JPH04258709A - Measurement of tooth flank shape by noncontact type free-form surface measuring device - Google Patents

Measurement of tooth flank shape by noncontact type free-form surface measuring device

Info

Publication number
JPH04258709A
JPH04258709A JP2008491A JP2008491A JPH04258709A JP H04258709 A JPH04258709 A JP H04258709A JP 2008491 A JP2008491 A JP 2008491A JP 2008491 A JP2008491 A JP 2008491A JP H04258709 A JPH04258709 A JP H04258709A
Authority
JP
Japan
Prior art keywords
tooth surface
image
gear
tooth
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008491A
Other languages
Japanese (ja)
Other versions
JP2898108B2 (en
Inventor
Aizo Kubo
愛三 久保
Hiroshige Fujio
藤尾 博重
Shigeaki Tochimoto
茂昭 栃本
Hideyuki Hanaki
花木 英幸
Mitsuo Suzuki
鈴木 充男
Yoshiaki Saito
斎藤 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Osaka Seimitsu Kikai Co Ltd
Original Assignee
Osaka Seimitsu Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Seimitsu Kikai Co Ltd filed Critical Osaka Seimitsu Kikai Co Ltd
Priority to JP2008491A priority Critical patent/JP2898108B2/en
Publication of JPH04258709A publication Critical patent/JPH04258709A/en
Application granted granted Critical
Publication of JP2898108B2 publication Critical patent/JP2898108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To measure and analyze a gear having a curved surface tooth flank by collecting the data of the incident angle of the object light at each point on an inspected tooth flank from a theoretical tooth flank image obtained through the simulation method. CONSTITUTION:The interference light supplied from a light source 1 is separated, and a hologram image is obtained by the reflection light supplied from the object light S which irradiates an aimed surface and the reference light R. The shape of an image caught by a camera 8 is calculated from the gear specification by an MPU 12, and a simulation image is obtained. The hologram of the standard tooth flank A of a standard gear 6 which is photographed by the camera 8 and the image of a standard tooth flank B on which a part of an other tooth of the gear 6 is cut are superposed, and the original point of coordinates is determined. The positive reflection image of the measured gear as measurement object and the hologram of the tooth flank A are superposed, and a holographic interference image is obtained, and superposed to the simulation image obtained from the specification. Accordingly, the correspondence data between the incident angle of the article light S at each point based on the original point of coordinates and the phase of interference fringe is collected, and the shape error of the inspected tooth flank for the standard surface is measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、歯車の歯面形状を非接
触的に測定する方法に関し、特に、ホログラフィック干
渉を利用した自由曲面測定装置を用いて平歯車、はすば
歯車等の各種の歯車の歯面形状を測定する非接触歯面形
状測定方法に関する。
[Industrial Application Field] The present invention relates to a method for non-contactly measuring the tooth surface shape of a gear, and in particular to a method for measuring the shape of a spur gear, helical gear, etc. using a free-form surface measuring device that utilizes holographic interference. The present invention relates to a non-contact tooth flank shape measurement method for measuring the tooth flank shapes of various gears.

【0002】0002

【従来の技術】歯車は、駆動歯車と相手従動歯車が噛み
合って回転し、動力を伝達する。すなわち、より具体的
には駆動歯車の歯面が相手従動歯車の歯面と接触状態に
かみ合って回転し、動力を伝達するものである。このと
き、航空機・自動車を始めとする動力源からの動力を利
用して作動する全ての機械や装置には増速又は減速装置
として多く、歯車装置が取付けられる。このとき、歯車
装置が動力を伝達して車輪やプロペラ装置を駆動する過
程で、騒音・振動を伴うようでは、その機能を十分に果
すことができない。そこで、動力を滑らかに伝達すべく
、歯車装置の夫々の歯車の加工時に歯車の噛合作用部、
即ち、歯車の歯面の形状に極めて高度のノウハウである
複雑な形状修正を加えることが従来から行われているこ
とは周知である。このとき、所望の歯面形状に出来上が
っているかどうかを検査する歯車測定装置は、上記の複
雑な歯面修正量を測定して、測定結果のデータを歯切り
盤や歯研削盤等の加工機側による加工作業にフイードバ
ックする重要な役目を有している。
2. Description of the Related Art Gears rotate when a driving gear and a mating driven gear mesh with each other to transmit power. That is, more specifically, the tooth surface of the drive gear rotates while being in contact with the tooth surface of the mating driven gear, thereby transmitting power. At this time, all machines and devices that operate using power from a power source, including aircraft and automobiles, are often equipped with a gear device as a speed increase or deceleration device. At this time, if the gear device transmits power and drives the wheels or propeller device, it cannot perform its function satisfactorily if it is accompanied by noise and vibration. Therefore, in order to transmit power smoothly, when machining each gear of a gear device, the meshing part of the gear,
That is, it is well known that complex shape modifications, which require extremely advanced know-how, have been conventionally performed on the shape of tooth flanks of gears. At this time, the gear measuring device that inspects whether the desired tooth surface shape is completed measures the above-mentioned complex amount of tooth surface modification and transfers the measurement result data to a processing machine such as a gear cutter or tooth grinder. It has an important role of providing feedback to the machining work by the side.

【0003】然し、現在使用されている歯車測定装置は
、測定子で歯面をトレースして、サンプリングされた歯
車の回転角と、法線方向の長さからインボリュート曲線
を計算する方法を採っており、この方式では、歯車の1
つないし幾つかの歯の一断面を測定するのみであり、上
述のように歯面の広がり全体として相手側の歯面と次々
に噛合し、作動している歯面の機能データ或いは測定デ
ータとしては不足である。
However, the gear measuring devices currently in use use a method of tracing the tooth surface with a probe and calculating an involute curve from the sampled rotation angle of the gear and the length in the normal direction. In this method, one of the gears
It only measures one cross section of several connected teeth, and as mentioned above, the entire spread of the tooth surface meshes with the mating tooth surface one after another, and is used as functional data or measurement data of the tooth surface in operation. is insufficient.

【0004】このような現状を打開すべく、歯車の歯面
のみならず、一般的な曲面形状をホログラフイック干渉
を利用して非接触式に測定するようにした光学的曲面形
状測定装置が開発され、本出願人の特開平1ー1164
03号に開示されている。この非接触測定方法では、機
械加工における一般的な加工精度面から見れば、比較的
粗い歯車々面に対して斜にレーザー光を物体光として照
射して、十分な正反射光を得るようにしている。斜に投
射されたレーザー光は、入射角の余弦( COS )分
の1だけ、実効波長が長くなるので、あたかも長い波長
の光で観測していることになり、上記粗い歯面の測定に
対して有利である。この測定装置を用いた測定方法によ
れば歯車の歯面全体を直接測定することができる。
In order to overcome this current situation, an optical curved surface shape measuring device was developed that uses holographic interference to measure not only gear tooth surfaces but also general curved surface shapes in a non-contact manner. The applicant's Japanese Patent Application Laid-Open No. 1-1164
It is disclosed in No. 03. In this non-contact measurement method, from the viewpoint of general machining accuracy in machining, the relatively rough surfaces of the gears are irradiated obliquely with a laser beam as an object beam to obtain sufficient specularly reflected light. ing. Since the effective wavelength of the obliquely projected laser beam becomes longer by one cosine (COS) of the angle of incidence, it is as if the observation was made using light with a longer wavelength, which makes it difficult to measure the rough tooth surface mentioned above. It is advantageous. According to the measuring method using this measuring device, the entire tooth surface of the gear can be directly measured.

【0005】[0005]

【発明が解決しようとする課題】然し、はすば歯車等の
ように歯面が捩れた曲面形状を有する場合、平行なレー
ザー光は、各部分で入射角が異なることになる。歯面の
形状誤差を解析するには、歯面のどの部分が入射角何度
で照射されているかを厳密に知らねばならないという問
題がある。
[Problems to be Solved by the Invention] However, when the tooth surface has a twisted curved shape, such as in a helical gear, the angle of incidence of parallel laser beams differs in each part. In order to analyze the shape error of the tooth surface, there is a problem in that it is necessary to know exactly which part of the tooth surface is irradiated and at what angle of incidence.

【0006】依って、本発明の目的は、特開平1− 1
16403号に開示されたごとき光学的曲面形状測定装
置を利用して上記の問題を解決し、曲面の歯面を有した
歯車の歯面形状を測定、解析を可能にすることにある。
[0006] Therefore, the object of the present invention is to
The object of the present invention is to solve the above problem by using an optical curved surface shape measuring device such as that disclosed in Japanese Patent No. 16403, and to make it possible to measure and analyze the tooth surface shape of a gear having a curved tooth surface.

【0007】[0007]

【課題を解決するための手段】上述の目的に鑑みて、本
発明は、光源から発した可干渉光を参照光と物体光とに
分離し、物体光を目標曲面に照射することにより参照光
と物体光の反射光とから該目標曲面のホログラムを得る
ようにして曲面を有した基準歯面のホログラム像と同形
の被検歯面の像とから前者の歯面に対する後者のホログ
ラフィック干渉による歯面の誤差を測定する非接触自由
曲面測定機を用いた歯車の歯面形状の測定方法において
、上記基準歯面及び被検歯面を有する歯車の理論的歯面
の像を光線追跡によるシミュレーション法によって得て
、該理論的歯面の像から上記被検歯面上の各点における
物体光の入射角のデータを収集し、上記基準歯面と該基
準歯面の一部を切欠いた第2の基準歯面とに上記物体光
を照射した夫々の像の重ね合わせによって該基準歯面の
像の座標原点を決定し、上記座標原点の決定した基準歯
面のホログラム像と被検歯面の像とを重ね合わせて上記
座標原点が転移されたホログラフィック干渉像を得るよ
うにし、上記ホログラム干渉像と上記理論歯面のシミュ
レーション像とを重ねることにより、上記座標原点に基
づく各点に関して物体光の入射角と干渉縞の位相との対
応データを収集し、上記入射角のデータと位相のデータ
とから上記被検歯面の該各点における法線方向の上記基
準歯面との寸法誤差を演算し、以て基準歯面に対する被
検歯面の歯面形状誤差を測定するようにした非接触自由
曲面測定機による歯形々状測定方法を提供するものであ
る。以下、本発明を添付図面に示す実施例に基づいて更
に、詳細に説明する。
[Means for Solving the Problems] In view of the above-mentioned objects, the present invention separates coherent light emitted from a light source into a reference light and an object light, and irradiates the object light onto a target curved surface to produce a reference light. and the reflected light of the object beam to obtain a hologram of the target curved surface, and from the holographic image of the reference tooth surface having a curved surface and the image of the test tooth surface of the same shape, the holographic interference of the latter with respect to the former tooth surface is obtained. In a method for measuring tooth flank shape of a gear using a non-contact free-form surface measuring machine that measures tooth flank errors, a theoretical tooth flank image of a gear having the above-mentioned reference tooth flank and test tooth flank is simulated by ray tracing. data on the incident angle of the object light at each point on the test tooth surface is collected from the image of the theoretical tooth surface, and the reference tooth surface and a part of the reference tooth surface are cut out. The coordinate origin of the image of the reference tooth surface is determined by superimposing the images of the reference tooth surface No. 2 and the reference tooth surface irradiated with the object light, and the hologram image of the reference tooth surface with the coordinate origin determined and the tooth surface to be inspected are A holographic interference image in which the coordinate origin is transferred is obtained by superimposing the images of Collect data corresponding to the incident angle of light and the phase of interference fringes, and use the incident angle data and phase data to determine the dimensional error in the normal direction of each point on the test tooth surface with respect to the reference tooth surface. The present invention provides a tooth profile measuring method using a non-contact free-form surface measuring machine, which calculates the tooth profile error of the tooth profile to be tested relative to the reference tooth profile. Hereinafter, the present invention will be described in further detail based on embodiments shown in the accompanying drawings.

【0008】[0008]

【実施例】図1は、本発明のによる歯面形状測定方法の
実施に利用される非接触自由曲面測定装置の全体構成を
示す機構図、図2の(A)は、歯車の被検歯面と、それ
に入射する物体光との関係を図示した側面図であり、(
B)は(A)図の2ー2線による部分平面図、図3は、
コンピューターによるシミュレーション歯面、歯車の基
準歯面、歯車の被検歯面の合成関係を示した解説図、図
4は、基準歯面Bの1例を成す歯面形状の詳細を示した
部分斜視図で、図5は  ねじれ歯面に入射する物体光
の光路差と歯面誤差との関係を説明する解析図である。
[Example] Fig. 1 is a mechanical diagram showing the overall configuration of a non-contact free-form surface measuring device used to implement the tooth flank shape measuring method according to the present invention. FIG. 2 is a side view illustrating the relationship between a surface and object light incident thereon;
B) is a partial plan view taken along line 2-2 in figure (A), and figure 3 is a
An explanatory diagram showing the composite relationship between a computer-generated simulated tooth surface, a reference tooth surface of a gear, and a tested tooth surface of a gear. Figure 4 is a partial perspective view showing details of the tooth surface shape that constitutes an example of reference tooth surface B. In the figure, FIG. 5 is an analytical diagram illustrating the relationship between the optical path difference of the object light incident on the twisted tooth surface and the tooth surface error.

【0009】さて、本発明による測定方法の記載に当た
り、本出願による上記先願(特開平1− 116403
号)の非接触式の光学的形状測定機の構成に就いて図1
を参照して説明する。
Now, in describing the measurement method according to the present invention, the above-mentioned earlier application (Japanese Patent Application Laid-Open No. 116403/1999)
Figure 1 shows the configuration of the non-contact optical shape measuring machine of
Explain with reference to.

【0010】図1に示すように、同機は、レーザ光源1
、同レーザ光源1から発するレーザ光を参照レーザ光R
(以下、単に、参照光R)と測定用レーザ光S(以下、
物体光S)とに分離するビームスプリッタ2、同参照光
Rと物体光Sとの反射ミラー3、4、反射ミラー3を経
て到達した参照光Rを受光すると共に反射ミラー4、被
測定歯車6の歯面6aを照射、反射後に到達する物体光
を受光する受光面5、被測定歯車6の支持軸装置7、上
記受光面5に到達した参照光Rと被検歯面6aで反射し
た物体光Sとの干渉によって上記受光面5に形成される
歯面6aのホログラム6bを撮影するカメラ8等を具備
して形成されている。なお、物体光Sは被検歯面6aに
大きな入射角で照射され、以てシーン現象で正反射光が
多くなる有利を得るようにすることは既述の通りである
As shown in FIG. 1, the aircraft has a laser light source 1
, the laser light emitted from the same laser light source 1 is the reference laser light R
(hereinafter simply referred to as reference beam R) and measurement laser beam S (hereinafter simply referred to as
A beam splitter 2 that separates the reference beam R and the object beam S), reflecting mirrors 3 and 4 for the reference beam R and the object beam S, a reflecting mirror 4 that receives the reference beam R that has arrived via the reflecting mirror 3, and a gear to be measured 6. A light-receiving surface 5 that receives the object light that reaches the tooth surface 6a after reflection, a support shaft device 7 of the gear to be measured 6, a reference light R that reaches the light-receiving surface 5, and an object that is reflected by the tooth surface 6a to be measured. It is equipped with a camera 8, etc., which photographs a hologram 6b of the tooth surface 6a formed on the light-receiving surface 5 by interference with the light S. As described above, the object light S is irradiated onto the tooth surface 6a to be inspected at a large angle of incidence, thereby obtaining the advantage of increasing specularly reflected light due to scene phenomena.

【0011】上記受光面5に形成された被検歯面6aの
ホログラム6bは、カメラ8によって撮像され、撮像デ
ータはフレームメモリー10によって記憶されると共に
インターフェース11を介してパーソナルコンピュータ
やマイクロコンピュータ等から成るコンピュータ装置1
2(以下及び図示には、簡略のためMPU12と記載す
る。)に入力され、又、必要に応じてCRT13の画面
に表示される。故に、MPU12にはサーボモータ9a
を駆動源とし、歯車割出し用エンコーダ9bを有するサ
ーボ駆動装置9による回転駆動を受けて測定位置に割り
出された歯車の各被検歯面の位置データに対応した形態
で歯面のホログラムデータが次々に入力される。
The hologram 6b of the tooth surface to be inspected 6a formed on the light-receiving surface 5 is imaged by a camera 8, and the imaged data is stored in a frame memory 10 and transmitted from a personal computer, microcomputer, etc. via an interface 11. Computer device 1 consisting of
2 (hereinafter and in the drawings, it will be referred to as MPU 12 for brevity), and also displayed on the screen of CRT 13 as necessary. Therefore, the MPU 12 has a servo motor 9a.
The hologram data of the tooth surface is generated in a form corresponding to the positional data of each tooth surface of the gear indexed to the measurement position by being rotationally driven by a servo drive device 9 having a drive source and a gear indexing encoder 9b. are input one after another.

【0012】さて、物体光Sで歯面形状の測定をする場
合、測定機の支持軸装置7上に設定した歯車、つまり、
後述する基準歯車や被検歯車6の各歯面を同物体光Sで
照射するが、歯車6がはすば歯車のように、ねじれ角を
有した曲面であると、物体光の入射角も被検歯車6の歯
車仕様に従って、ピッチ円(直径D0)上のねじれ角β
0 の法線に対して所定の大きな入射角度を有するよう
に設定される。即ち、図2及び図3に示す如く、ピッチ
円径D0 を有する歯車の仕様における、ピッチ円上の
ねじれ角β0 、入射角θ及び歯面の中心から測定点ま
での回転角τが測定上のパラメータとなる。なお、物体
光Sの入射角θの設定は、特開平1ー116430号公
報に第15図を参照して説明されており、これは、換言
すれば、図1の測定装置の座標系をサーボモータ9aを
駆動源にしたサーボ駆動装置9や図示されていないミラ
ー4の角度調整用サーボ装置等によって設定し、歯面6
aを照射するもので、このとき、後述するコンピュータ
装置に被検歯車の上述したピッチ円径D0 、ピッチ円
上のねじれ角β0 、入射角θ、および歯面の中心から
測定点までの回転角τ等の歯車緒言がデータ入力され、
記憶されるから、同じ歯車の仕様を持った被検歯車が測
定装置上に設定されたときは、同歯車仕様をコンピュー
タ装置から呼び出すことにより、サーボ駆動装置9が自
動的に作動し、最適の照射位置へ自動設定されることに
なる。
Now, when measuring the tooth surface shape using the object beam S, the gear set on the support shaft device 7 of the measuring machine, that is,
Each tooth surface of a reference gear and a gear to be tested 6, which will be described later, is irradiated with the same object light S. However, if the gear 6 is a curved surface with a helical angle, such as a helical gear, the incident angle of the object light also changes. According to the gear specifications of the gear 6 to be tested, the helix angle β on the pitch circle (diameter D0)
It is set to have a predetermined large angle of incidence with respect to the normal to zero. That is, as shown in FIGS. 2 and 3, in the specifications of a gear having a pitch circle diameter D0, the torsion angle β0 on the pitch circle, the incident angle θ, and the rotation angle τ from the center of the tooth surface to the measurement point are measured. Becomes a parameter. The setting of the incident angle θ of the object beam S is explained in Japanese Patent Application Laid-open No. 1-116430 with reference to FIG. The tooth surface 6 is set by a servo drive device 9 using a motor 9a as a drive source, a servo device for adjusting the angle of the mirror 4 (not shown), etc.
At this time, a computer device (to be described later) is irradiated with the pitch circle diameter D0 of the gear to be tested, the torsion angle β0 on the pitch circle, the incident angle θ, and the rotation angle from the center of the tooth surface to the measurement point. Gear introductions such as τ are input as data,
Since it is memorized, when a gear to be tested with the same gear specifications is set on the measuring device, by calling up the same gear specifications from the computer device, the servo drive device 9 is automatically operated and the optimum gear is set. It will be automatically set to the irradiation position.

【0013】上述した構成を有した光学的曲面形状測定
装置によって、ねじれ角を有することにより曲面化され
た歯車の例における歯面形状を測定するには、同歯面が
インボリュート・ヘリコイド曲面であるから、かかる歯
面を平行な物体光で照射すると、面上の各部分では面の
曲がりに応じて少しずつ入射角は異なる。故に、受光面
5に形成される歯面のホログラムは、この入射角の相違
分が含まれた正反射像になる。こうして受光面5に形成
されたねじれ歯面6aのホログラム6bは既述のように
、カメラ8によって撮像され、撮像データはフレームメ
モリー10によって記憶されると共にインターフェース
11を介してMPU12に入力され、又、CRT13の
画面にも表示され得る。故に、MPU12にはサーボ駆
動装置9による歯車の各歯面の位置データに対応した形
態でねじれ歯面のホログラムデータが次々と入力される
[0013] In order to measure the tooth surface shape of a gear curved by having a helix angle using the optical curved surface shape measuring device having the above-mentioned configuration, the tooth surface is an involute helicoid curved surface. Therefore, when such a tooth surface is irradiated with parallel object light, the angle of incidence differs slightly at each part of the surface depending on the curvature of the surface. Therefore, the hologram of the tooth surface formed on the light-receiving surface 5 becomes a specular reflection image that includes this difference in incidence angle. The hologram 6b of the twisted tooth surface 6a thus formed on the light-receiving surface 5 is imaged by the camera 8 as described above, and the imaged data is stored in the frame memory 10 and input to the MPU 12 via the interface 11. , may also be displayed on the screen of the CRT 13. Therefore, the hologram data of the twisted tooth flanks is input one after another into the MPU 12 in a format corresponding to the position data of each tooth flank of the gear by the servo drive device 9.

【0014】さて、被検歯車6の各歯面の歯面形状の測
定を行うには先ず、その被検歯車に対応した基準のねじ
れ歯面を有した基準歯車に関して上述のようなホログラ
ム6bの撮影がMPU12の指令の下にカメラ8で遂行
される。次に、被検歯車6の各歯面6aの測定に入る。 即ち、基準歯面を有した基準歯車を被検歯面を多数有し
た被検歯車6に取替えて曲面測定装置に取付ける。該被
検歯車の1つの被検歯面に関し、上述と同様にして同被
検歯面のホログラムを受光面5に得られるようにする。 そして、サーボ駆動装置9を始めとするサーボ装置によ
って基準歯面のホログラム6aに被検歯面の反射像を重
ねて合致させることにより、干渉縞を得る。この場合の
重ねて合わせ基準、方法は本出願人の特公平2ー170
44号に開示されているように、両ホログラム像の干渉
時に発生する1次回折光が最大になった被検歯面の回転
角位置とするものである。
Now, in order to measure the tooth flank shape of each tooth flank of the gear 6 to be tested, first, a hologram 6b as described above is created with respect to a reference gear having a standard twisted tooth flank corresponding to the gear to be tested. Photography is performed by the camera 8 under instructions from the MPU 12. Next, each tooth surface 6a of the gear 6 to be tested is measured. That is, the reference gear having a reference tooth surface is replaced with the test gear 6 having a large number of test tooth surfaces and is attached to the curved surface measuring device. Regarding one tooth surface to be tested of the gear to be tested, a hologram of the same tooth surface to be tested is obtained on the light receiving surface 5 in the same manner as described above. Then, by superimposing and matching the reflected image of the tooth surface to be tested on the hologram 6a of the reference tooth surface using a servo device such as the servo drive device 9, interference fringes are obtained. In this case, the overlapping standards and method are as per Patent Publication No. 2-170 of the applicant.
As disclosed in No. 44, this is the rotation angle position of the tooth surface to be inspected at which the first-order diffracted light generated when both hologram images interfere is maximized.

【0015】次に、周知のフリンジスキャン法によって
、つまり、参照光Rの反射ミラー3を例えば、ピエゾ素
子3aのようなアクチュエータ手段を利用して微動させ
ることにより、該参照光Rの1波長を等分割して、上記
に発生した干渉縞を細分化して等分割波長と干渉縞との
関係を示すデータをMPU12に取込み、該データに基
づいて演算する手法を用いることにより、干渉縞の各点
の位相を演算、算出し、干渉縞の画像処理によって等高
線を得るものである。こうして得た等高線から成る干渉
縞に基づき、ねじれ歯面6aの形状誤差を得るが、その
ためには、該ホログラフイク干渉による干渉縞の各測定
点の干渉縞の位相と入射角を知ることにより、歯面の形
状誤差を算出する。
Next, by using the well-known fringe scanning method, that is, by slightly moving the reflection mirror 3 of the reference light R using actuator means such as a piezo element 3a, one wavelength of the reference light R is determined. Each point of the interference fringe is divided into equal parts, the interference fringes generated above are subdivided, data indicating the relationship between the equally divided wavelengths and the interference fringe is taken into the MPU 12, and calculations are performed based on the data. The phase of the image is calculated, and the contour lines are obtained by image processing of the interference fringes. Based on the interference fringes made up of contour lines obtained in this way, the shape error of the twisted tooth surface 6a is obtained, but in order to do so, by knowing the phase and incidence angle of the interference fringes at each measurement point of the interference fringes due to the holographic interference, Calculate the shape error of the tooth surface.

【0016】この際、物体光Sが照射した被検歯面6a
の各点の入射角θ°の値は、既述のように、該歯面6a
のねじれ面形状の故に異なった値となり、従って、各点
における実行波長が変化する。実効波長が変化すると、
干渉縞のピッチも位置も変わってくる。その上、実際の
被検歯面6aは面取(チャンファリング)等の加工処理
も施されているので、CRT13上に被検歯面6aの正
反射像を得て、その像の各点の座標位置と上記干渉縞の
位相、入射角のデータとの対比をつけることは極めて困
難である。故に、本発明は、曲面を有した歯面、例えば
、如上のねじれ歯面形状の測定に当たり、以下に詳述す
る測定方法を実行するものである。
At this time, the tooth surface 6a to be inspected irradiated with the object light S
As mentioned above, the value of the incident angle θ° at each point of the tooth surface 6a
due to the twisted surface shape of , and therefore the effective wavelength at each point changes. When the effective wavelength changes,
The pitch and position of the interference fringes also change. Furthermore, since the actual tooth surface 6a to be inspected has undergone processing such as chamfering, a regular reflection image of the tooth surface 6a to be inspected is obtained on the CRT 13, and each point of the image is It is extremely difficult to compare the coordinate position with the phase and incident angle data of the interference fringes. Therefore, in the present invention, when measuring a tooth surface having a curved surface, for example, a twisted tooth surface shape as shown above, the measurement method described in detail below is carried out.

【0017】即ち、先ず、予め、歯車仕様から周知の光
線追跡法に基づき、カメラ8が捉える像の形状をMPU
12を駆使して計算してシミュレーション像として計算
しておくことにより、該シミュレーション像を利用して
実際の被検歯面6aの歯面形状の測定演算を実行するも
のである。次に、基準歯車の基準歯面Aに関するホログ
ラムは、既述のようにカメラ8で撮影済みで、MPU1
2にデータ入力されているので、光学的自由曲面測定機
の支持軸装置7に支持された基準歯車の撮影位置の各軸
γ,τ,θ等のデータは、該測定装置よりインターフエ
ース11を介してMPU12から取り出す。
That is, first, based on the gear specifications and the well-known ray tracing method, the shape of the image captured by the camera 8 is determined by the MPU.
By making full use of 12 and calculating it as a simulation image, the measurement calculation of the tooth surface shape of the actual tooth surface 6a to be inspected is performed using the simulation image. Next, the hologram regarding the reference tooth surface A of the reference gear has already been photographed by the camera 8 as described above, and the MPU 1
2, the data of each axis γ, τ, θ, etc. of the photographing position of the reference gear supported by the support shaft device 7 of the optical free-form surface measuring device is inputted to the interface 11 from the measuring device. The data is taken out from the MPU 12 via the MPU 12.

【0018】次に、図1と共に図4を参照すると、例え
ば、上記基準歯面Aを有する基準歯車6の他の1つの歯
部分の一部を切り欠くことにより形成した特殊形状の第
2の基準歯面Bのゲージ機能を使用して、サーボ機構9
により、基準歯車6を微速旋回させて、撮影済みの上記
基準歯面Aのホログラム14に第2の基準歯面Bの正反
射像15をMPU12内のデータ上で合致させ、合致時
点におけるCRT13の画面の正反射像により基準歯面
Aと基準歯面Bとの基準点または基準線をCRT13の
画面上で有座標像16として定める。つまり、第2の基
準歯面Bの切欠き部の機械的寸法データは、予め、実測
値として得られているから、その機械的寸法データが既
知である切欠き部分がCRT13の画面の切欠き像とし
て表示されているから、その切欠き部分の像内の点と線
を基準点、又は基準線とすれば、CRT13の画面の基
準歯面Aの像の座標が有座標像16から定義できること
になるのである。なお、MPU12におけるホログラム
像の1次回折光が最大になる位置で両画像を一致させる
ことは既述の通りである。
Next, referring to FIG. 4 together with FIG. 1, for example, a special-shaped second tooth portion is formed by cutting out a part of the other tooth portion of the reference gear 6 having the reference tooth surface A. Using the gauge function of the reference tooth surface B, the servo mechanism 9
By rotating the reference gear 6 at a slow speed, the specular reflection image 15 of the second reference tooth surface B matches the photographed hologram 14 of the reference tooth surface A on the data in the MPU 12, and the CRT 13 at the time of matching A reference point or a reference line between the reference tooth surface A and the reference tooth surface B is determined as a coordinate image 16 on the screen of the CRT 13 using the regularly reflected image on the screen. In other words, since the mechanical dimension data of the notch part of the second reference tooth surface B has been obtained in advance as an actual measurement value, the notch part for which the mechanical dimension data is known is the notch part of the screen of the CRT 13. Since it is displayed as an image, the coordinates of the image of the reference tooth surface A on the screen of the CRT 13 can be defined from the coordinate image 16 if the points and lines in the image of the notch are used as reference points or reference lines. It becomes. Note that, as described above, both images are made to coincide at the position where the first-order diffracted light of the hologram image in the MPU 12 is maximized.

【0019】次いで、測定対象である被測定歯車17を
基準歯車6に代えて測定装置の支持軸装置7に取付け、
その正反射像18と基準歯面Aのホログラムである有座
標像16との間でホログラフィック干渉縞20を得る。 このとき、既述のフリンジスキャン法により、n回、参
照光Rの波長λをλ/nずつ反射ミラー3を移動させ、
干渉縞を移動させて、その都度、データをMPU12に
取り込む。そして、フーリエ解析法等を応用して干渉縞
の演算処理を行うと、干渉縞の1ピッチ間を内挿して、
各点の位相と移動方向との2つのデータから測定点の縞
の高低値を算出することができるのである。
Next, the gear to be measured 17, which is the object to be measured, is attached to the support shaft device 7 of the measuring device instead of the reference gear 6, and
Holographic interference fringes 20 are obtained between the regular reflection image 18 and the coordinate image 16 which is a hologram of the reference tooth surface A. At this time, by the fringe scanning method described above, the wavelength λ of the reference light R is moved n times by λ/n, and the reflection mirror 3 is moved by λ/n.
The interference fringes are moved and data is taken into the MPU 12 each time. Then, when calculating the interference fringes by applying Fourier analysis, etc., one pitch of the interference fringes is interpolated,
The height value of the fringe at the measurement point can be calculated from two pieces of data: the phase of each point and the direction of movement.

【0020】他方、上述の測定装置の各軸のデータから
、理論的歯面をシミュレーションし、シミュレーション
像19を得る。そして、予め、CRT13上に投影され
る歯面の各点の理論上の位置とその入射角を計算し、C
RT13上のホログラフィック干渉縞20の像に重ね合
わせる。このようにして測定した後、上述したシミュレ
ーションの曲面状の歯面の座標を平面に戻し、方眼状に
歯面の各位置とその点の誤差を次々と連ねて21で示す
等高線を得るものである。
On the other hand, a theoretical tooth surface is simulated from the data of each axis of the above-mentioned measuring device, and a simulation image 19 is obtained. Then, the theoretical position and angle of incidence of each point on the tooth surface projected onto the CRT 13 are calculated in advance, and the
The image is superimposed on the image of the holographic interference fringe 20 on the RT 13. After measuring in this way, the coordinates of the curved tooth surface in the simulation described above are returned to the plane, and the contour lines shown at 21 are obtained by sequentially connecting each position of the tooth surface and the error at that point in a grid. be.

【0021】測定歯車17の複数の被検歯面に就き、上
述した測定、演算処理を次々と実行すれば、それら複数
の曲面形状の歯面を有した被検歯面の各々に関して歯面
形状を実測することができるのである。上述した順次の
測定の過程が、図7及び図8(図6は結合図)に示すフ
ローチャートに説明されている。
If the above-mentioned measurement and arithmetic processing are performed one after another on a plurality of tooth flanks to be tested of the measurement gear 17, the tooth flank shape will be determined for each of the plurality of tooth flanks to be tested that have curved tooth flanks. can be actually measured. The sequential measurement process described above is illustrated in the flowcharts shown in FIGS. 7 and 8 (FIG. 6 is a combined diagram).

【0022】なお、複数の曲面形状の歯面を実測する際
には、1次回折光が最大になる位置を測定開始点として
、この時の主軸割出し位置を、測定の最初のスタート点
とするようにすれば、各歯面6aに就き、正確な割出し
により、測定装置の支持装置7の軸の角度位置を定める
ことができるのである。以上を要約すれば、上述のシミ
ュレーションの像は入射角の情報を、また、測定された
CRT13の画面のホログラムは位相の情報を持ってい
るので、これを特殊基準面を利用して合致することによ
って、各点に就いて、歯車の歯面を測定するに当たって
は、歯面のシミュレーションが必要であることは、上述
の通りであるが、この計算の基準であるパラメータは、
図2に示したような歯車緒元の他に、物体光Sの照射位
置関係がある。
[0022] When actually measuring tooth surfaces with a plurality of curved surface shapes, the measurement start point is the position where the first-order diffracted light is maximum, and the spindle index position at this time is the first measurement start point. In this way, the angular position of the shaft of the support device 7 of the measuring device can be determined for each tooth flank 6a by accurate indexing. To summarize the above, the image of the simulation described above has information on the angle of incidence, and the hologram on the screen of the CRT 13 that was measured has information on the phase, so it is possible to match these using a special reference plane. As mentioned above, in order to measure the tooth surface of a gear at each point, it is necessary to simulate the tooth surface, but the parameters that are the basis for this calculation are:
In addition to the gear specifications as shown in FIG. 2, there is also the irradiation position of the object light S.

【0023】図1に示すごとき測定装置上に基準歯車又
は被検歯車等の歯車が取付けられる時に同測定装置の中
心線に対して、歯車の溝の中心がτだけ回転していて、
図2に図示した状態になっている場合、物体光Sの中心
は距離値sだけ、オフセットして照射する。歯車仕様に
より適切あ照射位置があり、予めデータベースとして、
ファイルしておく。
When a gear such as a reference gear or a gear to be tested is mounted on a measuring device as shown in FIG. 1, the center of the gear groove is rotated by τ with respect to the center line of the measuring device.
In the state shown in FIG. 2, the center of the object light S is offset by a distance value s and is emitted. There is an appropriate irradiation position depending on the gear specifications, and as a database in advance,
File it.

【0024】可干渉光としてのレーザ光の入射角θは、
歯面形状測定装置の偏角プリズムによって固定されてお
り、交換可能であるので、測定前にどのような仕様の偏
角プリズムを使用するか入力しておく。波長λの物体光
Sが歯面に大きな入射角θで入射する場合、その実行波
長λ’は、次式で定義される。
The incident angle θ of the laser beam as coherent light is:
It is fixed by the deflection prism of the tooth flank shape measuring device and can be replaced, so input the specification of the deflection prism to be used before measurement. When object light S with wavelength λ is incident on the tooth surface at a large incident angle θ, its effective wavelength λ′ is defined by the following equation.

【0025】λ’=λ/cos θ 例えばはすば歯車を例に採ると、その歯面がインボリュ
ート・ヘリコイドであるから、平行な物体光Sによって
照射されると各位置で入射角が異なるので、得られた干
渉縞(実は各点の位相φ)を解析するには、各点につい
て入射各θ’から実行波長λ’を計算し、その点の位相
φから面の法線方向の段差、即ち、形状誤差δを算出す
る。  このとき、面の誤差(段差)δは、図5におけ
る2つの入射光々路L1 ,L2 の光路差ΔとΔ=2
δ・cosθ なる関係がある。
λ'=λ/cos θ For example, taking a helical gear as an example, its tooth surface is an involute helicoid, so when it is irradiated by the parallel object beam S, the angle of incidence differs at each position. To analyze the obtained interference fringes (actually, the phase φ of each point), calculate the effective wavelength λ' from each incident θ' for each point, and then calculate the step in the normal direction of the surface from the phase φ of that point, That is, the shape error δ is calculated. At this time, the surface error (level difference) δ is the optical path difference Δ between the two incident optical paths L1 and L2 in FIG. 5 and Δ=2
There is a relationship δ・cosθ.

【0026】ここで前述したフリンジスキャン法により
算出された干渉縞の各点の位相φ’と光路差Δとの関係
は、 である。従って、上記両式から、各点における誤差δ’
は である。
Here, the relationship between the phase φ' of each point of the interference fringe calculated by the fringe scanning method described above and the optical path difference Δ is as follows. Therefore, from both equations above, the error δ' at each point is
It is.

【0027】以上の説明において、図3における基準面
Bは、図4のように、半径方向にはピッチ円上で、歯巾
方向には 1/2の厚さにカットされている。基準歯面
Bは、基準歯面Aの座標原点の決定に用いるものである
から、カット寸法は上記の 1/2 限られるものでは
なく、歯巾方向に 1/3, 1/4 等の段差形状を
形成するようにしても良いことは言うまでもない。
In the above description, the reference surface B in FIG. 3 is cut on the pitch circle in the radial direction and 1/2 the thickness in the tooth width direction, as shown in FIG. Since the reference tooth surface B is used to determine the origin of the coordinates of the reference tooth surface A, the cut size is not limited to the above 1/2, but may have a step difference of 1/3, 1/4, etc. in the tooth width direction. Needless to say, it is also possible to form a shape.

【0028】また、実際の歯車の加工面は、必ずしも精
密な面取り仕上げが施してあるとは限らないので、かな
りバラツキがある。故に、本発明の方法を適用すれば、
そのようなバラツキを有した歯面の形状に対しても各点
の正確な座標値を得ることができるのである。
[0028] Furthermore, the machined surfaces of actual gears do not necessarily have a precise chamfered finish, so there is considerable variation. Therefore, if the method of the present invention is applied,
Accurate coordinate values for each point can be obtained even for tooth surface shapes with such variations.

【0029】[0029]

【発明の効果】以上の実施例の説明から明らかなように
、本発明によれば、従来、3次元形状を有する歯面の表
面上の1つの線に対する誤差としてしか捉えられなかっ
た歯面に関する形状測定データが、レーザ光から成る可
干渉光の波長を測定単位として、非接触で緻密な面とし
て測定されるので、歯面の実際の形状の把握が可能にな
る。しかも、近時、演算速度の高速化が著しいコンピュ
ーターを導入することによって、データの保管、管理を
行ってデータベース化し、測定位置の機械的制御、デー
タの取込み、解析、画像解析によるディスプレイ等が行
うことが可能となる効果も奏する。
As is clear from the description of the embodiments described above, the present invention can improve the accuracy of the tooth surface, which has conventionally been perceived only as an error with respect to one line on the surface of the tooth surface having a three-dimensional shape. Since the shape measurement data is measured as a dense surface without contact using the wavelength of coherent light consisting of a laser beam as the measurement unit, it is possible to grasp the actual shape of the tooth surface. Furthermore, with the recent introduction of computers with significantly faster calculation speeds, data can be stored and managed into a database, mechanically controlled at measurement positions, data taken in, analyzed, and displayed using image analysis. It also has the effect of making it possible.

【0030】更に、上述のごとき、線から面への測定の
進歩は、近時、サブミクロンの精度を要求されつつある
歯車の設計、加工に極めて有効なデータを供給して、歯
車製品の品質向上に大きく寄与することができるのであ
る。
Furthermore, as mentioned above, the progress in line-to-plane measurement has provided extremely effective data for the design and processing of gears, which are now requiring submicron precision, and has improved the quality of gear products. This can greatly contribute to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による歯面の形状誤差の測定に利用され
る形状測定装置の基本構成を示すブロック図である。
FIG. 1 is a block diagram showing the basic configuration of a shape measuring device used for measuring tooth surface shape errors according to the present invention.

【図2】(A)は、歯車の被検歯面と、それに入射する
物体光との関係を図示した側面図であり、(B)は(A
)の2ー2線による部分平面図である。
[Fig. 2] (A) is a side view illustrating the relationship between the tooth surface to be inspected of the gear and the object light incident thereon;
) is a partial plan view taken along line 2-2.

【図3】コンピューターによるシミュレーション歯面、
歯車の基準歯面、歯車の被検歯面の合成関係を示した解
説図である。
[Figure 3] Computer simulation tooth surface,
FIG. 2 is an explanatory diagram showing a composite relationship between a reference tooth surface of a gear and a test tooth surface of a gear.

【図4】基準歯面Bの形状の詳細を示した部分斜視図で
ある。
FIG. 4 is a partial perspective view showing details of the shape of the reference tooth surface B. FIG.

【図5】曲面形状を有した歯面の例としてのねじれ歯面
に入射する物体光の光路差と歯面誤差との関係を説明す
る解析図である。
FIG. 5 is an analytical diagram illustrating the relationship between the optical path difference of an object light incident on a twisted tooth surface as an example of a tooth surface having a curved surface shape and the tooth surface error.

【図6】図7及び図8の結合図である。FIG. 6 is a combined diagram of FIGS. 7 and 8;

【図7】図3に示した測定過程のフローチャートの前半
部分である。
FIG. 7 is the first half of the flowchart of the measurement process shown in FIG. 3;

【図8】図3に示した測定過程のフローチャートの後半
部分である。
FIG. 8 is the second half of the flowchart of the measurement process shown in FIG. 3;

【符合の説明】[Explanation of sign]

1…レーザ光々源、 2…ビームスプリッタ、 3…反射ミラー、 3a…ピエゾ素子、 4…反射ミラー、 5…受光面、 6…被検歯車、 6a…被検歯面、 7…支持軸装置、 8…カメラ、 9…サーボ駆動装置、 10…フレームメモリ、 12…MPU、 13…CRT、 17…被検歯車。 1...Laser light source, 2...beam splitter, 3...Reflection mirror, 3a...piezo element, 4...Reflection mirror, 5... Light receiving surface, 6...Test gear, 6a...Test tooth surface, 7...Support shaft device, 8...Camera, 9... Servo drive device, 10...Frame memory, 12...MPU, 13...CRT, 17...Test gear.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光源から発した可干渉光を参照光と物
体光とに分離し、物体光を目標曲面に照射することによ
り参照光と物体光の反射光とから該目標曲面のホログラ
ム像を得るようにして曲面を有した基準歯面のホログラ
ム像と同形の被検歯面の像からホログラフィック干渉に
よって前者の歯面に対する後者の歯面の歯面形状誤差を
測定する非接触自由曲面測定装置を用いた歯車の歯面形
状の測定方法において、前記基準歯面及び被検歯面を有
する歯車の理論的歯面の像を光線追跡によるシミュレー
ション法によって得て、該理論的歯面の像から前記被検
歯面上の各点における物体光の入射角のデータを収集し
、前記基準歯面と該基準歯面の一部を切欠いた第2の基
準歯面とに前記物体光を照射した夫々の像の重ね合わせ
によって該基準歯面の像の座標原点を決定し、前記座標
原点の決定した基準歯面のホログラムに、被検歯面の像
とを重ね合わせて前記座標原点が転移されたホログラフ
ィック干渉像を得るようにし、前記ホログラフィック干
渉像と前記理論歯面のシミュレーション像とを重ねるこ
とにより、前記座標原点に基づく各点に関して物体光の
入射角と干渉縞の位相との対応データを収集し、前記入
射角のデータと位相のデータとから前記被検歯面の該各
点における法線方向の前記基準歯面との寸法誤差を演算
し、以て、基準歯面に対する被検歯面の歯面形状誤差を
測定するようにしたことを特徴とする非接触自由曲面測
定装置による歯面形状測定方法。
Claim 1: Separating coherent light emitted from a light source into reference light and object light, and irradiating the object light onto a target curved surface, a hologram image of the target curved surface is created from the reference light and reflected light of the object light. Non-contact free-form surface measurement that measures the tooth surface shape error of the latter tooth surface with respect to the former tooth surface by holographic interference from a holographic image of a reference tooth surface with a curved surface and an image of the test tooth surface of the same shape. In a method for measuring the tooth flank shape of a gear using a device, an image of a theoretical tooth flank of a gear having the reference tooth flank and a test tooth flank is obtained by a simulation method using ray tracing, and an image of the theoretical tooth flank is obtained by a simulation method using ray tracing. Collect data on the incident angle of the object light at each point on the test tooth surface, and irradiate the object light onto the reference tooth surface and a second reference tooth surface obtained by cutting out a part of the reference tooth surface. The coordinate origin of the image of the reference tooth surface is determined by superimposing the respective images, and the coordinate origin is transferred by superimposing the image of the test tooth surface on the hologram of the reference tooth surface with the coordinate origin determined. By superimposing the holographic interference image and the simulated image of the theoretical tooth surface, the angle of incidence of the object light and the phase of the interference fringe can be determined for each point based on the coordinate origin. Corresponding data is collected, and the dimensional error in the normal direction of each point of the test tooth surface with respect to the reference tooth surface is calculated from the incident angle data and phase data, and A tooth surface shape measuring method using a non-contact free-form surface measuring device, characterized in that the tooth surface shape error of a tooth surface to be inspected is measured.
JP2008491A 1991-02-13 1991-02-13 Non-contact free-form surface measuring device for measuring gear tooth profile Expired - Fee Related JP2898108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008491A JP2898108B2 (en) 1991-02-13 1991-02-13 Non-contact free-form surface measuring device for measuring gear tooth profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008491A JP2898108B2 (en) 1991-02-13 1991-02-13 Non-contact free-form surface measuring device for measuring gear tooth profile

Publications (2)

Publication Number Publication Date
JPH04258709A true JPH04258709A (en) 1992-09-14
JP2898108B2 JP2898108B2 (en) 1999-05-31

Family

ID=12017242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008491A Expired - Fee Related JP2898108B2 (en) 1991-02-13 1991-02-13 Non-contact free-form surface measuring device for measuring gear tooth profile

Country Status (1)

Country Link
JP (1) JP2898108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109444A (en) * 1992-09-30 1994-04-19 Osaka Seimitsu Kikai Kk Noncontact measuring method for tooth-surface shape of gear
CN107131847A (en) * 2017-06-15 2017-09-05 宁波九纵智能科技有限公司 A kind of measurement apparatus and method that can be applied to 3D bend glass surface testings
CN114754698A (en) * 2022-04-11 2022-07-15 重庆大学 Surface gear tooth surface measuring point planning and on-machine measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109444A (en) * 1992-09-30 1994-04-19 Osaka Seimitsu Kikai Kk Noncontact measuring method for tooth-surface shape of gear
CN107131847A (en) * 2017-06-15 2017-09-05 宁波九纵智能科技有限公司 A kind of measurement apparatus and method that can be applied to 3D bend glass surface testings
CN107131847B (en) * 2017-06-15 2024-04-09 宁波九纵智能科技有限公司 Measuring device and method applicable to surface shape detection of 3D curved glass
CN114754698A (en) * 2022-04-11 2022-07-15 重庆大学 Surface gear tooth surface measuring point planning and on-machine measuring method
CN114754698B (en) * 2022-04-11 2023-08-04 重庆大学 Face gear tooth surface measuring point planning and on-machine measuring method

Also Published As

Publication number Publication date
JP2898108B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
Gao et al. On-machine and in-process surface metrology for precision manufacturing
CN102322796B (en) Laser detection device and method for gear parameters
TW201913034A (en) Non-contact and optical measuring automation system for the profile accuracy of disk cams and method thereof
CN107514979A (en) A kind of gear Integrated Measurement System and its method based on structure light
JP2898108B2 (en) Non-contact free-form surface measuring device for measuring gear tooth profile
JP3930378B2 (en) Non-contact measuring method and non-contact measuring apparatus for gear tooth profile
Bradley Automated surface roughness measurement
JP3690840B2 (en) Non-contact measurement method of gear tooth surface shape
JPH0786411B2 (en) Non-contact measuring method of tooth flank shape of gear
CN112268521A (en) Variable-angle synchronous phase shift interferometry method for gear tooth surface shape error
Jin et al. Applications of a novel phase-shift method using a computer-controlled polarization mechanism
EP0321639B1 (en) Apparatus for detecting profile error of article surface
JPH0771942A (en) Optical method and device for sorting gear automatically
JPH08240417A (en) Shape measuring method and shape measuring device using the method
EP1540271B1 (en) Method for measuring contour variations
TWI821175B (en) Measurement system and method for determining and measuring in-plane distortions of a workpiece
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
Lasemi An integrated approach for precision machining of freeform surfaces
CN112268520B (en) Non-contact flexible measurement method for gear tooth surface shape error
Góral et al. Precise 3D vision based measurements of gear wheels
EP3855111B1 (en) Interferometer for digital interferometry or digital holography, using a deflecting mirror
Guo et al. DEVELOPMENT AND APPLICATION OF BLADE INSPECTION SYSTEM BASED ON MULTI-OPTICAL SENSOR FUSION
Kubo et al. Laser Holographic Measurement of Tooth Flank Form of Cylindrical Involute Gear: Part 1—Principle and Measurement of Spur Gear
JP3635350B2 (en) Non-contact shape measurement method
Harding Current state-of-the-art of contouring techniques in manufacturing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees