JPH06105223B2 - Optical surface property measuring device - Google Patents

Optical surface property measuring device

Info

Publication number
JPH06105223B2
JPH06105223B2 JP4236292A JP4236292A JPH06105223B2 JP H06105223 B2 JPH06105223 B2 JP H06105223B2 JP 4236292 A JP4236292 A JP 4236292A JP 4236292 A JP4236292 A JP 4236292A JP H06105223 B2 JPH06105223 B2 JP H06105223B2
Authority
JP
Japan
Prior art keywords
light
sample
measurement
gloss
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4236292A
Other languages
Japanese (ja)
Other versions
JPH05215681A (en
Inventor
須賀  蓊
清 茶木
茂雄 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP4236292A priority Critical patent/JPH06105223B2/en
Publication of JPH05215681A publication Critical patent/JPH05215681A/en
Publication of JPH06105223B2 publication Critical patent/JPH06105223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】塗装、プラスチック、着色アルミ
ニウムなどの色、光沢、つや及び写像性を測定するため
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the color, gloss, gloss and image clarity of paints, plastics, colored aluminum and the like.

【0002】[0002]

【従来の技術】塗装、プラスチック、着色アルミニウ
ム、カラーステンレスなどの工業製品は、その外観の仕
上がりの優劣が販売、価格競争の結果に大きな影響を与
える。特に、自動車、家電製品などの外観の色、光沢、
つや、写像性の測定は製品管理、検査の重要な課題であ
り、各産業界では種々の方法が採用され、実施されてい
る。
2. Description of the Related Art Industrial products such as paints, plastics, colored aluminum, and colored stainless steels have a great influence on the results of sales and price competition depending on the quality of the finished products. In particular, the color and luster of the appearance of automobiles, home appliances, etc.
In other words, the measurement of image clarity is an important issue in product control and inspection, and various methods are adopted and implemented in each industry.

【0003】色彩と光沢は視覚に与える心理的効果とし
ては切り離せないものであり、光沢感とつや感とは関連
がありながら感覚的にはそれぞれ独立した特性である。
又、写像性は光沢では評価できない外観の美観を表現す
るものである。外観の仕上がりの優劣が販売に大きく影
響する工業製品では、これらの4つの光学的表面特性全
部を測定することによってはじめて総合的かつ十分な外
観管理が可能となる。
Color and gloss are inseparable as a psychological effect on the visual sense, and the sense of gloss and the sense of gloss are related but independent from each other.
The image clarity expresses an aesthetic appearance that cannot be evaluated by gloss. In the case of industrial products in which the quality of the finished appearance greatly affects the sales, comprehensive and sufficient appearance control can be performed only by measuring all four of these optical surface characteristics.

【0004】さて、従来、色の測定は、JIS(日本工
業規格)Z 8722(物体色の測定方法)に規定する
照明と受光の光学条件を満足する光学系を用いた測色計
によって行われている。
Conventionally, color measurement is performed by a colorimeter using an optical system that satisfies the optical conditions of illumination and light reception specified in JIS (Japanese Industrial Standard) Z 8722 (method of measuring object color). ing.

【0005】図4は上記JISに規定の光学系で特に塗
装面の色の測定に多用されている45度照明垂直受光方
式の光学系の構成図である。図4において、光源3の光
は同一平面内でこの中心を通る直線7に対象な45度方
向の光として取り出し、これをそれぞれ、コリメーター
レンズ10a、10bを用いて平行光束にし、両平行行
束の光路途中に固定した反射ミラー11a、11bを介
して、90度に曲げ、直線7に対して45度方向から試
料4面を照射するようにし、この反射光の中で、垂直方
向の拡散反射光を集光レンズ16でとらえて光拡散筒1
5の底面に集光し、光拡散筒15中に集積した試料4の
色による光を3刺激値XYZ受光器17で測定するよう
に構成したものである。尚、直線7は試料4の測定面の
中心を通る法線と一致する。
FIG. 4 is a block diagram of an optical system of the 45 degree illumination vertical light receiving system which is frequently used for the measurement of the color of the painted surface in the optical system specified by JIS. In FIG. 4, the light from the light source 3 is extracted as light in the direction of 45 degrees, which is symmetrical to the straight line 7 passing through the center in the same plane, and is made into parallel light beams by using the collimator lenses 10a and 10b, respectively, and both parallel lines are drawn. Through the reflection mirrors 11a and 11b fixed in the middle of the optical path of the bundle, the sample 4 is bent from the direction of 45 degrees with respect to the straight line 7 by irradiating the surface of the sample 4 at 90 degrees. A light diffusing cylinder 1 that captures the reflected light with a condenser lens 16
The light having the color of the sample 4 collected on the bottom surface of the sample 5 and accumulated in the light diffusion tube 15 is measured by the tristimulus value XYZ light receiver 17. The straight line 7 coincides with the normal line passing through the center of the measurement surface of the sample 4.

【0006】鏡面光沢の測定は、JIS(日本工業規
格)Z 8741(鏡面光沢度測定方法)で規定され、
±20度、±45度、±60度、±75度及び±85度
の入射角、受光角の条件で、測定対象物の種類によっ
て、その角度を選択して光沢度の測定を行うとされてい
る。塗装面の測定の場合には測定面への入射角度60
度、測定面からの反射角度60度の条件で、試料面の6
0度方向の正反射光を測定するのが一般的で、図5がそ
の光学系の構成原理図である。
The measurement of specular gloss is specified by JIS (Japanese Industrial Standard) Z 8741 (specular gloss measurement method),
It is said that the glossiness is measured by selecting the angle depending on the type of the measurement object under the conditions of the incident angle and the light receiving angle of ± 20 degrees, ± 45 degrees, ± 60 degrees, ± 75 degrees and ± 85 degrees. ing. When measuring a painted surface, the incident angle to the measured surface is 60
And the angle of reflection from the measurement surface of 60 degrees
Generally, specular reflection light in the 0 degree direction is measured, and FIG. 5 is a diagram showing the principle of the configuration of the optical system.

【0007】図5において、光源3の光はコンデンサー
レンズ23cでスリット状の絞り板24b上に集光さ
れ、ここで常に同一条件の一定の光源となり、直線7
(法線)に対して60度の角度で試料4を照射するよう
になっている。試料4の反射光の中で、正反射方向の光
(直線7に対して60度方向の正反射光)を受光するよ
うに受光器27が配してある。又、この受光器27に
は、受光角度に応じて開孔の大きさが規定されている鏡
面光沢用絞り31bが設けてあり(図5の点線位置に配
置)、試料4からの正反射光方向の光をコンデンサーレ
ンズ23dで集光してこの絞り31bの開孔に結像し、
光沢測定用の受光器27で測定するものである。
In FIG. 5, the light from the light source 3 is condensed by the condenser lens 23c on the slit-like diaphragm plate 24b, where it becomes a constant light source under the same conditions, and the straight line 7
The sample 4 is irradiated at an angle of 60 degrees with respect to the (normal line). The light receiver 27 is arranged so as to receive the light in the specular reflection direction (the specular reflection light in the direction of 60 degrees with respect to the straight line 7) in the reflected light of the sample 4. Further, the light receiver 27 is provided with a specular gloss stop 31b whose aperture size is defined according to the light receiving angle (arranged at the position indicated by the dotted line in FIG. 5), and specularly reflected light from the sample 4 is provided. Direction light is condensed by the condenser lens 23d and imaged in the aperture of the diaphragm 31b.
It is measured by the photodetector 27 for gloss measurement.

【0008】視感光沢計はISO/TC79/SC2/
WGで検討されていて、光学条件は基本的に前記鏡面光
沢度の測定に用いる光学系と同じ構造をもち、試料から
の反射光の中、正反射を除き、正反射光近傍の反射光を
測定するものである。このため、上述の鏡面光沢用絞り
31bの代りに、この絞りの開孔部を閉じ、他の部分
(鏡面光沢用絞り31bで閉じてある部分に相当)を開
孔部とした形の視感光沢用絞り32bにおきかえた条件
で測定を行うものである。従って、視感光沢計の光学系
原理図は、図5の鏡面光沢計の光学系の構成原理図と同
一で、絞りの形状が上述したよう鏡面光沢用絞り31b
を反転した形状の視感光沢用絞り32bとなっただけの
ものである。
The luminous gloss meter is ISO / TC79 / SC2 /
It has been studied by the WG and the optical conditions basically have the same structure as the optical system used for the measurement of the specular gloss, and the specular reflection is excluded from the reflected light from the sample, and the reflected light in the vicinity of the specular reflection light is excluded. It is something to measure. Therefore, instead of the above-described specular gloss stop 31b, the aperture of this stop is closed, and the other part (corresponding to the part closed by the specular gloss stop 31b) is used as an open part. The measurement is performed under the condition that the gloss diaphragm 32b is replaced. Therefore, the principle diagram of the optical system of the visual gloss meter is the same as the principle diagram of the optical system of the specular gloss meter of FIG. 5, and the shape of the diaphragm is as described above.
It is only the luminescent gloss diaphragm 32b having an inverted shape.

【0009】写像性の測定は、JIS H8686(ア
ルミニウム及びアルミニウム合金の陽極酸化皮膜の写像
性試験方法)で規定され、試料に対する入射角、受光角
の光学条件は45度照明45度受光又は60度照明60
度受光が多用されている。
The measurement of image clarity is specified by JIS H8686 (Testing method for image clarity of anodic oxide films of aluminum and aluminum alloys). The optical conditions of the incident angle and the light receiving angle with respect to the sample are 45 degree illumination, 45 degree illumination, and 60 degree reception. Lighting 60
Light reception is often used.

【0010】図6において、写像性の測定原理は、微小
スリット43から光源3の光を通過させ、コリメーター
レンズ10dで平行光束として、この像を試料4の表面
に投影する。この投影像は試料4表面の微細な凹凸や微
小なそりなどによってゆがみを生じる。このゆがみを生
じている投影像の反射光をコンデンサーレンズ23eに
よって写像性測定用光学くしの上に結像させた状態で、
この光学くしパターン33bを左右に移動させて、写像
性用光学くしパターン33b上の暗部、明部のパターン
を通して鏡面光沢と同一の受光器27に光の変化を与
え、明部の透過光の最大値M、暗部の光のモレによって
生じる透過光の最小値mをそれぞれ測定して、(M−
m)÷(M+m)×100の演算によって写像性の値を
求めるものである。
In FIG. 6, the principle of image clarity is that the light from the light source 3 is passed through the minute slit 43, and is collimated by the collimator lens 10d into a parallel light beam, which is projected onto the surface of the sample 4. The projected image is distorted due to minute irregularities on the surface of the sample 4 or minute warpage. In a state where the reflected light of the projected image having the distortion is formed by the condenser lens 23e on the image clarity measuring optical comb,
By moving the optical comb pattern 33b to the left and right, light is changed to the light receiver 27 having the same specular gloss as the specular gloss through the pattern of the dark portion and the bright portion on the image-forming optical comb pattern 33b, and the maximum of the transmitted light of the bright portion is obtained. The value M and the minimum value m of the transmitted light caused by the leakage of light in the dark part are measured, respectively, and (M-
m) ÷ (M + m) × 100 The value of image clarity is obtained by the calculation.

【0011】[0011]

【発明が解決しようとする課題】従来の測定器及び方法
で工業製品の外観の管理を精度高く、かつ充分におこな
うためには、色の測定用に測色計、鏡面光沢度の測定用
に鏡面光沢計、視感光沢の測定用に視感光沢計及び写像
性の測定用に写像性測定器の4台の計測器をそろえるこ
とが必要であった。
In order to accurately and sufficiently control the appearance of industrial products with conventional measuring instruments and methods, it is necessary to use a colorimeter for color measurement and a specular gloss measurement. It was necessary to have four measuring instruments, a specular gloss meter, a visual gloss meter for measuring the glossiness of the visual sense, and an image clarity measuring instrument for measuring the image clarity.

【0012】ここで、特に問題となるのは、同一試料で
あっても、4台の計測器で測定しようとするとき、同一
位置での測定が不可能である点にある。
Here, a particular problem is that even if the same sample is used, it is impossible to perform measurement at the same position when four measuring instruments are used.

【0013】一般に試料表面は、測定位置がわずかにズ
レても、色むら、凹凸の状態、ゆがみ、そりなどが若干
ではあるが異っており、不均一である。一方測定は、各
計測器を使用するたびに、試料の置き換えを行わなけれ
ばならないため、測定しようとする試料面の位置をどの
計測器においても常に同一に保持することは不可能に近
い。又、試料の置き換えによって生じる測定光の光軸に
対する方向性の不統一も避けられない。このため、同一
箇所を測定したつもりでも実際は異なった箇所を測定す
ることになり、同一試料でも異なった評価を行う可能性
があり、評価に信頼性が得られなかった。
In general, even if the measurement position is slightly deviated, the surface of the sample is uneven because of unevenness in color, unevenness, distortion, warpage and the like. On the other hand, in measurement, the sample must be replaced every time each measuring instrument is used, so it is almost impossible to always maintain the same position of the sample surface to be measured in any measuring instrument. In addition, inconsistency in the directionality of the measurement light with respect to the optical axis caused by replacement of the sample is unavoidable. Therefore, even if the intention was to measure the same location, different locations would actually be measured, and different evaluations could be performed on the same sample, and the evaluation was not reliable.

【0014】特に塗装板などでは、屋外暴露や、ウエザ
ーメータやフェードメーターなどによる促進耐候光試験
後、その表面にチョーキング(白亜化:塗膜の表面が粉
末状になる現象)が発生する。チョーキングは一般に微
細な塗装ムラなどの表面欠陥が増幅され均一に発生する
ものではないため、各種の光学的表面特性測定のバラツ
キとして現れ問題となっている。従って、こうしたチョ
ーキング面の色、鏡面光沢、視感光沢及び写像性をそれ
ぞれ測定して、総合的に光学的表面特性を評価しようと
する場合は、その評価の信頼性を得るために測定個所を
常に同一とすることが必要である。
Particularly in the case of a coated plate or the like, chalking (chalking: a phenomenon in which the surface of the coating film becomes powdery) occurs on the surface thereof after outdoor exposure or after an accelerated weathering test using a weather meter or a fade meter. Chalking is not a problem in which surface defects such as fine coating unevenness are generally amplified and thus do not uniformly occur, and thus appear as a variation in various optical surface characteristic measurements and pose a problem. Therefore, when measuring the color, specular gloss, luminous gloss and image clarity of the choking surface, and then comprehensively evaluating the optical surface characteristics, the measurement points should be set to obtain the reliability of the evaluation. It is necessary to always be the same.

【0015】[0015]

【表1】 [Table 1]

【0016】表1は1つの試料(促進耐候光試験を行う
前の青色塗装板)を、測色計、鏡面光沢計、視感光沢計
及び写像性測定器の順番で測定し、これを5回繰り返し
た結果である。表中、ΔE*ab は1回目の測定値に対し
て2回目以降の各測定値との色差、Δは1回目の測定値
に対して2回目以降の各測定値との差を表す。
In Table 1, one sample (blue coated plate before the accelerated weathering test) was measured in the order of a colorimeter, a specular gloss meter, a visual gloss meter, and an image clarity measuring instrument, which was 5 The result is repeated. In the table, ΔE * ab represents the color difference between the first measured value and each of the second and subsequent measured values, and Δ represents the difference between the first measured value and the second and subsequent measured values.

【0017】さて、この測定は、各測定ごとに試料を移
動して行うもので、各測定で試料の測定位置が変化しな
いように十分注意して移動したものであるが、表中のΔ
E*ab (色差)及びΔ(差)でわかる通り、測定値に大
幅なバラツキを生じている。これは、測定位置による測
定誤差と認めざるを得ない。このように促進耐候光試験
を行う前の試料であっても、上記4種の光学的表面特性
を測定する際に、試料を移動して測定する方法では、同
一測定箇所の評価ができないことになる。さらに、一般
には各測定の都度、零合せ及び標準合わせ(写像性測定
は除く)の操作を行う必要があるため、試料を移動する
手間を含めて、測定操作に時間がかかるものであった。
Now, this measurement is carried out by moving the sample for each measurement, and the measurement is carried out with great care so that the measurement position of the sample does not change during each measurement.
As can be seen from E * ab (color difference) and Δ (difference), the measured values greatly vary. This must be recognized as a measurement error due to the measurement position. Even when the sample is not subjected to the accelerated weathering test as described above, it is impossible to evaluate the same measurement point by the method of moving the sample when measuring the above four kinds of optical surface characteristics. Become. Further, generally, it is necessary to carry out the operation of zero alignment and standard alignment (excluding the image clarity measurement) every time each measurement is performed, so that the measurement operation takes time including the labor of moving the sample.

【0018】従って、このように複数(4台)の計測器
を用いて測定する必要性はあるが、試料の同一測定面を
正確に維持できず、高精度かつ正確な計測評価ができな
かった。又、測定操作も各計測器ごとにそれぞれ零合
せ、標準合せなどの測定準備の操作を繰り返し行わなけ
ればならないため、測定に手間がかかるものであった。
Therefore, although it is necessary to perform measurement using a plurality of (four) measuring instruments as described above, the same measurement surface of the sample cannot be accurately maintained, and high-precision and accurate measurement evaluation cannot be performed. . Further, the measurement operation also requires repeated preparations for measurement such as zero alignment and standard alignment for each measuring instrument, which makes the measurement laborious.

【0019】このため、1台の光学系で、試料を移動せ
ずに(測定面を動かさず)、測色、鏡面光沢、視感光沢
及び写像性の4通りの光学的表面特性を連続して測定で
きる装置の開発が望まれていた。
Therefore, with one optical system, four kinds of optical surface characteristics of colorimetry, specular gloss, luminous gloss and image clarity can be continuously applied without moving the sample (without moving the measurement surface). It has been desired to develop a device that can measure by using this method.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
に、(ア)測定用の光源を1個設け、この光源の中心を
通る平面内にあって、中心線が光源の中心を通る直線に
対象な45度方向の2つの平行光束として光源の光を取
り出し、それぞれ第1の平行光束及び第2の平行光束と
し、第1の平行光束の光路途中にこの光束を90度の角
度で反射しかつこの平行光束を遮らない位置まで移動可
能に配した第1の反射ミラーを設け、第2の平行光束の
光路途中にこの平行光束を90度の角度で反射するよう
に固定して配した第2の反射ミラーを設け、前記第1及
び第2の平行光束を90度の角度で反射したとき、両平
行光束の中心線の交点が前記直線上に位置するようにし
た第1の照射装置と、(イ)試料の測定面が前記両平行
光束の交点に位置できるように配した試料台と、(ウ)
前記第1及び第2の平行光束を同時に試料台上の試料に
照射したとき、試料の反射光中、前記直線方向への拡散
反射光を受光する測色用の第1の受光装置と、(エ)前
記第1の反射ミラーが第1の光束を遮らない位置に移動
したとき、このの反射ミラーと同期し、光源と第2の平
行光束との間に移動して光源の光を遮る遮光板と、
(オ)前記第1の反射ミラーが第1の光束を遮らない位
置に移動したとき、第1の平行光束を反射する第3の反
射ミラーを備え、この反射光を第3の平行光束とし、そ
の中心線が前記第1及び第2の平行光束の中心線の交点
と一致しかつ前記直線に対して60度の角度で照射する
ように配した第2の照射装置と、(カ)試料台上の試料
に第3の平行光束を照射したとき、試料の反射光中、前
記直線に対して60度方向の正反射光を受光する位置に
配した、視感光沢用絞りと鏡面光沢用絞りと写像性測定
用光学くしパターンとを有する絞りパターン板を移動可
能に備え、この絞りパターン板の移動によって視感光
沢、鏡面光沢及び写像性を切り換えて受光する第2の受
光装置と、(キ)測色、鏡面光沢、視感光沢及び写像性
の測定を行うための動作を制御しかつ測定値を求めるた
めの演算記憶回路を有する制御装置とから構成され、1
台の光学系で、試料の測定位置を変えずにその同一測定
面の、上記4種類の光学的表面特性を測定することを特
徴とする光学的表面特性測定装置を手段とした。
In order to solve the above-mentioned problems, (a) one light source for measurement is provided, and in a plane passing through the center of this light source, a straight line whose center line passes through the center of the light source. The light from the light source is taken out as two parallel light fluxes in the direction of 45 degrees, which are respectively defined as the first parallel light flux and the second parallel light flux, and these light fluxes are reflected at an angle of 90 degrees in the optical path of the first parallel light flux. In addition, a first reflecting mirror movably arranged to a position where the parallel light flux is not blocked is provided, and the parallel light flux is fixedly arranged in the optical path of the second parallel light flux so as to reflect the parallel light flux at an angle of 90 degrees. A first irradiating device provided with a second reflecting mirror so that when the first and second parallel light beams are reflected at an angle of 90 degrees, the intersections of the center lines of both parallel light beams are located on the straight line. And (a) the measurement surface of the sample is located at the intersection of the two parallel light beams. And the sample stage arranged to cut, (c)
A first light receiving device for color measurement, which receives diffused reflected light in the linear direction among reflected light of the sample when the sample on the sample stage is simultaneously irradiated with the first and second parallel light fluxes; D) When the first reflection mirror moves to a position where it does not block the first light beam, it is synchronized with this reflection mirror and moves between the light source and the second parallel light beam to block the light of the light source. A board,
(E) A third reflecting mirror is provided which reflects the first parallel light flux when the first reflecting mirror moves to a position where it does not block the first light flux. A second irradiation device arranged such that its center line coincides with the intersection of the center lines of the first and second parallel light fluxes and irradiates the straight line at an angle of 60 degrees; A diaphragm for glossy luster and a diaphragm for specular gloss arranged at a position to receive specularly reflected light in a direction of 60 degrees with respect to the straight line in the reflected light of the sample when the upper sample is irradiated with the third parallel light flux. And a second light-receiving device for movably providing a diaphragm pattern plate having an optical comb pattern for measuring image clarity, and switching the luminous gloss, specular gloss and image clarity by the movement of the diaphragm pattern plate. ) For measuring colorimetric, specular gloss, luminous gloss and image clarity It is composed of a controller having a computing memory circuit for determining the control the work and measurements 1
The optical system characteristic measuring device is characterized in that the above-mentioned four kinds of optical surface characteristics of the same measurement surface are measured by the optical system of the table without changing the measurement position of the sample.

【0021】[0021]

【作用】上記の手段を採用したため、第1の照射装置の
一方の平行光束を曲げるために設けた反射ミラーを、こ
の平行光束を遮らない位置まで移動し、この反射ミラー
に同期した遮光板で他方の平行光束を遮断することによ
り、第1の照射装置で用いた光源を、鏡面光沢、視感光
沢及び写像性を測定するための第2の照射装置の光源と
することができる。又、第2の受光装置に視感光沢用絞
り、鏡面光沢用絞り及び写像性測定用光学くしとを有す
る絞り板を移動可能に取り付けたため、1個の受光装置
で鏡面光沢、視感光沢及び写像性の3通りの受光ができ
る。さらに、制御装置により測色を行うための動作、反
射ミラーの移動動作とこれに同期した遮光板の動作、絞
り板の移動動作を行うことにより、1台の光学系で、試
料を移動せずに測色、鏡面光沢、視感光沢及び写像性の
4通りの光学的表面特性を連続して測定できるものとな
る。
Since the above means is adopted, the reflecting mirror provided for bending one of the parallel luminous fluxes of the first irradiation device is moved to a position where the parallel luminous flux is not blocked, and the light shielding plate synchronized with this reflecting mirror is used. By blocking the other parallel light flux, the light source used in the first irradiation device can be used as the light source of the second irradiation device for measuring specular gloss, luminous gloss and image clarity. Further, since a diaphragm plate having a diaphragm for visual gloss, a diaphragm for specular gloss, and an optical comb for measuring image clarity is movably attached to the second light receiving device, the specular gloss, visual gloss and It is possible to receive light in three ways with image clarity. Further, by performing the operation for color measurement by the control device, the movement operation of the reflection mirror and the movement of the light shielding plate synchronized with this, and the movement operation of the diaphragm plate, the sample is not moved by one optical system. In addition, it is possible to continuously measure four kinds of optical surface characteristics such as color measurement, specular gloss, luminous gloss and image clarity.

【0022】[0022]

【実施例】以下図面に従って本発明の1実施例を説明す
る。図1は本発明で、測色、鏡面光沢、視感光沢及び写
像性の4種類の光学的表面特性を測定するための光学条
件を1台の光学系1として構成するための基本構成図で
ある。又、図2は、図1で特に第2の照射装置19と第
2の受光装置26及び試料4との関係を示す概念平面図
で、第2の照射装置19の絞り板24a及び第2の受光
装置26の絞りパターン板30の拡大図を併せて図示し
たものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a basic configuration diagram for configuring one optical system 1 as an optical condition for measuring four kinds of optical surface characteristics of color measurement, specular gloss, luminous gloss and image clarity in the present invention. is there. 2 is a conceptual plan view particularly showing the relationship between the second irradiation device 19, the second light receiving device 26 and the sample 4 in FIG. 1. The diaphragm plate 24a and the second irradiation device 19 of the second irradiation device 19 are shown in FIG. 3 is an enlarged view of a diaphragm pattern plate 30 of the light receiving device 26. FIG.

【0023】図1において、第1の照射装置2は光源3
の光を試料4に45度方向から照射し、試料4の反射光
中、垂直方向の光を受光しこれを拡散し、この拡散光を
受光して測色するためのものである。
In FIG. 1, the first irradiation device 2 is a light source 3
This is for irradiating the sample 4 with the light from the direction of 45 degrees, to receive the light in the vertical direction in the reflected light of the sample 4, to diffuse the light, and to receive the diffused light for color measurement.

【0024】この構成は、暗箱状のケース5の底部に固
定した光源ボックス6内に光源3(本実施例では12V
50Wのハロゲンランプを採用した)を1個配し、この
光源3の中心を通る平面内で、光源3の中心を通る直線
7に対象な45度方向の2光束を取り出すために、この
光源ボックス6に、前記直線7に対してそれぞれ45度
の位置の2カ所に光束取り出し窓8a、8bが設けてあ
る。
In this structure, the light source 3 (12 V in this embodiment) is housed in the light source box 6 fixed to the bottom of the dark box-shaped case 5.
This is a light source box for extracting two luminous fluxes in the direction of 45 degrees that are symmetrical to the straight line 7 passing through the center of the light source 3 in a plane passing through the center of the light source 3 In FIG. 6, light flux extraction windows 8a and 8b are provided at two positions of 45 degrees with respect to the straight line 7.

【0025】又、この2光束の光路として、角柱状でそ
の中心線が前記平面内にありかつ途中で90度に折れ曲
がった、同一形状の第1の光ダクト9a及び第2の光ダ
クト9bを設け、それぞれの一方の口を光取り出し窓8
a、8bに接続し、前記直線7に対して対象に配してあ
る。
As the optical paths of the two light fluxes, a first optical duct 9a and a second optical duct 9b, which have the same shape and have a prism shape whose center line lies in the plane and are bent at 90 degrees on the way, are used. The light extraction window 8 is provided on each side.
It is connected to a and 8b, and is arranged on the object with respect to the straight line 7.

【0026】この両光ダクト9a、9bには、光源ボッ
クス6の光束取り出し窓8a、8bに近接してそれぞれ
コリメーターレンズ10a、10bが固定してあり、光
源3から取り出した光をそれぞれ平行光束にしている。
Collimator lenses 10a and 10b are fixed to the two light ducts 9a and 9b, respectively, close to the light beam extraction windows 8a and 8b of the light source box 6, and the light beams extracted from the light source 3 are collimated into parallel light beams. I have to.

【0027】又、第1の光ダクト9aの折れ曲がり部分
には、このダクト内を通る平行光束を90度方向に反射
するための第1の反射ミラー11aが移動可能(詳細後
述)に取り付けてあり、第2の光ダクト9bの折れ曲が
り部分には同様に第2の反射ミラー11bが固定(移動
不可)してある。このため、両光ダクト9a、9b内を
通る平行光束は第1及び第2の反射ミラー11a、11
bによってそれぞれ90度に曲げられることになり、両
光束の中心線は前記直線7に対して45度の角度で交わ
ることになる。更にこの両光ダクト9a、9bは、前記
両中心線が前記直線7の同一点を交点とするように正確
に調整されている。又、両光ダクト9a、9bの他方の
口にはそれぞれ、反射ミラー11a、11bで反射され
た平行光束を、試料4の測定面積に応じた所定の大きさ
の光束に絞るために、コンデンサーレンズ(図示せず)
などを持つ光束絞り12a、12bが取り外し可能に取
り付けてある。
A first reflecting mirror 11a for reflecting a parallel light beam passing through the duct in the direction of 90 degrees is movably attached to the bent portion of the first optical duct 9a (details will be described later). Similarly, the second reflection mirror 11b is fixed (not movable) to the bent portion of the second light duct 9b. Therefore, the parallel light fluxes passing through both the light ducts 9a and 9b are not reflected by the first and second reflection mirrors 11a and 11b.
Each of the light beams is bent at 90 degrees by b, and the center lines of both light fluxes intersect the straight line 7 at an angle of 45 degrees. Further, both of the light ducts 9a and 9b are accurately adjusted so that the center lines of both the light ducts 9a and 9b are at the same point of the straight line 7. A condenser lens is provided at the other opening of each of the two light ducts 9a and 9b to narrow the parallel light flux reflected by the reflection mirrors 11a and 11b into a light flux of a predetermined size according to the measurement area of the sample 4. (Not shown)
Luminous flux diaphragms 12a and 12b having, for example, are detachably attached.

【0028】ケース5には前記直線7を中心に持つ試料
4の測定開孔13が光源3と対象位置にある。試料4
は、この測定開孔13を通じて前記2光束の交点位置で
照射されるように、ケース5外面上部に、中心をこの測
定開孔13と一致させ、交換可能に取り付けた、試料4
の測定面の大きさに応じた開孔を持つ試料台14上に、
測定面を光源3に向けて載置してある。
In the case 5, the measurement hole 13 of the sample 4 having the straight line 7 at the center is located at the target position with the light source 3. Sample 4
Is attached to the upper part of the outer surface of the case 5 such that the center thereof coincides with the measurement opening 13 and is exchangeably attached so that the sample 4 is irradiated through the measurement opening 13 at the intersection position of the two light beams.
On the sample table 14 having an opening corresponding to the size of the measurement surface of
The measurement surface is placed facing the light source 3.

【0029】又、試料4の下方でかつ光源ボックス6と
の間に、前記直線7を中心に持つ、円筒に半球を接続し
た形状の光拡散筒15が第1の受光装置として配してあ
る。この光拡散筒15には、試料4の反射光中で垂直方
向の光を受光しこの底部に集光するために、円筒部分に
短焦点の集光レンズ16(本実施例ではフレネルレンズ
を採用した)が取り付けてある。又、光拡散筒15の内
面は光を平均に拡散するために硫酸バリウムなどが塗ら
れており、この拡散光を取り出し測色するために、この
半球の外周に3刺激値X、Y、Zの受光器17がそれぞ
れ別個に取り付けてある。
Further, below the sample 4 and between the light source box 6 and the light source box 6, a light diffusing tube 15 having a straight line 7 as a center and a hemisphere connected to a cylinder is arranged as a first light receiving device. . The light diffusing tube 15 has a short focus lens 16 (a Fresnel lens is used in the present embodiment) in the cylindrical portion in order to receive light in the vertical direction in the reflected light of the sample 4 and focus it on the bottom. It was installed. The inner surface of the light diffusing tube 15 is coated with barium sulfate or the like to diffuse the light evenly, and the tristimulus values X, Y and Z are applied to the outer circumference of the hemisphere to extract the diffused light and measure the color. The light receivers 17 are separately attached.

【0030】このように構成した第1の照射装置2と第
1の受光装置(光拡散筒15)では、直線7に対して4
5度方向に取り出された光源3の光は、それぞれ平行光
束となり、反射ミラー11a、11bで90度方向に曲
げられ、所定の大きさの光束に絞り込まれ、直線7上で
両平行光束の交点に位置する試料4面に照射する。さら
に試料4面からの反射光は、光拡散筒15内に集光さ
れ、この内部で拡散され、この拡散光が3刺激値X、
Y、Zの受光器17で受光されることになる。尚、直線
7は試料4の測定面の中心を通る法線と一致する。
In the first irradiating device 2 and the first light receiving device (light diffusing tube 15) thus constructed, the straight line 7 is 4
The light of the light source 3 extracted in the 5 degree direction becomes a parallel luminous flux, is bent in the 90 degree direction by the reflection mirrors 11a and 11b, is narrowed down to a luminous flux of a predetermined size, and the intersection of both parallel luminous fluxes on the straight line 7. The surface of the sample 4 located at is irradiated. Further, the reflected light from the surface of the sample 4 is condensed in the light diffusing cylinder 15 and diffused therein, and the diffused light is tristimulus value X,
The light is received by the Y and Z light receivers 17. The straight line 7 coincides with the normal line passing through the center of the measurement surface of the sample 4.

【0031】次に、図1及び図2を用いて鏡面光沢、視
感光沢及び写像性の測定を行うための光学系を説明す
る。
Next, an optical system for measuring specular gloss, visual gloss and image clarity will be described with reference to FIGS. 1 and 2.

【0032】前記第1の光ダクト9aの折れ曲がり部分
に取り付けた第1の反射ミラー11aは、ミラー移動台
18a上に固定されており、この移動台18aは、一般
に周知のラックとピニオン(図示せず)の技術を用いて
直線的に、前記平行光束を遮らない位置まで移動可能と
なっている。又、第1の反射ミラー11aはミラー移動
台18aの両端部に設けたフォトセンサー(図示せず)
によって正確に所定の位置を維持できるようになってい
る。
The first reflecting mirror 11a attached to the bent portion of the first optical duct 9a is fixed on a mirror moving base 18a, and this moving base 18a has a generally known rack and pinion (not shown). It is possible to move linearly to the position where the parallel light flux is not blocked by using the technique (1). The first reflecting mirror 11a is a photo sensor (not shown) provided at both ends of the mirror moving table 18a.
By this, it is possible to maintain the predetermined position accurately.

【0033】第2の照射装置19は、この第1の反射ミ
ラー11aを平行光束を遮らない位置まで移動したとき
(図1の点線位置まで移動)、この平行光束を取り入れ
る開孔20aを持ち、この平行光束の中心を前記直線7
に対して光源3と反対側で、60度の角度で反射するよ
うに固定した第3の反射ミラー11cを備えたミラーボ
ックス21と、このボックス21に開けた第3の反射ミ
ラー11cの反射光を通過するための開孔20bに、円
筒状のダクト22aをその中心が開孔20bの中心と一
致するように取り付けてある。又、円筒状のダクト22
aの端部で前記開孔20b側に反射光を集光するための
コンデンサーレンズ23aが固定されており、このレン
ズ23aの焦点位置にごく細い幅のスリット状の絞り板
24a(図2の24bは絞り板24aの平面図)が配し
てあり、他端部には、このスリットを通過した光を平行
光束にするためのコリメーターレンズ10cを固定して
構成してある。さらに、この平行光束の中心線が前記第
1の照射装置2の2光束の交点と一致する位置に正確に
調整して固定してある。
The second irradiator 19 has an opening 20a for taking in the parallel luminous flux when the first reflecting mirror 11a is moved to a position where the parallel luminous flux is not blocked (moved to the dotted line position in FIG. 1). The center of this parallel light beam is the straight line 7
On the side opposite to the light source 3, a mirror box 21 provided with a third reflection mirror 11c fixed so as to reflect at an angle of 60 degrees, and reflected light of the third reflection mirror 11c opened in this box 21. A cylindrical duct 22a is attached to the opening 20b for passing through so that its center coincides with the center of the opening 20b. Also, the cylindrical duct 22
A condenser lens 23a for condensing reflected light is fixed to the aperture 20b side at the end of a, and a slit-like diaphragm plate 24a (24b in FIG. 2) having a very narrow width is provided at the focal position of the lens 23a. Is a plan view of the diaphragm plate 24a), and a collimator lens 10c for collimating the light passing through the slit into a parallel light flux is fixed to the other end. Further, the center line of the parallel light flux is accurately adjusted and fixed at a position where it coincides with the intersection of the two light fluxes of the first irradiation device 2.

【0034】又、第2の光ダクト9bの途中に、光源3
の光を遮光するように円盤状の遮光板25が配してあ
る。この遮光板25は、モーター(図示せず)によっ
て、前記第1の反射ミラー11aが平行光束を遮らない
位置まで移動したとき、第2の光ダクト9bを通る光束
を遮るように回転するものである。尚、この円盤25も
フォトセンサー(図示せず)によって所定の位置を維持
できるようにしてある。
In the middle of the second light duct 9b, the light source 3
A disc-shaped light-shielding plate 25 is arranged so as to shield the above light. The light blocking plate 25 rotates so as to block the light flux passing through the second optical duct 9b when the first reflecting mirror 11a moves to a position where the parallel light flux is not blocked by a motor (not shown). is there. The disk 25 can also be maintained at a predetermined position by a photo sensor (not shown).

【0035】第2の受光装置26は、上記第2の照射装
置19で照射した試料4面の反射光の中で、直線7に対
して60度方向の正反射光成分を受光するもので、第2
の照射装置19と同一平面上にあり、先端にコンデンサ
ーレンズ23bを固定した円筒上のダクト22bが底部
に受光器27(本実施例ではシリコンフォトセルを用い
た)を配した受光器ボックス28に一体に固定されてい
る。又、コンデンサーレンズ23bの焦点位置に、小開
孔を持つ仕切板29があり、これに接して前記第1の反
射ミラー11aの移動台18aと同じく、ラックとピニ
オンで水平移動する絞り移動台18bに固定した絞りパ
ターン板30(後述)が配してある。
The second light receiving device 26 receives the specularly reflected light component in the direction of 60 degrees with respect to the straight line 7 in the reflected light from the surface of the sample 4 irradiated by the second irradiation device 19. Second
The cylindrical duct 22b, which is on the same plane as the irradiating device 19 and has a condenser lens 23b fixed to the tip thereof, is provided in a light receiver box 28 in which a light receiver 27 (a silicon photocell is used in this embodiment) is arranged at the bottom. It is fixed together. Further, there is a partition plate 29 having a small opening at the focal position of the condenser lens 23b, and a diaphragm moving table 18b that moves horizontally by a rack and a pinion in contact with the partition plate 29, which is in contact with this partition plate 29a. A diaphragm pattern plate 30 (described later) fixed to the above is arranged.

【0036】図2において、絞りパターン板30は、鏡
面光沢用絞り31aとしての長方形のスリット状の絞り
と、視感光沢用絞り32aとしての円形開孔の中央に鏡
面光沢用絞りと同一形状の遮光部分を設けた絞り及び写
像性測定用の長方形の小スリットをくし形に配列した写
像性用光学くしパターン33aとを有した長方形の平板
である。又、この絞りパターン板30もフォトセンサー
(図示せず)によって所定の位置を維持できるようにな
っている。
In FIG. 2, the diaphragm pattern plate 30 has a rectangular slit-shaped diaphragm as a specular gloss diaphragm 31a and a circular gloss diaphragm 32a having the same shape as the specular gloss diaphragm at the center. It is a rectangular flat plate having a diaphragm provided with a light-shielding portion and an image-forming optical comb pattern 33a in which rectangular small slits for measuring image clarity are arranged in a comb shape. The diaphragm pattern plate 30 can also be maintained at a predetermined position by a photo sensor (not shown).

【0037】従って第2の照射装置19は、第1の反射
ミラー11aが第1の光ダクト9aを通過する平行光束
を遮らない位置まで移動したとき、上記第1の照射装置
2の場合と同様に載置した試料4の測定面を、第3の反
射ミラー11cで反射した平行光束が照射することにな
る。このとき第2のダクト9bを通過する平行光束は遮
光板25に遮られているため、試料4面は第1のダクト
9aを通った平行光束のみで照射されることになり、第
2の受光装置26でこの平行光束のみの反射光を受光で
きることになる。
Therefore, the second irradiating device 19 is similar to the case of the first irradiating device 2 when the first reflecting mirror 11a moves to a position where it does not block the parallel light flux passing through the first light duct 9a. The parallel light flux reflected by the third reflection mirror 11c is irradiated onto the measurement surface of the sample 4 placed on the. At this time, since the parallel light flux passing through the second duct 9b is blocked by the light shielding plate 25, the surface of the sample 4 is irradiated with only the parallel light flux passing through the first duct 9a, and the second light reception. The device 26 can receive the reflected light of only the parallel light flux.

【0038】図3は、測色測定動作、鏡面光沢測定動
作、視感光沢測定動作及び写像性測定動作を行うための
制御装置34のパネル部分35の図である。この制御装
置34の内部にはマイクロコンピュータなどよりなる演
算記憶回路(図示せず)などが内蔵されていて、パネル
部分35上の該当するスイッチを押すことにより、上記
4種類の光学的表面特性の中から1つを選択し、所定の
測定動作を行うように制御するものである。
FIG. 3 is a diagram of the panel portion 35 of the control device 34 for performing the colorimetric measurement operation, the specular gloss measurement operation, the visual gloss measurement operation and the image clarity measurement operation. An arithmetic storage circuit (not shown) such as a microcomputer is built in the control device 34, and by pressing a corresponding switch on the panel portion 35, the above-mentioned four types of optical surface characteristics can be obtained. One of them is selected and controlled so as to perform a predetermined measurement operation.

【0039】以下に上記4種の光学的表面特性で試料を
測定する操作手順及びそのときの動作を図1、図2及び
図3を用いて説明する。
The procedure for measuring a sample with the above-mentioned four types of optical surface characteristics and the operation at that time will be described below with reference to FIGS. 1, 2 and 3.

【0040】ここで、36は4種の光学的表面特性選択
スイッチ群で、37aは測色、37bは鏡面光沢、37
cは視感光沢及び37dは写像性選択スイッチとなって
いる。38は零合せスイッチ、39は標準合せスイッ
チ、40は測定スイッチである。又、41は数値キー群
で、例えば既知のX、Y、Z値を入力しておいて、測定
試料との色差を計る場合などに用いるものであり、表示
窓42は、測定データを表示する液晶パネルである。
Here, 36 is a group of four kinds of optical surface characteristic selection switches, 37a is a colorimetric measurement, 37b is a specular gloss, 37
Reference numeral c is a luminous gloss and 37d is an image clarity selection switch. 38 is a zero adjustment switch, 39 is a standard adjustment switch, and 40 is a measurement switch. Reference numeral 41 is a group of numerical keys, which are used, for example, when inputting known X, Y, and Z values to measure the color difference from the measurement sample, and the display window 42 displays the measurement data. It is a liquid crystal panel.

【0041】(1)零合せ操作:制御装置34内部の演
算記憶回路(図示せず)に電気的レベルの零ラインを設
定し記憶させるための操作で、測色と鏡面光沢、視感光
沢及び写像性測定とを別に行う。鏡面光沢、視感光沢及
び写像性測定の場合は、第2の照射装置19及び受光器
27が同一であるため、例えば鏡面光沢の測定を選択し
てそれで一度行えばよい。操作は、試料台14に暗箱
(図示せず)を乗せて測定開孔13に外光が入らない状
態にして、測色の場合は測色選択スイッチ37aを、鏡
面光沢、視感光沢及び写像性のいづれかの測定の場合は
鏡面光沢選択スイッチ37bを押し、続けて零合せスイ
ッチ38を押す。
(1) Zero adjustment operation: An operation for setting and storing an electric level zero line in an arithmetic storage circuit (not shown) in the control unit 34. Color measurement and specular gloss, visual gloss and Separately from the image clarity measurement. In the case of specular gloss, luminous gloss and image clarity measurement, since the second irradiation device 19 and the light receiver 27 are the same, for example, specular gloss measurement may be selected and performed once. For the operation, a dark box (not shown) is placed on the sample table 14 so that the measurement aperture 13 is not exposed to external light, and in the case of color measurement, the color measurement selection switch 37a is set to specular gloss, luminous gloss and mapping. In the case of measuring either of the sexes, the specular gloss selection switch 37b is pressed, and then the zero adjustment switch 38 is pressed.

【0042】測色選択スイッチ37aを押した場合は、
第1の照射装置2及び第1の受光装置を用いた測色動作
の零合せで、前記XYZ受光器17の零レベルが記憶さ
れる。又、鏡面光沢選択スイッチ37bを押した場合
は、第1の光ダクト9aの折れ曲がり部分の第1の反射
ミラー11aが平行光束を遮らない位置まで移動し、同
時に遮光板25が第2の光ダクト9bを通過すべき平行
光束を遮る位置に回転移動する。さらに、第2の受光装
置26では、絞りパターン板30の鏡面光沢用絞り31
aが仕切板29の小開孔位置に移動する。ここで受光器
27の零レベルが記憶される。
When the colorimetric selection switch 37a is pressed,
The zero level of the XYZ light receiver 17 is stored by zeroing the colorimetric operation using the first irradiation device 2 and the first light receiving device. When the specular gloss selection switch 37b is pressed, the first reflection mirror 11a in the bent portion of the first light duct 9a moves to a position where it does not block the parallel light flux, and at the same time, the light shielding plate 25 causes the second light duct. It is rotationally moved to a position that blocks the parallel light flux that should pass through 9b. Further, in the second light receiving device 26, the mirror gloss diaphragm 31 of the diaphragm pattern plate 30.
a moves to the small opening position of the partition plate 29. Here, the zero level of the light receiver 27 is stored.

【0043】さて、零合せは、装置の迷光のレベルを受
光器で検出し演算記憶回路に記憶させるためのものであ
るが、絞りパターン板30に設けた鏡面光沢用絞り31
a、視感光沢用絞り32a及び写像性用光学くしパター
ン33aの開孔面積はそれぞれ異なるが、測定上の障害
になるほどの問題ではないので、本実施例では、操作の
簡便性を優先して、3者のいずれを用いてもよいように
演算記憶回路を構成してある。もちろん、鏡面光沢、視
感光沢及び写像性のそれぞれで零合せを行うように演算
記憶回路を構成してもよい。
Now, the zero adjustment is for detecting the level of stray light of the apparatus by the light receiver and storing it in the arithmetic storage circuit. The stop 31 for specular gloss provided on the stop pattern plate 30 is used.
Although the aperture areas of the a, the glossy diaphragm 32a and the image-forming optical comb pattern 33a are different from each other, they do not cause a problem in measurement. Therefore, in the present embodiment, priority is given to simplicity of operation. The arithmetic storage circuit is configured so that any one of the three can be used. Of course, the arithmetic storage circuit may be configured to perform zeroing for each of specular gloss, luminous gloss, and image clarity.

【0044】(2)標準合せ:予め記憶されている標準
値に対して、演算記憶回路に電気的レベルの標準ライン
を設定し記憶させるための操作で、測色、鏡面光沢及び
視感光沢について別々に行う。写像性については行う必
要がない。操作は、試料台14の測定開孔13に当該の
標準板を当て、測色選択スイッチ37a、鏡面光沢選択
スイッチ37b又は視感光沢選択スイッチ37cを押
し、ついで標準合せスイッチ39を押す。このとき、第
1の反射ミラー11a及び遮光板25の動作は上記
(1)と同様であり、絞りパターン板30も鏡面光沢及
び視感光沢の各選択スイッチ37b、37cに対応して
移動する。ここで、測色の場合はXYZ受光器17に、
又、鏡面光沢及び視感光沢の場合は第2の受光装置26
の受光器27で測定し、演算記憶回路に標準レベルが記
憶される。
(2) Standard adjustment: An operation for setting and storing an electric level standard line in the arithmetic storage circuit with respect to a standard value stored in advance, for color measurement, specular gloss and luminous gloss. Do it separately. It does not need to be done for image clarity. For the operation, the standard plate is applied to the measurement opening 13 of the sample table 14, the colorimetric selection switch 37a, the specular gloss selection switch 37b or the luminous gloss selection switch 37c is pressed, and then the standard matching switch 39 is pressed. At this time, the operations of the first reflecting mirror 11a and the light shielding plate 25 are the same as in (1) above, and the diaphragm pattern plate 30 also moves in correspondence with the respective specular gloss and luminous gloss selection switches 37b and 37c. Here, in the case of color measurement, the XYZ light receiver 17
Further, in the case of specular gloss and luminous gloss, the second light receiving device 26
Is measured by the light receiver 27 and the standard level is stored in the arithmetic storage circuit.

【0045】上記(1)及び(2)の操作を、測定開始
前に1度だけ行えば、制御装置34内の演算記憶回路
(図示せず)に記憶されるため、以降測定するごとにこ
の操作を行う必要はない。
If the above operations (1) and (2) are carried out only once before the start of measurement, they are stored in the arithmetic storage circuit (not shown) in the control unit 34, so that this measurement is carried out after each measurement. No action is required.

【0046】(3)測定操作:(1)及び(2)の操作
終了後、4つの光学的表面特性の中から測定したい光学
条件の選択スイッチを押し、続けて測定スイッチ40を
押す。光学条件を変更しない限り以降の操作は、測定ご
とに測定スイッチ40を押せばよい。又、第1の反射ミ
ラー11a、遮光板25及び絞りパターン板30の動作
は(1)及び(2)と同様である。
(3) Measurement operation: After the operations of (1) and (2) are completed, the switch for selecting the optical condition to be measured from among the four optical surface characteristics is pressed, and then the measurement switch 40 is pressed. Unless the optical condition is changed, the measurement switch 40 may be pressed for each measurement for the subsequent operations. The operations of the first reflecting mirror 11a, the light blocking plate 25, and the aperture pattern plate 30 are the same as (1) and (2).

【0047】なお、写像性測定の場合は、絞りパターン
板30が写像性光学くしパターン33のA点からB点ま
で移動する動作を行う。
In the case of the image clarity measurement, the diaphragm pattern plate 30 is moved from point A to point B of the image clarity optical comb pattern 33.

【0048】[0048]

【発明の効果】以上のように、測色を行うための第1の
照射装置の一方の平行光束を曲げるために設けた反射ミ
ラーを、この平行光束を遮らない位置まで移動し、この
反射ミラーに同期した遮光板で他方の平行光束を遮断す
ることにより、第1の照射装置で用いる光源を鏡面光
沢、視感光沢及び写像性を測定するための第2の照射装
置の光源とすることができ、又、鏡面光沢用絞りと、視
感光沢用絞り及び写像性用光学くしパターンとを有した
絞りパターン板を移動可能とし、測色、鏡面光沢、視感
光沢及び写像性の4種の光学的表面特性を1台の光学系
で測定できるように構成し、さらに、各光学的表面特性
の零合せ、標準合せを記憶できるようにしたため、異な
る光学的表面特性の測定であっても試料を動かさずにそ
れぞれ連続して測定できることになる。
As described above, the reflecting mirror provided for bending one of the parallel luminous fluxes of the first irradiation device for color measurement is moved to a position where the parallel luminous flux is not blocked, and the reflecting mirror is moved. By blocking the other parallel light flux with the light shielding plate synchronized with the light source, the light source used in the first irradiation device can be used as the light source of the second irradiation device for measuring specular gloss, luminous gloss and image clarity. In addition, a diaphragm pattern plate having a specular gloss diaphragm, a luminous gloss diaphragm, and an optical comb pattern for image clarity can be moved, and four types of color measurement, specular gloss, luminous gloss and image clarity can be obtained. The optical surface characteristics can be measured with one optical system, and the zero and standard alignments of each optical surface characteristic can be stored, so that even if different optical surface characteristics are measured, the sample can be measured. Continuous measurement without moving Made to wear.

【0049】従って、測定に要する操作が簡略化できる
と共に試料を移動する必要がないため、試料の測定位置
による測定結果のバラツキなしに各光学的表面特性で測
定できることになり、評価の信頼性が大いに向上した。
Therefore, since the operation required for the measurement can be simplified and the sample need not be moved, the measurement can be performed with each optical surface characteristic without the variation of the measurement result depending on the measurement position of the sample, and the reliability of the evaluation can be improved. Greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】測色、鏡面光沢、視感光沢及び写像性の測定を
1台で可能とする光学系の基本構成図。
FIG. 1 is a basic configuration diagram of an optical system that enables measurement of color measurement, specular gloss, luminous gloss, and image clarity with one unit.

【図2】図1における第2の照射装置と第2の受光装置
及び試料との関係を示す概念平面図。
FIG. 2 is a conceptual plan view showing the relationship between the second irradiation device, the second light receiving device, and the sample in FIG.

【図3】制御装置のパネル部分図。FIG. 3 is a partial panel view of the control device.

【図4】従来の45度照射垂直受光方式の光学系の構成
図。
FIG. 4 is a configuration diagram of a conventional 45-degree irradiation vertical light-receiving optical system.

【図5】鏡面光沢及び視感光沢測定の光学系の構成原理
図。
FIG. 5 is a structural principle diagram of an optical system for measuring specular gloss and luminous gloss.

【図6】写像性測定の光学系の構成原理図。FIG. 6 is a structural principle diagram of an optical system for measuring image clarity.

【符号の説明】[Explanation of symbols]

1 光学系 2 第1の照射装置 3 光源 4 試料 5 ケース 7 直線 9a 第1の光ダクト 9b 第2の光ダクト 11a 第1の反射ミラー 11b 第2の反射ミラー 11c 第3の反射ミラー 13 測定開孔 14 試料台 15 光拡散筒(第1の受光装置) 16 集光レンズ 17 XYZ受光器 18a ミラー移動台 18b 絞り移動台 19 第2の照射装置 25 遮光板 26 第2の受光装置 27 受光器 29 仕切板 30 絞りパターン板 31a 鏡面光沢用絞り 32a 視感光沢用絞り 33a 写像性用光学くしパターン 34 制御装置 35 パネル部分 36 光学的表面特性選択スイッチ群 38 零合せスイッチ 39 標準合せスイッチ 40 測定スイッチ 1 Optical System 2 First Irradiation Device 3 Light Source 4 Sample 5 Case 7 Straight Line 9a First Light Duct 9b Second Light Duct 11a First Reflection Mirror 11b Second Reflection Mirror 11c Third Reflection Mirror 13 Measurement Open Hole 14 Sample stage 15 Light diffusing cylinder (first light receiving device) 16 Condensing lens 17 XYZ light receiver 18a Mirror moving table 18b Aperture moving table 19 Second irradiation device 25 Light-shielding plate 26 Second light receiving device 27 Light receiver 29 Partition plate 30 Aperture pattern plate 31a Specular gloss aperture 32a Visual gloss aperture 33a Image-combination optical comb pattern 34 Control device 35 Panel portion 36 Optical surface characteristic selection switch group 38 Zero adjustment switch 39 Standard adjustment switch 40 Measurement switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1台の光学系で試料面の色、鏡面光沢、
視感光沢及び写像性の全てを測定できる装置であって、
(ア)測定用の光源を1個設け、この光源の中心を通る
平面内にあって、中心線が光源の中心を通る直線に対象
な45度方向の2つの平行光束として光源の光を取り出
し、それぞれ第1の平行光束及び第2の平行光束とし、
第1の平行光束の光路途中にこの光束を90度の角度で
反射しかつこの平行光束を遮らない位置まで移動可能に
配した第1の反射ミラーを設け、第2の平行光束の光路
途中にこの平行光束を90度の角度で反射するように固
定して配した第2の反射ミラーを設け、前記第1及び第
2の平行光束を90度の角度で反射したとき、両平行光
束の中心線の交点が前記直線上に位置するようにした第
1の照射装置と、(イ)試料の測定面が前記両平行光束
の交点に位置できるように配した試料台と、(ウ)前記
第1及び第2の平行光束を同時に試料台上の試料に照射
したとき、試料の反射光中、前記直線方向への拡散反射
光を受光する測色用の第1の受光装置と、(エ)前記第
1の反射ミラーが第1の光束を遮らない位置に移動した
とき、このの反射ミラーと同期し、光源と第2の平行光
束との間に移動して光源の光を遮る遮光板と、(オ)前
記第1の反射ミラーが第1の光束を遮らない位置に移動
したとき、第1の平行光束を反射する第3の反射ミラー
を備え、この反射光を第3の平行光束とし、その中心線
が前記第1及び第2の平行光束の中心線の交点と一致し
かつ前記直線に対して60度の角度で照射するように配
した第2の照射装置と、(カ)試料台上の試料に第3の
平行光束を照射したとき、試料の反射光中、前記直線に
対して60度方向の正反射光を受光する位置に配した、
視感光沢用絞りと鏡面光沢用絞りと写像性測定用光学く
しパターンとを有する絞りパターン板を移動可能に備
え、この絞りパターン板の移動によって視感光沢、鏡面
光沢及び写像性を切り換えて受光する第2の受光装置
と、(キ)測色、鏡面光沢、視感光沢及び写像性の測定
を行うための動作を制御しかつ測定値を求めるための演
算記憶回路を有する制御装置とから構成され、1台の光
学系で、試料の測定位置を変えずにその同一測定面の、
上記4種類の光学的表面特性を測定することを特徴とす
る光学的表面特性測定装置。
1. The color of a sample surface, specular gloss,
A device capable of measuring all of visual luster and image clarity,
(A) One light source for measurement is provided, and the light from the light source is extracted as two parallel luminous fluxes in the 45 ° direction, which are in the plane passing through the center of the light source and whose center line is a straight line passing through the center of the light source , A first parallel light flux and a second parallel light flux, respectively,
A first reflecting mirror is provided in the optical path of the first parallel light flux, which reflects the light flux at an angle of 90 degrees and is movable so as not to block the parallel light flux. A second reflecting mirror, which is fixedly arranged so as to reflect this parallel light flux at an angle of 90 degrees, is provided, and when the first and second parallel light fluxes are reflected at an angle of 90 degrees, the centers of both parallel light fluxes A first irradiation device in which the intersections of the lines are located on the straight line; (a) a sample table arranged so that the measurement surface of the sample can be located at the intersections of the two parallel light beams; A first light receiving device for color measurement, which receives diffused reflected light in the linear direction in the reflected light of the sample when the sample on the sample stage is simultaneously irradiated with the first and second parallel light fluxes; When the first reflecting mirror moves to a position where it does not block the first light flux, the reflection of this And (e) when the first reflection mirror moves to a position that does not block the first light beam, the light-shielding plate moving in synchronization with the light source and moving between the light source and the second parallel light beam to block the light of the light source. A third reflecting mirror for reflecting the first parallel light flux, the reflected light being a third parallel light flux, the center line of which coincides with the intersection of the center lines of the first and second parallel light fluxes, and A second irradiation device arranged so as to irradiate at an angle of 60 degrees with respect to the straight line; and (f) when the sample on the sample stage is irradiated with a third parallel light beam, the straight line in the reflected light of the sample It is arranged at a position for receiving regular reflection light in the direction of 60 degrees,
A diaphragm pattern plate having a diaphragm for visual gloss, a diaphragm for specular gloss, and an optical comb pattern for measuring image clarity is movably provided. By moving the diaphragm pattern plate, the luminous gloss, specular gloss, and image clarity are switched to receive light. And a control device having an arithmetic memory circuit for controlling the operation for measuring (g) colorimetry, specular gloss, luminous gloss and image clarity and for obtaining a measured value. With one optical system, without changing the measurement position of the sample,
An optical surface characteristic measuring device characterized by measuring the above-mentioned four types of optical surface characteristics.
JP4236292A 1992-01-31 1992-01-31 Optical surface property measuring device Expired - Fee Related JPH06105223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236292A JPH06105223B2 (en) 1992-01-31 1992-01-31 Optical surface property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236292A JPH06105223B2 (en) 1992-01-31 1992-01-31 Optical surface property measuring device

Publications (2)

Publication Number Publication Date
JPH05215681A JPH05215681A (en) 1993-08-24
JPH06105223B2 true JPH06105223B2 (en) 1994-12-21

Family

ID=12633931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236292A Expired - Fee Related JPH06105223B2 (en) 1992-01-31 1992-01-31 Optical surface property measuring device

Country Status (1)

Country Link
JP (1) JPH06105223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034259A1 (en) * 1995-04-26 1996-10-31 Advantest Corporation Apparatus for chromatic vision measurement

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3822637B2 (en) * 1995-07-10 2006-09-20 プレシジョン・システム・サイエンス株式会社 measuring device
JP4520795B2 (en) * 2004-08-23 2010-08-11 株式会社ミツトヨ Measuring instrument
US8484155B2 (en) 2007-01-30 2013-07-09 Kao Corporation Hair evaluation method and system
DE102010032600A1 (en) * 2010-07-28 2012-02-02 Byk-Gardner Gmbh Apparatus and method for the determination of surface properties with multiple measurement
JP6267550B2 (en) * 2014-03-12 2018-01-24 キヤノン株式会社 Measuring apparatus and measuring method
JP2015215296A (en) * 2014-05-13 2015-12-03 コニカミノルタ株式会社 Surface characteristic measuring device
JP6481188B1 (en) * 2018-06-20 2019-03-13 スガ試験機株式会社 Image clarity measuring instrument
CN112557348B (en) * 2021-01-04 2023-12-19 中交国通公路工程技术有限公司 Convenient-to-use retroreflection coefficient tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034259A1 (en) * 1995-04-26 1996-10-31 Advantest Corporation Apparatus for chromatic vision measurement

Also Published As

Publication number Publication date
JPH05215681A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US4844617A (en) Confocal measuring microscope with automatic focusing
US5943122A (en) Integrated optical measurement instruments
US4770530A (en) Remote spectrophotometer
JP2002031510A (en) Optical measuring device with elliptic polarimeter
TWI458950B (en) Aperture variable inspection optical system and color filter evaluation process
US3549264A (en) Instrument for measuring the geometric attributes of metallic appearance by measuring light reflected at various angles from a surface
KR20040034375A (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US3981562A (en) Spatial filtering for error detection
JPH06105223B2 (en) Optical surface property measuring device
US4285597A (en) Goniophotometer for measuring the gloss and/or light diffusion of surfaces
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
JPH04294224A (en) Multichannel spectrometer
US2757568A (en) Monochromator system for spectrochemical analysis
US5943127A (en) Coined line analyzer
US4760258A (en) Optical instrument
JP3219462B2 (en) Thin film measuring instrument
JPH01145504A (en) Optically measuring apparatus
US3829222A (en) Device to introduce an optic measuring index at photoelectric detection of photographic plates
US2342771A (en) Photometric apparatus
JP4715199B2 (en) Film thickness measuring apparatus and film thickness measuring method
EP1657580A1 (en) Optical device for determining the in-focus position of a fourier optics set-up
van Nijnatten Regular reflectance and transmittance
JP3829663B2 (en) Spectrophotometer
EP0571714A2 (en) Improvements in or relating to the measurement of the curvature of a surface
KR20020013061A (en) Method for Determinating spectrum using multslit and mult channel spectrograph using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19950606

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees