JPH06105182B2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH06105182B2
JPH06105182B2 JP2016994A JP1699490A JPH06105182B2 JP H06105182 B2 JPH06105182 B2 JP H06105182B2 JP 2016994 A JP2016994 A JP 2016994A JP 1699490 A JP1699490 A JP 1699490A JP H06105182 B2 JPH06105182 B2 JP H06105182B2
Authority
JP
Japan
Prior art keywords
detector
infrared
thin film
sensitivity
diamond thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016994A
Other languages
Japanese (ja)
Other versions
JPH03221820A (en
Inventor
喬 犬島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2016994A priority Critical patent/JPH06105182B2/en
Publication of JPH03221820A publication Critical patent/JPH03221820A/en
Publication of JPH06105182B2 publication Critical patent/JPH06105182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 ダイヤモンド薄膜を応用した高感度高速応答の赤外検出
器に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a highly sensitive and fast response infrared detector to which a diamond thin film is applied.

〔従来の技術〕 赤外,遠赤外領域の光検出器は熱的検出器と量子的検出
器に分別される。前者は波長依存性がなく室温動作が可
能であるが、感度,反応速度に難点がある。後者は量子
効果を利用するため感度,反応速度に優れるが、低温に
保持したり波長依存性があったりして汎用性に限度があ
る。
[Prior Art] Photodetectors in the infrared and far infrared regions are classified into thermal detectors and quantum detectors. The former has no wavelength dependence and can be operated at room temperature, but has drawbacks in sensitivity and reaction speed. The latter is superior in sensitivity and reaction rate because it utilizes the quantum effect, but is limited in versatility because it is kept at a low temperature or has wavelength dependence.

熱的検出器は感度,反応速度の向上を目指して種々のも
のが報告されている。熱起電力の形にして測定する熱電
対型,抵抗の温度変化の形で測定するボロメータ,気体
の熱膨張として計測するニューマチック検出器,焦電効
果を利用する強誘電体素子等がある。これらはいずれも
赤外,遠赤外光を熱に変えて温度上昇分を光強度として
換算するものである。すなわち検出器にWのエネルギー
が入射して△Tの温度変化を生じたとすると のエネルギーバランスが成り立つ。ここにCは検出器本
体の素子の熱容量,Gはこの検出素子の熱コンダクタンス
である。(1)式は入射光は断続すること(角周波数
ω)によりW=ω0eiωtとして ここにτはこの検出器の時定数である。τを小さくする
ことが、応答速度を早くするが、検出器の感度はGの大
きさに逆比例するので、種々の工夫が必要である。
Various thermal detectors have been reported with the aim of improving sensitivity and reaction rate. There are a thermocouple type that measures in the form of thermoelectromotive force, a bolometer that measures in the form of resistance temperature change, a pneumatic detector that measures as thermal expansion of gas, and a ferroelectric element that uses the pyroelectric effect. All of these convert infrared and far infrared light into heat and convert the temperature rise into light intensity. That is, if the energy of W is incident on the detector and a temperature change of ΔT occurs, The energy balance of is established. Here, C is the heat capacity of the element of the detector body, and G is the thermal conductance of this detector element. In equation (1), the incident light is intermittent (angular frequency ω), so that W = ω 0 e iωt Where τ is the time constant of this detector. Reducing τ speeds up the response speed, but the sensitivity of the detector is inversely proportional to the magnitude of G, so various measures are required.

〔従来技術の問題点〕[Problems of conventional technology]

前述のような原理を利用した汎用性の高い熱的検出器と
しては、以下に示すような4つが一般的だが、それぞれ
に欠点を有していた。
As the general-purpose thermal detectors utilizing the above-mentioned principle, the following four types are generally used, but each has its drawbacks.

1.熱電対型 赤外検出器に用いる熱電対は主にビスマス・アンチモン
系の合金を用い、極力小型にして熱容量を下げている。
又感度を上げるため(2)式のGを小さくするよう真空
封止の形をとっている。このため熱電対型には真空封止
用窓材が必須となり、ダイヤモンド窓やサファイア窓が
使われている。この様にして赤外分光光度計などにはこ
の形の検出器が主に使われているが、それでも時定数10
msec程度,NEP(Noise Eguivalent Power(検出感度)1
×10-10W程度である。
1. Thermocouple type The thermocouple used for the infrared detector is mainly made of bismuth-antimony alloy, and it is made as small as possible to reduce the heat capacity.
Further, in order to increase the sensitivity, it is vacuum-sealed so that G in the equation (2) is reduced. For this reason, a vacuum sealing window material is essential for the thermocouple type, and a diamond window or a sapphire window is used. In this way, this type of detector is mainly used in infrared spectrophotometers, etc.
msec, NEP (Noise Eguivalent Power) 1
It is about 10 -10 W.

2.ボロメーター この形の検出器としてはニッケル,コバルト酸化物が良
く使われる。サーミスタタイプのものは厚さをできるだ
け薄くし、受光面積を小さくして感度をあげている。周
辺への熱の伝導がこの検出器の時定数4msec,NEP(検出
感度)3×10-8Wが一般的であるが、アルゴンガス封止
のため窓材が必要である。
2. Bolometer Nickel and cobalt oxides are often used for this type of detector. The thermistor type is made as thin as possible to reduce the light receiving area to improve sensitivity. The time constant of this detector is 4 msec, and NEP (detection sensitivity) 3 × 10 -8 W is generally used for the conduction of heat to the surroundings, but a window material is required for argon gas sealing.

3.ニューマチックタイプゴーレイセル 時定数10msec,NEP(検出感度)〜×10-11Wのものが市販
されているが、使用温度制限が厳しくかつ装置そのもの
が大形化しているので主に遠赤外領域に使用が限定され
る。
3. A pneumatic type Golay cell with a time constant of 10 msec, NEP (detection sensitivity) to × 10 -11 W is commercially available, but it is mainly used for far-infrared light because the operating temperature is strict and the device itself is large. Its use is limited to the outer area.

4.焦電型強誘電体センサー 主に高速FTIR用に使われ、TGS(トリグリシンサルファ
イド)やDIGS(重水素化TGS)がよく使われる。時定数
はμSオーダーであり、NEP(検出感度)は10-10W位で
ある。この形の検出器は焦電効果を使うため、表面電荷
を消すための工夫が必要であり、アルゴン,ネオン等の
ガスを密封する必要がある。このため窓材が必要になり
KBrやテフロン等を用いるが、波長依存性が発生する。
又交流測定しか出来ず、光強度の絶対値は測れない。
4. Pyroelectric type ferroelectric sensor Mainly used for high-speed FTIR, TGS (triglycine sulfide) and DIGS (deuterated TGS) are often used. The time constant is on the order of μS, and the NEP (detection sensitivity) is on the order of 10 -10 W. Since this type of detector uses the pyroelectric effect, it is necessary to devise a means for eliminating surface charges, and it is necessary to seal gas such as argon and neon. Therefore, window material is needed
Although KBr or Teflon is used, wavelength dependence occurs.
Also, only AC measurement can be performed, and the absolute value of light intensity cannot be measured.

このように、いずれのタイプには若干の問題があり、よ
り高感度,高速応答性の赤外線センサーが必要とされて
いた。
As described above, each type has some problems, and an infrared sensor having higher sensitivity and faster response has been required.

〔目的〕 本発明はダイヤモンド薄膜のもつ赤外領域の透明性と高
熱伝導性,低比熱を利用して既存の赤外センサーより一
桁高い感度と高速度応答性を可能とする汎用性を重視し
た赤外検出器を提供するものである。
[Purpose] The present invention attaches importance to versatility that enables a single digit higher sensitivity and higher speed response than existing infrared sensors by utilizing transparency, high thermal conductivity, and low specific heat in the infrared region of diamond thin films. Infrared detectors are provided.

〔発明の構成〕[Structure of Invention]

高感度高速応答の赤外センサーを作るに当たってダイヤ
モンドのもつ特徴である透明性(Band Gap 5.5eVで赤外
活性モードが存在しないため赤外,遠赤外領域で透明で
ある)と高熱伝導性(〜20W/cm,dog)を利用する。更に
このダイヤモンド薄膜中にボロンをドープすることによ
り抵抗値を自由に制御して、サーミスタボロメータータ
イプの構造とする。ダイヤモンド薄膜はデバイ温度が22
40Kと高く比熱24ジュール/mol.dogと小さい。このため
ダイヤモンド薄膜の中に一体構造としてサーミスタとな
る層と蓄熱層となる部分を形成することで見かけ上の熱
コンダクタンス(G)を小さくすることが出来感度を高
めることができる。しかし実際の熱コンダクタンス
(G)は((2)式のG)はサーミスタ層のみできまる
ため時定数は小さいままである。
In making an infrared sensor with high sensitivity and fast response, the diamond has the characteristics of transparency (transparent in the infrared and far infrared regions due to the absence of infrared active mode at Band Gap 5.5eV) and high thermal conductivity ( ~ 20W / cm, dog) is used. Furthermore, the diamond thin film is doped with boron to freely control the resistance value to form a thermistor bolometer type structure. The diamond thin film has a Debye temperature of 22.
It is as high as 40K and small with a specific heat of 24 Joule / mol.dog. Therefore, by forming a layer that becomes a thermistor and a portion that becomes a heat storage layer as an integrated structure in the diamond thin film, the apparent thermal conductance (G) can be reduced and the sensitivity can be increased. However, since the actual thermal conductance (G) (G in the equation (2)) can be formed only by the thermistor layer, the time constant remains small.

この様な検出器の一例を第1図に示す。An example of such a detector is shown in FIG.

センサー部はCVD法により形成されたダイヤモンド薄膜
(−10μm)とその表面近傍部分にボロンをドープする
ことでP型半導体(2)とする(〜約1μm厚)ことで
サーミスタを一体化して形成し、その表面に光吸収層
(1)を蒸着して光を熱に変える機能をもたせる。つま
り前述の(1)式の右辺の第2項は外部(センサー部以
外)への熱伝導係数であり、一体化された検出器におい
てはセンサー部より10倍の厚みをもつノンドープのダイ
ヤモンド(3)への熱伝導によりセンサー部には蓄熱さ
れず時定数は10-6秒台の速度を達成できる。すなわち本
発明の赤外線検出器表面のごく一部がセンサーとして働
いているのみである為、センサーの熱容量は小さい。従
って前述の(1)式の熱コンダクタンスG)はダイヤモ
ンド自身の物質特性で期待できる20W/cm.Kに充分に近く
検出器の熱容量Cはダイヤモンドで期待される10μW/c
m.Kに充分に近くすることができ、時定数としてτ=C/G
〜10-6程度になる。
The sensor part is formed by integrating the thermistor by forming a diamond thin film (-10 μm) formed by the CVD method and a P-type semiconductor (2) by doping the vicinity of the surface with boron (up to about 1 μm thickness). , A light absorbing layer (1) is vapor-deposited on the surface thereof to have a function of converting light into heat. That is, the second term on the right side of the above equation (1) is the coefficient of thermal conductivity to the outside (other than the sensor part), and in the integrated detector, a non-doped diamond (3 ), The heat is not stored in the sensor and the time constant can reach the speed of 10 -6 seconds. That is, the heat capacity of the sensor is small because only a part of the surface of the infrared detector of the present invention functions as a sensor. Therefore, the above-mentioned thermal conductance G of equation (1) is sufficiently close to 20 W / cm.K, which can be expected from the material properties of diamond itself, and the heat capacity C of the detector is 10 μW / c expected from diamond.
It can be close enough to mK and the time constant is τ = C / G
It will be about 10 -6 .

感度を与える(2)式はこの検出器全体が周囲から熱的
に隔離されていれば、すなわち第1図の真性ダイヤモン
ド(3)の部分を含めた検出器(4)が真空中に保たれ
る等の手法により孤立した系になっていれば、実質的な
Gは小さくすることができ前述の(2)式で与えられる
感度も充分なものが得られる。
Equation (2) that gives sensitivity is maintained if the entire detector is thermally isolated from the surroundings, that is, the detector (4) including the portion of the intrinsic diamond (3) in FIG. 1 is kept in vacuum. If the system is isolated by the method described above, the substantial G can be reduced, and the sensitivity given by the above-mentioned equation (2) can be obtained sufficiently.

『実施例』 本発明ではダイヤモンド薄膜を10μm、シリコン基板上
に形成する。形成されたダイヤモンド薄膜は、低圧CVD
法により気相合成するため窒素,ボロン等の不純物等を
含まないもので比抵抗108〜1015Ωcmのものである。気
相合成に当たっては磁場を利用したホイッスラーモード
CVD法によるものとし、成長温度800℃,反応室内圧力0.
25Torr,マイクロ波入力4KW,磁場強度875Gauss場所でメ
タン系ガスと水素の混合ガス(例えばCH3OH:H2=1:4の
比率)によって24時間成膜し、粒径サイズ10μm程度の
ダイヤモンド薄膜を形成した。この様なダイヤモンド薄
膜を5×5mm2に裁断し、イオン注入装置の中にセットす
る。イオン注入装置はB2H6を原料ガスとし、B+イオンを
100KeV程度に加速してダイヤモンド薄膜表面に照射す
る。ドース量としては1016〜1017/cm2程度である。この
際、ターゲット基板は100℃〜500℃に加熱されているこ
とが必要である。
Example In the present invention, a diamond thin film having a thickness of 10 μm is formed on a silicon substrate. The formed diamond thin film is low pressure CVD
Since it is vapor-phase synthesized by the method, it does not contain impurities such as nitrogen and boron, and has a specific resistance of 10 8 to 10 15 Ωcm. Whistler mode using magnetic field in vapor phase synthesis
CVD method, growth temperature 800 ℃, reaction chamber pressure 0.
25Torr, Microwave input 4KW, Magnetic field strength 875Gauss Place a film with mixed gas of methane and hydrogen (for example, CH 3 OH: H 2 = 1: 4 ratio) for 24 hours. Was formed. Such a diamond thin film is cut into 5 × 5 mm 2 and set in an ion implanter. Ion implantation apparatus and the B 2 H 6 as a source gas, a B + ions
Irradiate the surface of the diamond thin film after accelerating to about 100 KeV. The dose is about 10 16 to 10 17 / cm 2 . At this time, the target substrate needs to be heated to 100 ° C to 500 ° C.

この様にしてBイオンを注入されたダイヤモンド基板は
150KeV以下の加速エネルギーに対し、表面より1μm以
内の深さにおいてカスーケード衝突を生じ、P層(2)
を形成することになる。また、加速されて注入されたボ
ロンは、ダイヤモンド薄膜表面付近には存在する量が少
ない。そのため正確にはP層(2)はダイヤモンド薄膜
表面より少々深い位置に形成される、しかしその領域の
境界は明確ではない。この層はこのままではアモルファ
ス層であり、電気特性が不安定である。このためランプ
加熱によるラピットサーマルアニーリングを行なう。こ
の結果、ダイヤモンド表面近傍の層は1μmの厚みのP
型半導体層(2)となり、比抵抗10-1〜10-5Ωcm,サー
ミスタ係数B=2000〜7000のものを作ることができた。
The diamond substrate thus implanted with B ions
Cascade collision occurs at a depth within 1 μm from the surface for acceleration energy of 150 KeV or less, and the P layer (2)
Will be formed. Further, the amount of boron that is accelerated and injected is small near the surface of the diamond thin film. Therefore, to be exact, the P layer (2) is formed at a position slightly deeper than the surface of the diamond thin film, but the boundary of the region is not clear. This layer is an amorphous layer as it is, and its electrical characteristics are unstable. Therefore, rapid thermal annealing is performed by heating the lamp. As a result, the layer near the diamond surface has a P thickness of 1 μm.
It became the type semiconductor layer (2), and the specific resistance of 10 -1 to 10 -5 Ωcm and the thermistor coefficient B of 2000 to 7000 could be produced.

この様にしたダイヤモンド基板に赤外線を吸収して熱に
変える膜(1)を形成する。この膜は波長依存性をなく
し、かつ完全黒体に近い作用をする必要がある。この黒
体形成法としてN2圧1〜2mmHgに保たれた真空蒸着機の
中でAuを蒸着することにより行なった。厚みは約1μm
ににとどめる。このAu蒸着の際に、メタルマスクを用い
て、表面上の黒体(1)と、電極(5)とを同時に作成
する。
A film (1) that absorbs infrared rays and converts it into heat is formed on the diamond substrate thus formed. This film is required to have no wavelength dependence and to act as a perfect black body. This blackbody formation method was performed by depositing Au in a vacuum vapor deposition machine maintained at N 2 pressure of 1 to 2 mmHg. Thickness is about 1 μm
Stay in Japan. At the time of this Au deposition, a black mask (1) on the surface and an electrode (5) are simultaneously formed by using a metal mask.

この状態とした後、アルコール中に浸すことでシリコン
基板上からダイヤモンド薄膜よりなる検出器(4)を分
離し、第2図に示す様にハーメチックシールから伸ばさ
れた細いタングステンワイヤで電極(5)にボンディン
グして空中に保持する。
After this state, the detector (4) made of a diamond thin film is separated from the silicon substrate by immersing it in alcohol, and a thin tungsten wire (5) is drawn from the hermetic seal as shown in FIG. Bonding to and holding in the air.

この様に空中に保持されたダイヤモンド薄膜を用いた検
出器(4)は周辺より隔離されており、熱伝導率は素子
そのものは大きいが検出器全体として実質的には小さ
く、測定条件に合わせて場合により真空封止あるいは大
気解放として感度の最適化を測ることができる。
In this way, the detector (4) using the diamond thin film held in the air is isolated from the periphery, and the thermal conductivity of the detector itself is large, but the detector as a whole is practically small. In some cases, sensitivity optimization can be measured by vacuum sealing or atmospheric release.

この様にして製作される赤外センサーはAuの黒化膜によ
り波長依存性がなく、可視光領域から1000μmの赤外領
域まで均一な感度をもち応答速度としてマイクロ秒の応
答をもつサーミスタのボロメーターを提供することがで
きた。
The infrared sensor manufactured in this way has no wavelength dependence due to the blackened film of Au, has uniform sensitivity from the visible light region to the infrared region of 1000 μm, and has a microsecond response as a response speed. We were able to provide a meter.

〔効果〕〔effect〕

一体化されたセンサー(サーミスタ)部分をもつダイヤ
モンド薄膜を用いた赤外線検出器は、熱の反射屈折等が
無く高速応答が可能であり、感度的にも充分である。今
まで赤外センサーで問題になっていた応答性と感度の二
律相反性はこの様なダイヤモンドの表面層にサーミスタ
機能を付加することで解決され、マイクロセカンドの応
答性が期待される。
An infrared detector using a diamond thin film having an integrated sensor (thermistor) portion has a high speed response without reflection and refraction of heat, and has sufficient sensitivity. The reciprocal reciprocity of responsivity and sensitivity, which has been a problem with infrared sensors, is solved by adding a thermistor function to the surface layer of diamond like this, and microsecond responsivity is expected.

今まで赤外分光器は分散型の場合、精度的に長時間の掃
引時間を要していたが、この高速赤外センサーにより一
桁以上の高速掃引が可能となる。又、このタイプの一体
化ダイヤモンドセンサーは高速,高感度のためガスクロ
マトグラフィーの検出部として白金センサーに置き換え
うるものであり、種々の腐蝕性ガスに対して安全であ
る。このことにより、高感度高速のガスクロマトグラフ
ィーが可能となる。
Up to now, the infrared spectroscope required a long sweep time with accuracy in the case of the dispersion type, but this high-speed infrared sensor enables high-speed sweep of one digit or more. In addition, this type of integrated diamond sensor can replace a platinum sensor as a detector of gas chromatography because of its high speed and high sensitivity, and is safe against various corrosive gases. This enables high-sensitivity and high-speed gas chromatography.

【図面の簡単な説明】[Brief description of drawings]

第1図は、ダイヤモンド薄膜を用いた赤外線検出器の概
略断面図を示す。 第2図は、本発明の検出器の一例を示す。 1……黒体 2……サーミスタ部 3……ダイヤモンド薄膜 4……検出器 5……電極
FIG. 1 shows a schematic sectional view of an infrared detector using a diamond thin film. FIG. 2 shows an example of the detector of the present invention. 1 …… Blackbody 2 …… Thermistor part 3 …… Diamond thin film 4 …… Detector 5 …… Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ダイヤモンド薄膜を用いた赤外検出器であ
って、前記ダイヤモンド薄膜の表面近傍付近はP型層が
形成され、前記P型層はサーミスタ機能を有し、前記P
型層に続いて真性ダイヤモンド薄膜が一体化して設けら
れたことを特徴とする赤外検出器。
1. An infrared detector using a diamond thin film, wherein a P-type layer is formed near the surface of the diamond thin film, and the P-type layer has a thermistor function.
An infrared detector characterized in that an intrinsic diamond thin film is integrally provided following the mold layer.
【請求項2】特許請求の範囲第1項において、前記赤外
検出器はハーメチックシール内で、熱的に遮断された系
に保持された系であることを特徴とする赤外検出器。
2. The infrared detector according to claim 1, wherein the infrared detector is a system that is held in a thermally insulated system in a hermetic seal.
JP2016994A 1990-01-26 1990-01-26 Infrared detector Expired - Fee Related JPH06105182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016994A JPH06105182B2 (en) 1990-01-26 1990-01-26 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016994A JPH06105182B2 (en) 1990-01-26 1990-01-26 Infrared detector

Publications (2)

Publication Number Publication Date
JPH03221820A JPH03221820A (en) 1991-09-30
JPH06105182B2 true JPH06105182B2 (en) 1994-12-21

Family

ID=11931574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016994A Expired - Fee Related JPH06105182B2 (en) 1990-01-26 1990-01-26 Infrared detector

Country Status (1)

Country Link
JP (1) JPH06105182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011698A1 (en) * 1999-08-03 2001-02-15 Toyo Kohan Co., Ltd. Thermoelectric device and manufacture thereof
GB0424934D0 (en) * 2004-11-12 2004-12-15 Qinetiq Ltd Infrared detector
JP4214124B2 (en) 2005-03-14 2009-01-28 株式会社バイオエコーネット Ear thermometer

Also Published As

Publication number Publication date
JPH03221820A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
US5406081A (en) Infrared detector utilizing diamond film
Iborra et al. IR uncooled bolometers based on amorphous Ge/sub x/Si/sub 1-x/O/sub y/on silicon micromachined structures
US3781748A (en) Chalcogenide glass bolometer
Chen et al. The high-performance imaging verification of Si: P blocked impurity band detector for very-long-wave-infrared spectral range
Dong et al. An uncooled microbolometer infrared detector based on poly-SiGe thermistor
JP2015143684A (en) Sensitive material for bolometric detection
He et al. Performance enhanced thermopile with rough dielectric film black
Baer et al. A 32-element micromachined thermal imager with on-chip multiplexing
US10337927B1 (en) Germanium tin oxide thin films for uncooled infrared detectors
JPH06105182B2 (en) Infrared detector
Dobrzański et al. Micromachined silicon bolometers as detectors of soft X-ray, ultraviolet, visible and infrared radiation
Hiromoto et al. Ge: Ga far-infrared photoconductor with low compensation
US10704959B2 (en) Germanium silicon tin oxide thin films for uncooled infrared detection
Sharp et al. A thin film thermopile for neutral particle beam measurements
Wang et al. Modification of electrical properties of amorphous vanadium oxide (a-VOx) thin film thermistor for microbolometer
Gray et al. Semiconducting YBaCuO as infrared-detecting bolometers
Birkebak et al. Thermal radiation properties and thermal conductivity of lunar material
US10840399B1 (en) Germanium tin oxide thin films for uncooled infrared detection
Poirier et al. Energy losses of hot electrons in a thin layer of SiO2 on Si
JP2816128B2 (en) Thermal radiation intensity detector
RU82934U1 (en) BOLOMETRIC RADIATION RECEIVER
Dobrzański et al. Micromachined silicon thermopile and thermal radiators using porous silicon technology
Chen et al. Infrared absorption of Ir and IrSi thin films on Si substrates
JPS58112377A (en) Semiconductor thermocouple
Kessler et al. First measuring results concerning a new thin-film absolute radiometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees