14 Osaka Seimitsu Kikai Kk Measurement of tooth flank shape by noncontact type free-form surface measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129711A (en) * 1985-11-29 1987-06-12 Toshiba Corp Method and apparatus for measuring configurational error of object
JPH04258709A (en) * 1991-02-13 1992-09-14 Osaka Seimitsu Kikai Kk Measurement of tooth flank shape by noncontact type free-form surface measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481808B1 (en) * 2002-04-12 2005-04-11 한국기계연구원 A untouchable type apparatus for measuring a gear
JP2013221845A (en) * 2012-04-16 2013-10-28 Mitsubishi Heavy Ind Ltd Device and method for gear inspection
JP2013252582A (en) * 2012-06-06 2013-12-19 Hamai Co Ltd Gear processing machine
CN103223628A (en) * 2013-03-19 2013-07-31 中信重工机械股份有限公司 Method for detecting tooth profile error of big gear wheel on line
CN107328444A (en) * 2017-08-18 2017-11-07 洛阳理工学院 Meshing zone of gears contact stress under dynamic conditions, strain-Sensing device
CN107328444B (en) * 2017-08-18 2023-05-30 洛阳理工学院 Dynamic contact stress and strain detection device for gear meshing area
CN112648943A (en) * 2020-10-10 2021-04-13 嘉兴学院 Swing type three-dimensional detector for measuring static flatness
CN112648943B (en) * 2020-10-10 2022-06-03 嘉兴学院 Swing type three-dimensional detector for measuring static flatness
CN114803294A (en) * 2022-05-06 2022-07-29 南通巨大机械制造有限公司 Gear assembly line is with going up unloading structure that has quality testing
CN114803294B (en) * 2022-05-06 2023-09-26 南通巨大机械制造有限公司 Gear assembly line is with last unloading structure that has quality testing

Also Published As

Publication number Publication date
JPH0786411B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US8345262B2 (en) Method and apparatus for determining a deviation of an actual shape from a desired shape of an optical surface
CN102192714B (en) Light-interference measuring apparatus
EP0470816A1 (en) Field shift moire system
JP4246071B2 (en) Method for determining and correcting guidance errors in coordinate measuring machines.
JPS62129711A (en) Method and apparatus for measuring configurational error of object
JPH0792372B2 (en) Method for measuring an optical surface feature of a mirror and apparatus for determining the feature
JP6236721B2 (en) Shape measuring apparatus and shape measuring method
JPH06109444A (en) Noncontact measuring method for tooth-surface shape of gear
JP3930378B2 (en) Non-contact measuring method and non-contact measuring apparatus for gear tooth profile
JPH06117830A (en) Measuring/analyzing method of interference fringe by hologram interferometer
CN112268521B (en) Variable-angle synchronous phase shift interferometry method for gear tooth surface shape error
JP3690840B2 (en) Non-contact measurement method of gear tooth surface shape
Jin et al. Applications of a novel phase-shift method using a computer-controlled polarization mechanism
JP2898108B2 (en) Non-contact free-form surface measuring device for measuring gear tooth profile
US4910561A (en) Method and apparatus for detecting profile error of article surface
US5786896A (en) Oblique incidence interferometer with fringe scan drive
EP2236978B1 (en) Optical measuring device and method to determine the shape of an object and a machine to shape the object.
JPH08240417A (en) Shape measuring method and shape measuring device using the method
Krenzer et al. Computer aided inspection of bevel and hypoid gears
JP6476957B2 (en) Shape measuring apparatus and method of measuring structure
JP2003269909A (en) Method of measuring shape, instrument for measuring interference, method of manufacturing projection optical system, and projection exposure unit
TWI821175B (en) Measurement system and method for determining and measuring in-plane distortions of a workpiece
JP4425449B2 (en) Oblique incidence interferometer device
JPS6350709A (en) Sharing interference method
Gubbels et al. Development of 3-D digital image correlation using a single color-camera and diffractive speckle projection

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 17