JPH06104887B2 - Ceramic spraying material and spraying method - Google Patents

Ceramic spraying material and spraying method

Info

Publication number
JPH06104887B2
JPH06104887B2 JP61141186A JP14118686A JPH06104887B2 JP H06104887 B2 JPH06104887 B2 JP H06104887B2 JP 61141186 A JP61141186 A JP 61141186A JP 14118686 A JP14118686 A JP 14118686A JP H06104887 B2 JPH06104887 B2 JP H06104887B2
Authority
JP
Japan
Prior art keywords
ceramic
powder
coating
spraying
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61141186A
Other languages
Japanese (ja)
Other versions
JPS62297451A (en
Inventor
雄司 成田
隆夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61141186A priority Critical patent/JPH06104887B2/en
Publication of JPS62297451A publication Critical patent/JPS62297451A/en
Publication of JPH06104887B2 publication Critical patent/JPH06104887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマガンを用いたセラミック溶射に使用
するセラミック溶射材料およびそのセラミック溶射材料
を用いて溶射する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a ceramic spray material used for ceramic spraying using a plasma gun and a method for spraying using the ceramic spray material.

(従来の技術およびその問題点) 金属材料への溶射によるセラミック被覆は、材料の耐熱
性、断熱性及び高温下の耐食性を向上させるための有力
な手法であり、近年、エネルギー有効利用等に関連した
種々の装置部材に適用されている。しかし、適用拡大と
共に使用条件は苛酷化し、そのために皮膜の緻密性と結
合性をさらに向上させる必要がある。とくに、これら緻
密性と結合性を同時に満たし、被覆効果を接続させる点
で、セラミック皮膜自体の密着力を高める必要がある。
(Prior art and its problems) Ceramic coating by thermal spraying on metal materials is an effective method for improving the heat resistance, heat insulation and corrosion resistance at high temperatures, and in recent years, it has been related to effective use of energy. It is applied to various device members described above. However, as the application is expanded, the operating conditions become severer, and therefore it is necessary to further improve the denseness and bondability of the coating. In particular, it is necessary to enhance the adhesion of the ceramic coating itself in terms of simultaneously satisfying the denseness and the bondability and connecting the coating effect.

このため、従来から溶射材粒子の溶融状態や液滴として
の飛行状態について、溶射火炎の形成条件(例えば熱量
や運動量)、施工条件(例えば溶射距離)の機器改善や
方法改善の面で改良が進められてきた。
Therefore, conventionally, regarding the molten state of the sprayed material particles and the flight state as droplets, it has been possible to improve the equipment and method of forming conditions (for example, heat quantity and momentum) of spraying flame and construction conditions (for example, spraying distance). It has been advanced.

また、溶射時に飛行する液滴は、基材(金属材料)上で
積層して皮膜を形成するが、個々の液滴は一種のインタ
ーロック状態で基材や積層膜(1個の液滴からなる薄膜
の仮称)に結合すると言われており、このインターロッ
ク状態を改善することが重要である。即ち、溶射におけ
るインターロック状態とは、単に評価指針である密着力
の背景をなすものではなく、個々の液滴が形成する積層
膜の緻密性と結合性の根幹をなす組織形態である。
Further, the droplets flying during thermal spraying form a film by laminating on the base material (metal material), but each droplet is a kind of interlocking state and the base material or laminated film (from one droplet It is said that the interlock state is improved, and it is important to improve this interlocking state. That is, the interlocked state in thermal spraying is not merely the background of the adhesion force which is an evaluation guideline, but the morphology of the structure that forms the basis of the denseness and bondability of the laminated film formed by individual droplets.

このインターロック効果を高めるため、従来はセラミッ
ク溶射に関して以下の方法が行なわれていた。
In order to enhance the interlock effect, the following methods have been conventionally used for ceramic spraying.

(従来例1) ショットブラストによる基材面の粗面化あるいは/及び
有機溶剤による洗浄(第2図)。
(Conventional Example 1) Roughening of the substrate surface by shot blasting and / or cleaning with an organic solvent (Fig. 2).

しかし、このような方法ではセラミック層1と基材2間
の熱物性値(熱歪みの発生)により、剥離し易い。
However, in such a method, it is easy to peel due to the thermophysical property value (generation of thermal strain) between the ceramic layer 1 and the base material 2.

(従来例2) 上記従来例1の熱歪みを緩和する目的でNi基、Co基の合
金を事前に下地溶射(アンダーコート)する方法(第3
図)。
(Conventional Example 2) A method of pre-spraying (undercoating) a Ni-based or Co-based alloy in advance for the purpose of relaxing the thermal strain of the above-mentioned Conventional Example 1 (third embodiment)
Figure).

しかし、この方法では熱サイクルを与えた場合にセラミ
ック層1ではがれ易い。図中3はアンダーコート層であ
る。
However, in this method, the ceramic layer 1 is easily peeled off when a heat cycle is applied. In the figure, 3 is an undercoat layer.

(従来例3) 上記従来例2における皮膜内の熱膨張差を緩和するため
上記合金とセラミックの混合したサーメット層4を介在
させる方法、あるいは、サーメット層4中の積層段階で
金属/セラミックの比率を細分化して積層する方法(第
4図)。
(Conventional Example 3) A method of interposing a cermet layer 4 in which the alloy and the ceramic are mixed in order to reduce the difference in thermal expansion in the coating in the above-mentioned Conventional Example 2, or a metal / ceramic ratio in the laminating step in the cermet layer 4. A method of subdividing and stacking (FIG. 4).

しかし、この皮膜は金属の介在する積層域で基材2と良
好な密着力を得ているのみで、セラミック層1で剥離が
進行する。
However, this film only obtains a good adhesion with the base material 2 in the laminated area in which the metal is interposed, and the peeling proceeds in the ceramic layer 1.

(従来例4) セラミック層を溶射形成後、レーザー照射してセラミッ
ク表面を緻密化する方法(特開昭59-96273号、第5
図)。
(Conventional Example 4) A method of densifying a ceramic surface by laser irradiation after forming a ceramic layer by thermal spraying (JP-A-59-96273, No. 5)
Figure).

しかし、この方法ではレーザー照射機を設置して二次加
工するので、処理できる基材形状等の制約と、経済性の
点で汎用性にかける。とくに、セラミック層1が緻密層
5と未処理層6の二層を形成するので、セラミック層1
自体の密着力向上は達成できない。
However, in this method, since a laser irradiation machine is installed and secondary processing is performed, the versatility is limited in terms of the shape of a substrate that can be processed and economical efficiency. In particular, since the ceramic layer 1 forms two layers, the dense layer 5 and the untreated layer 6, the ceramic layer 1
It is not possible to improve the adhesion of itself.

(従来例5) 溶射材料(粉末粒子)の表面をニッケルメッキして熱処
理することによって例えばZrO2-NiO-Ni系複合基粒子を
得、これを溶射する方法(日本溶射協会第33回学術講演
大会概要集、第6図)。
(Prior art example 5) A method of obtaining, for example, ZrO 2 —NiO—Ni-based composite base particles by nickel-plating the surface of a thermal spray material (powder particles) and thermal spraying the same (The 33rd Academic Lecture of the Japan Thermal Spray Society) Tournament summary, Figure 6).

しかし、この方法は皮膜中に中間生成物(例えばMgNi
O2)を二次形成するもので、二次生成物が結合層として
皮膜を強化するが、セラミック皮膜本来の特性である耐
熱性の点で劣る。
However, this method does not produce intermediate products (eg MgNi
O 2 ) is secondarily formed, and the secondary product strengthens the coating as a binding layer, but it is inferior in terms of heat resistance which is the original characteristic of the ceramic coating.

このように従来法では、一定の改善効果が認められて個
々に使用されているが、苛酷化する使用条件に必ずしも
適合しない。
As described above, in the conventional method, a certain improvement effect is recognized and each method is used individually, but it does not necessarily meet the severe operating conditions.

そこで、本発明者等は種々のセラミック溶射皮膜の組織
形態を詳細に検討した結果、金属粉とセラミック粉の混
合物を溶射することによって、所要の目的を達成するこ
とができることを知見したのである(第1図)。
Therefore, the present inventors have studied in detail the structure morphology of various ceramic sprayed coatings, and as a result, have found that the desired object can be achieved by spraying a mixture of metal powder and ceramic powder ( (Fig. 1).

なお、従来のサーメット溶射材料と呼ばれているもの
は、例えばni基、Co基の合金粉とTiN、WC等の炭窒化系
セラミック粉との混合粉で、本発明趣旨の酸化物系セラ
ミックとは異なるものである。
Note that what is called a conventional cermet thermal spraying material is, for example, a ni-based, Co-based alloy powder and TiN, a mixed powder of carbonitride-based ceramic powder such as WC, and an oxide-based ceramic for the purpose of the present invention. Is different.

また、本発明者等が先に開示した特開昭56-59679号は、
材質に関し、窯炉と同系統の補修材料であって、本発明
はこれとは異なり、膜厚1mm程度の表面被覆を趣旨とす
る溶射材料である。
Further, JP-A-56-59679 previously disclosed by the present inventors,
Regarding the material, it is a repair material of the same system as that of a kiln, and unlike the present invention, the present invention is a thermal spray material intended for surface coating with a film thickness of about 1 mm.

さらに、使用前のイニシャルの皮膜として緻密性を高め
るためには、皮膜を含む基材の熱処理が有効である。溶
射皮膜の熱処理法は一般にフュージングと言われ、主に
自溶性合金の溶射皮膜に施される方法である。従来のこ
の方法は溶射後再度ガスバーナーで皮膜表面を溶融さ
せ、気孔の密封化と合金成分の基材への拡散を促す方法
で、通常800〜900℃に加熱放冷する。しかし、このよう
な方法を本発明に係るセラミック皮膜に適用することは
以下の理由で不可能である。
Further, in order to improve the denseness of the initial coating before use, heat treatment of the substrate containing the coating is effective. The heat treatment method of the thermal spray coating is generally called fusing, and is a method mainly applied to the thermal spray coating of the self-fluxing alloy. This conventional method is a method of melting the coating surface again with a gas burner after spraying to promote sealing of pores and diffusion of alloy components to the base material, and usually heats and cools at 800 to 900 ° C. However, it is impossible to apply such a method to the ceramic coating according to the present invention for the following reason.

一旦、冷却させた皮膜を急熱急冷するためセラミック
層が剥離する。
Since the once cooled film is rapidly heated and cooled, the ceramic layer is peeled off.

皮膜中の残存金属相で急激な酸化を引き起こし、皮膜
組織を破壊する。
The residual metal phase in the coating causes rapid oxidation and destroys the coating structure.

そこで、本発明方法の検討で上記材料を用い、かつ前処
理を含む一連の溶射工程で、基材も皮膜も同時加熱する
ことが有効であることを見い出したのである。
Therefore, in the investigation of the method of the present invention, it was found that it is effective to use the above-mentioned materials and simultaneously heat the base material and the coating in a series of thermal spraying steps including pretreatment.

(問題点を解決するための手段) 本発明の第1は、Al2O3、ZrO2、Cr2O3、TiO2もしくはNiO系
の酸化物単体のセラミック粉末に、酸化物中の陽イオン
と同一の金属元素粉末を、前記セラミック粉末100vol%
に対して1〜10vol%添加して成ることを要旨とするセ
ラミック溶射材料である。
(Means for Solving Problems) The first aspect of the present invention is to use Al 2 O 3 , ZrO 2 , Cr 2 O 3 , TiO 2 or NiO-based oxide alone in a ceramic powder as a cation in the oxide. The same metal element powder as the above, the ceramic powder 100vol%
The ceramic sprayed material is characterized in that 1 to 10 vol% is added thereto.

即ち、これらセラミック、個々の粉末(以下「MOx」と
いう)に、酸化物中の陽イオンと同一の金属元素の粉末
(以下「M」という)を添加混合して本発明の溶射材料
は構成されるのである。これらのセラミック粉に同一元
素の金属粉を配合するのは、以下の理由による。
That is, the thermal spray material of the present invention is formed by adding and mixing powders (hereinafter referred to as “M”) of the same metal element as the cations in the oxide to these ceramics and individual powders (hereinafter referred to as “MO x ”). Is done. The reason why the metal powder of the same element is mixed with these ceramic powders is as follows.

金属粉の部分的な酸化燃焼により、セラミック粒子
の溶融を促す。
The partial oxidative combustion of the metal powder promotes melting of the ceramic particles.

酸化燃焼した金属から微小な、しかも同一組成のセ
ラミック液滴が積層され、セラミック皮膜を緻密化し、
結合性が高まる。
Minute ceramic droplets of the same composition are layered from the metal that has been oxidized and burned to densify the ceramic film,
Increases connectivity.

未酸化あるいは不完全酸化の金属粒子とセラミック
粒子とは液滴の状態で互いによく濡れ易い場合もあっ
て、相互に良好なインターロック状態の層を形成する。
In some cases, the unoxidized or incompletely oxidized metal particles and the ceramic particles easily wet each other in the form of liquid droplets, and form mutually favorable interlocking layers.

セラミック皮膜中に残存する金属相は相対的に可塑
性に富み、しかも溶射積層する凝固過程で隣接するセラ
ミック相に残留圧力を付与し、結合力を高める。
The metal phase remaining in the ceramic coating is relatively plastic, and in the solidification process of thermal spray lamination, residual pressure is applied to the adjacent ceramic phase to enhance the bonding strength.

使用過程あるいは熱処理によって皮膜中残存金属相
の溶融と酸化が進行し、皮膜の気孔が減少して結合力が
高まり、また、皮膜中セラミックの微小クラックの伸展
を防止し結合力を維持する。
During the use process or heat treatment, the melting and oxidation of the residual metal phase in the film progresses, the porosity of the film decreases and the bond strength increases, and the expansion of microcracks in the ceramic in the film is prevented and the bond strength is maintained.

未酸化あるいは不完全酸化の金属粒の液滴は金属材
料である基材あるいはアンダーコート面に濡れ易く、セ
ラミック層の密着を促進する。とくに、溶射粉末の配合
量を次のように厳密に調整することによってこれら皮膜
の良好な結合状態が得られ、密着性向上がより効果的に
達成できる。
The droplets of unoxidized or incompletely oxidized metal particles easily wet the base material or the undercoat surface, which is a metal material, and promote the adhesion of the ceramic layer. Particularly, by strictly adjusting the blending amount of the thermal spray powder as follows, a good bonding state of these coatings can be obtained, and the improvement of the adhesiveness can be more effectively achieved.

Mの添加量を1〜10vol%とする。これはMOx100vol%に
対する外掛比率で、かつ、MOx粉の嵩比重(概ね1.0)に
対し、それぞれのM粉の嵩比重で換算した値を充当す
る。1vol%未満の配合では大半が燃焼し尽くし、所要の
金属相を含む皮膜は得られないからである。また、10vo
l%以上では皮膜全体の耐熱性が著しく低下するからで
ある。溶射火炎の条件はセラミックの溶射に主体をおく
ため、過剰な熱量によってM粉は過熱状態となって多量
の気泡を生じぜしめる。
The amount of M added is 1 to 10 vol%. This is the external coating ratio to MO x 100 vol%, and the value obtained by converting the bulk specific gravity of MO x powder (approximately 1.0) into the bulk specific gravity of each M powder is applied. This is because most of the composition of less than 1 vol% burns out, and a film containing the required metal phase cannot be obtained. Also 10vo
This is because the heat resistance of the entire coating is remarkably reduced when the content is 1% or more. Since the main condition of the thermal spray flame is the thermal spraying of ceramics, an excessive amount of heat causes the M powder to be in an overheated state, causing a large amount of bubbles.

一方、溶射に供するM、MOx粉末それぞれの組成上の純
度は、原則として以上でなければならない。
On the other hand, the compositional purity of each of the M and MO x powders to be subjected to thermal spraying must be at least the above in principle.

M粉の場合、不純成分はC、Fe、Si、Mn、S等であり、
多くは製造過程で混入し、溶射後所要のセラミック層と
は別に酸化物相を作り易い。また、これらが固溶成分で
あっても、溶射時の酸化過程で吸熱反応やガス化反応を
起こすものもあり、皮膜中に欠陥を生ぜしめる。
In the case of M powder, the impure components are C, Fe, Si, Mn, S, etc.,
Most of them are mixed during the manufacturing process, and it is easy to form an oxide phase after the thermal spraying separately from the required ceramic layer. Further, even if these are solid solution components, some of them cause an endothermic reaction or a gasification reaction in the oxidation process during thermal spraying, which causes defects in the coating film.

MOx粉の場合も同様であるが、ただし、固溶体として単
一の鉱物学的な相(鉱物相)を形成する範囲内では問題
はない。例えばZrO2粉末中のY2O3成分やCaO成分等、あ
るいはAl2O3粉末中のTiO2成分は別個の酸化物相とはな
らず、ある組成範囲でそれぞれの主成分相内の陽イオン
として固溶するので、鉱物相安定性を高めている。もち
ろん、溶射後にセラミック相中でZrあるいはAlが付与さ
れ固溶度が低下しても諸物性に与える影響はすくなく、
むしろ、皮膜としては膜中の金属相とセラミック相との
インターロックによる効果が大きく現われる。
The same applies to the case of MO x powder, but there is no problem as long as it forms a single mineralogy phase (mineral phase) as a solid solution. For example, the Y 2 O 3 component and CaO component in the ZrO 2 powder, or the TiO 2 component in the Al 2 O 3 powder do not form separate oxide phases, but a positive component in each main component phase within a certain composition range. Since it forms a solid solution as an ion, it enhances the mineral phase stability. Of course, even if Zr or Al is added in the ceramic phase after thermal spraying and the solid solubility decreases, it has little effect on various physical properties,
Rather, as a film, the effect of interlocking the metal phase and the ceramic phase in the film largely appears.

なお、溶射粉末の粒度は下記の範囲内であることが望ま
しい。
The particle size of the thermal spray powder is preferably within the following range.

通常、酸化物セラミック粉末の粒度は15〜100μmの範
囲にあり、これに対し金属粉の粒度を5〜50μmとする
のである。
Usually, the particle size of the oxide ceramic powder is in the range of 15 to 100 μm, while the particle size of the metal powder is 5 to 50 μm.

5μm未満では溶射時に燃焼飛散し易く、膜形成に所要
の相をつくらないからである。また、50μm以上では粗
大な独立した金属相を形成して点状欠陥を形成し易く、
低融劣化を招くからである。特に、金属相の均等な酸
化、未酸化相の分散を図る上では、望ましくはMOx粉と
M粉はそれぞれ40〜80μm、10〜20μmの範囲がよい。
This is because if it is less than 5 μm, it is easy to burn and scatter during thermal spraying, and a phase required for film formation is not formed. Further, when it is 50 μm or more, it is easy to form a coarse independent metal phase to form point defects,
This is because low melting deterioration is caused. Particularly, in order to evenly oxidize the metal phase and disperse the unoxidized phase, it is desirable that the MO x powder and the M powder are in the ranges of 40 to 80 μm and 10 to 20 μm, respectively.

以上のように、本発明ではいわば疑似サーメット皮膜を
形成することで、セラミック皮膜としての耐熱性を保持
した密着性の高い溶射加工が達成できる。なお、第1図
中10は疑似サーメット層を示す。
As described above, in the present invention, by forming the pseudo-cermet coating, so to speak, it is possible to achieve thermal spraying with high adhesion while maintaining heat resistance as a ceramic coating. In addition, 10 in FIG. 1 shows a pseudo cermet layer.

次に、本発明の第2は、事前処理を含む一連のセラミッ
ク溶射過程において、Al2O3、ZrO2、Cr2O3、TiO2もしくはN
iO系の酸化物単体のセラミック粉末に、酸化物中の陽イ
オンと同一の金属元素粉末を、前記セラミック粉末100v
ol%に対して1〜10vol%添加して成るセラミック溶射
材料の溶射時あるいは/及び溶射直後に基材を550〜200
℃に保持しつつ、皮膜表面を1300℃未満で一旦加熱処理
することを要旨とするセラミック溶射方法である。
Next, the second aspect of the present invention is to perform Al 2 O 3 , ZrO 2 , Cr 2 O 3 , TiO 2 or N in a series of ceramic spraying processes including pretreatment.
To the ceramic powder of the iO-based oxide alone, the same metal element powder as the cations in the oxide was added to the ceramic powder 100v.
550 to 200 of base material during or immediately after thermal spraying of ceramic thermal spray material composed by adding 1 to 10 vol% to ol%
The ceramic spraying method is characterized in that the coating surface is once heat-treated at a temperature of less than 1300 ° C while maintaining the temperature at ℃.

本発明の溶射方法は、一連の溶射工程で基材と皮膜を同
時に加熱状態にするのである。基材については550℃〜2
00℃の範囲で溶射前から加熱状態にしてこれを保持す
る。そして、この状態で皮膜形成した後、さらに皮膜最
表面の温度を1300℃未満の範囲で昇熱して冷却し、材料
温度が200℃に下がった後に全体を放冷するのである。
In the thermal spraying method of the present invention, the base material and the coating are simultaneously heated in a series of thermal spraying steps. 550 ℃ to 2 for the base material
In the range of 00 ℃, it is kept in a heated state before the thermal spraying. Then, after forming the film in this state, the temperature of the outermost surface of the film is further raised in the range of less than 1300 ° C. to be cooled, and after the material temperature has dropped to 200 ° C., the whole is allowed to cool.

基材の予熱温度は各部位の平均温度を意味するが、550
℃を超えると熱変質が促進される場合がある。また、20
0℃未満では基材と皮膜間で剥離が生じ易い。
The preheating temperature of the base material means the average temperature of each part, but 550
If it exceeds ℃, thermal deterioration may be accelerated. Also, 20
If it is less than 0 ° C, peeling easily occurs between the substrate and the film.

皮膜の表面の温度はM粉の融点以下で、軟化領域内の温
度であり、金属相の急激な酸化を抑制し、同時に基材と
皮膜表面の温度差を1300℃未満に抑えるので剥離防止に
効果がある。M粉の酸化反応作用を勘案すれば、多くは
700〜1000℃の処理温度で十分に目的は達せられる。
The temperature of the surface of the film is below the melting point of M powder and is in the softening region, which suppresses rapid oxidation of the metal phase and at the same time suppresses the temperature difference between the base material and the film surface to less than 1300 ° C. effective. Considering the oxidation reaction of M powder, many
A processing temperature of 700-1000 ° C is sufficient for the purpose.

熱処理時の昇降温速度は1〜5℃/minに調整することが
望ましい。1℃/min未満では、作業能率を阻害するから
である。とくに、昇温時の酸化速度あるいは降温時の熱
歪みの緩和を図るために5℃/min以下にする必要があ
る。もちろん上記趣旨を留意する必要がない基材の予熱
段階や200℃以下の放冷段階では、調整は不要である。
また、皮膜の熱処理としては、不必要な熱衝撃を与えな
い意味で溶射直後に処理開始するのも当然の処理であ
る。
It is desirable to adjust the temperature rising / falling rate during heat treatment to 1 to 5 ° C / min. This is because if it is less than 1 ° C / min, the work efficiency is hindered. In particular, it is necessary to set the rate to 5 ° C./min or less in order to reduce the oxidation rate at the time of temperature rise or the thermal strain at the time of temperature decrease. Of course, no adjustment is necessary in the preheating stage of the base material and the stage of cooling to 200 ° C. or lower where it is not necessary to pay attention to the above points.
Further, as the heat treatment of the coating, it is a matter of course to start the treatment immediately after thermal spraying in the sense of not giving unnecessary thermal shock.

このような熱処理の熱源としては電気炉内雰囲気、赤外
線ヒーター、溶射フレーム、あるいは基材の抵抗発熱
(特開昭58-216756号)等が有効である。
As a heat source for such heat treatment, an atmosphere in an electric furnace, an infrared heater, a thermal spray frame, or resistance heating of a substrate (Japanese Patent Laid-Open No. 216756/58) is effective.

これら熱源は、基材加熱用と皮膜表面加熱用として、別
個にもちいる。熱処理の作業能率を確保する上では、電
気炉内で基材を予熱状態にして溶射加工を施し、溶射ガ
ンフレームで皮膜表面を加熱することが最も有利といえ
る。本発明では金属粉Mが10vol%以下であるので未溶
融で飛散する材料による爆発等の問題は全くない。
These heat sources are used separately for heating the substrate and heating the coating surface. In order to secure the work efficiency of heat treatment, it can be said that it is most advantageous to preheat the substrate in the electric furnace, perform the thermal spraying process, and heat the coating surface with the thermal spray gun frame. In the present invention, since the metal powder M is 10 vol% or less, there is no problem such as explosion due to the material which is not melted and scattered.

以上のような疑似サーメット皮膜を熱処理すれば、熱処
理の昇降温過程で皮膜中の残存金属粉Mは徐々に酸化
し、微小なMOx相を晶出するので皮膜中気孔が減少し、
緻密化したセラミック皮膜を形成でき密着力は低下しな
い。
When the pseudo cermet film as described above is heat-treated, the residual metal powder M in the film is gradually oxidized during the temperature rising / falling process of the heat treatment, and minute MO x phases are crystallized, so that the pores in the film are reduced.
A densified ceramic film can be formed and adhesion does not decrease.

もちろん、これら一連の熱処理をしない皮膜について
も、使用温度に対応して表面部分では同等の変化が生じ
るのでセラミック皮膜としての耐熱性、緻密化に伴う強
度保持の点で何ら問題が生じることはない。
Of course, even in the case of a film that is not subjected to such a series of heat treatments, the same change occurs at the surface portion depending on the operating temperature, so there is no problem in terms of heat resistance as a ceramic film and strength retention due to densification. .

(作用) 本発明は、Al2O3、ZrO2、Cr2O3、TiO2もしくはNiO系の酸化
物単体のセラミック粉末に、酸化物中の陽イオンと同一
の金属元素粉末を、前記セラミック粉末100vol%に対し
て1〜10vol%添加して成るセラミック溶射材料及び事
前処理を含む一連のセラミック溶射過程において、Al2O
3、ZrO2、Cr2O3、TiO2もしくはNiO系の酸化物単体のセラミ
ック粉末に、酸化物中の陽イオンと同一の金属元素粉末
を、前記セラミック粉末100vol%に対して1〜10vol%
添加して成るセラミック溶射材料の溶射時あるいは/及
び溶射直後に基材を550〜200℃に保持しつつ、皮膜表面
を1300℃未満で一旦加熱処理するものである為、皮膜の
良好な結合状態が得られて密着性が良好となる。
(Operation) In the present invention, Al 2 O 3 , ZrO 2 , Cr 2 O 3 , TiO 2 or NiO-based oxide alone is added to a ceramic powder, and the same metal element powder as the cation in the oxide is added to the ceramic powder. In a series of ceramic spraying processes including a ceramic spraying material containing 1 to 10 vol% of powder to 100 vol% of powder and pretreatment, Al 2 O
3, the oxide single ceramic powder ZrO 2, Cr 2 O 3, TiO 2 or NiO system, the same metallic element powder and a cation in the oxide, 1~10Vol% with respect to the ceramic powder 100 vol%
A good bonding state of the coating because the coating surface is once heat-treated at less than 1300 ° C while holding the base material at 550 to 200 ° C during and / or immediately after the thermal spraying of the ceramic sprayed material added. Is obtained and the adhesion becomes good.

(実施例) 以下本発明によるセラミック溶射皮膜の実施例を示す。(Examples) Examples of ceramic sprayed coatings according to the present invention will be shown below.

使用した溶射機は粉体外部送給機能を持つプラズマジェ
ットガンで、Ar、N2及びH2ガスの組合わせを作動ガスと
した。出力電流は600A〜900Aの範囲において40〜50kwの
出力でプラズマを作動させた。ただし、個々の条件はセ
ラミック材質系内ですべて一定とした。
The spraying machine used was a plasma jet gun with a powder external feeding function, and a combination of Ar, N 2 and H 2 gases was used as the working gas. The plasma was operated with an output current of 600 A to 900 A and an output of 40 to 50 kw. However, the individual conditions were all constant within the ceramic material system.

また、作動条件と共に、粉体(溶射材)送給量、溶射ガ
ン走査速度及び溶射距離も同一材質内では一定にした。
基材はSS−41もしくはSUS−304で、形状は50×150×3.2
(mm)の一定形状とした。基材の事前処理としてはアル
ミナグリットでブラストし、アセトン液で洗浄した。さ
らにセラミック層(トップコート)被覆間にNiCrAlY系
合金粉を下地溶射し、100〜150μmのアンダーコート上
に本発明法の材料、従来材料を溶射した。
In addition to the operating conditions, the powder (spray material) feed rate, the spray gun scanning speed, and the spray distance were also constant within the same material.
The base material is SS-41 or SUS-304, and the shape is 50 x 150 x 3.2.
(Mm) constant shape. As a pretreatment of the base material, it was blasted with alumina grit and washed with an acetone solution. Further, NiCrAlY alloy powder was sprayed under the space between the ceramic layers (top coat) coating, and the material of the method of the present invention and the conventional material were sprayed on the undercoat of 100 to 150 μm.

熱処理法としては、基材加熱は電気炉もしくは基材抵抗
加熱方式で実施し、溶射中あるいは皮膜表面加熱中に基
材反対面の温度を維持するため、40〜60l/min量のArガ
スでガス冷却した。皮膜表面の加熱は赤外線ヒーターを
用いた。昇降温の調整は、非接触型の温度系での計測で
ヒーター出力を調整した。
As a heat treatment method, the base material is heated by an electric furnace or a resistance heating method for the base material, and in order to maintain the temperature of the opposite surface of the base material during thermal spraying or heating of the coating surface, 40 to 60 l / min Ar gas is used. Gas cooled. An infrared heater was used to heat the coating surface. To adjust the temperature rise and fall, the heater output was adjusted by measurement in a non-contact type temperature system.

また、得られた皮膜の密着力は、断面積2cm2のボルト
(SS-41)をエポキシ樹脂で固定し、トルクレンチでね
じり強さを測定した時のトルクでもって数値化し、従来
法による皮膜の密着力指数を100としてこれとの比で示
した。
In addition, the adhesion of the obtained film is quantified by the torque when the bolt (SS-41) with a cross-sectional area of 2 cm 2 is fixed with epoxy resin and the torsional strength is measured with a torque wrench, and the film is obtained by the conventional method. Adhesion index of 100 was set as 100 and shown as a ratio.

なお、従来法による皮膜は測定時、90%以上セラミック
皮膜内で剥離し、本発明法の皮膜では測定時に85%以上
セラミック層とアンダーコート界面で剥離した。
Incidentally, the coating by the conventional method was peeled off in the ceramic coating by 90% or more during the measurement, and by the coating by the method of the present invention, 85% or more was peeled off at the interface between the ceramic layer and the undercoat during the measurement.

気孔量は上記測定で得られた剥離膜を、300℃で樹脂を
焼却することによって得られたものを用い、水銀圧入方
式のポロシメーターで得られた積算気孔量で示した。従
来法による皮膜の気孔量を100としてこれとの比で示し
た。ただし、サンプルの回収法から明らかなように実際
の従来法の気孔量はポロシメーターで得られた数値より
一様に多孔質と言える。
The porosity was shown by the cumulative porosity obtained by a mercury porosimeter using a release film obtained by the above measurement by incinerating the resin at 300 ° C. The porosity of the coating by the conventional method is set to 100 and shown as a ratio to this. However, as is clear from the sample collection method, the actual porosity of the conventional method can be said to be more uniformly porous than the values obtained by the porosimeter.

本発明による皮膜性状を従来例との対比で第1表〜第3
表に示す。これらの結果、密着性や緻密性の点で改善効
果が著しく、膜内の結合力も向上していると容易に推定
できる。
The coating properties according to the present invention are shown in Tables 1 to 3 in comparison with the conventional example.
Shown in the table. As a result, it can be easily inferred that the improvement effect is remarkable in terms of adhesion and denseness, and that the bond strength in the film is also improved.

〔その1(第1表)〕 金属Zr粉(純度:98%)を5〜40μmの粒径に調整した
ものを配合量2〜10vol%の割合でZrO2粉(純度:99%)
に均一混合して溶射材料とし、Ar-H2プラズマでSUS-304
基材(下地処理後)に溶射し、厚さ500μmの被覆を施
した。この結果、下記第1表に示す如く約20%量の気孔
が軽減し、密着力が約2倍に向上した。
[Part 1 (Table 1)] ZrO 2 powder (purity: 99%) prepared by adjusting metal Zr powder (purity: 98%) to a particle size of 5 to 40 μm at a blending ratio of 2 to 10 vol%.
Is mixed uniformly into a thermal spray material, and SUS-304 is formed by Ar-H 2 plasma.
The base material (after the surface treatment) was sprayed and coated with a thickness of 500 μm. As a result, as shown in Table 1 below, about 20% of the pores were reduced, and the adhesion was improved about twice.

〔その2(第2表)〕 金属Al粉(純度:97%)を30〜50μmの粒径に調整した
ものを、配合量を変えてAl2O3粉(通常ホワイトアルミ
ナ)に均一混合して溶射材料とし、N2-H2プラズマでSS-
41基材(下地処理後)に溶射し、厚さ750μmの被覆を
施した。
[Part 2 (Table 2)] Metal Al powder (purity: 97%) adjusted to a particle size of 30 to 50 μm was mixed uniformly with Al 2 O 3 powder (usually white alumina) by changing the compounding amount. As a thermal spraying material and SS- with N 2 -H 2 plasma
41 base material (after the surface treatment) was sprayed and coated with a thickness of 750 μm.

この結果、下記第2表に示す如く最大25%量の気孔軽減
が認められ密着力が約2〜3倍に向上した。更に、比較
例として、2.4%TiO2含有アルミナ(通常グレイアルミ
ナ)及びTiO2量13%でTiO2-Al2O3(チタン酸アルミナ)
を含むアルミナ系粉末について5vol%のAl粉を添加した
材料による皮膜ではTiO2量が多い場合緻密化するものの
必ずしも密着性は向上しなかった。
As a result, as shown in Table 2 below, a maximum amount of 25% reduction in pores was recognized, and the adhesion was improved about 2-3 times. Furthermore, as comparative examples, 2.4% TiO 2 -containing alumina (usually gray alumina) and TiO 2 content 13% TiO 2 -Al 2 O 3 (alumina titanate)
With respect to the alumina-based powder containing Al, the film formed by adding 5 vol% of Al powder densified when the amount of TiO 2 was large, but the adhesion was not necessarily improved.

また、一部熱処理を施した被覆サンプルでは密着力は著
しく向上した。
In addition, the adhesion strength of the coated sample partially heat-treated was significantly improved.

〔その3(第3表)〕 純度が91.3%以上のCr粉、Ti粉、Ni粉で5〜50μmに調
整したものを配合量2vol%の割合でCr2O3粉、TiO2粉に
均一混合して溶射材料とし、SS-41基材(下地処理)に
溶射し、厚さ150〜200μmの被覆を施した。
[Part 3 (Table 3)] Purity of 91.3% or more of Cr powder, Ti powder, and Ni powder adjusted to 5 to 50 μm is uniform in Cr 2 O 3 powder and TiO 2 powder at a mixing ratio of 2 vol%. The mixture was mixed to obtain a thermal spray material, which was sprayed onto an SS-41 base material (undercoating) to form a coating having a thickness of 150 to 200 μm.

この結果、下記第3表に示す如く気孔量が約20%軽減
し、約2倍の密着力向上が認められた。
As a result, as shown in Table 3 below, the porosity was reduced by about 20%, and about twice the improvement in adhesion was confirmed.

以上、本発明を実施例に則して種々説明したが、本発明
の範囲内で種々の変更および改良を行ない得ることは当
業者には明白である。
Although the present invention has been variously described above with reference to the embodiments, it will be apparent to those skilled in the art that various modifications and improvements can be made within the scope of the present invention.

(発明の効果) 以上説明したように、本発明は、Al2O3、ZrO2、Cr2O3、TiO
2もしくはNiO系の酸化物単体のセラミック粉末に、酸化
物中の陽イオンと同一の金属元素粉末を、前記セラミッ
ク粉末100vol%に対して1〜10vol%添加して成るセラ
ミック溶射材料及び事前処理を含む一連のセラミック溶
射過程において、Al2O3、ZrO2、Cr2O3、TiO2もしくはNiO系
の酸化物単体のセラミック粉末に、酸化物中の陽イオン
と同一の金属元素粉末を、前記セラミック粉末100vol%
に対して1〜10vol%添加して成るセラミック溶射材料
の溶射時あるいは/及び溶射直後に基材を550〜200℃に
保持しつつ、皮膜表面を1300℃未満で一旦加熱処理する
ものである為、皮膜の良好な結合状態が得られて密着性
が良好となる。したがって、本発明によれば、耐熱性を
著しく損なうことがなく、密着性が良好で長寿命の被覆
が達成でき、緻密化と結合力向上によって被覆、機能が
向上でき、しかも熱処理によってさらに緻密で耐熱性の
優れたセラミック被覆が達成できる等益するところ大な
る発明である。
(Effects of the Invention) As described above, the present invention provides Al 2 O 3 , ZrO 2 , Cr 2 O 3 , and TiO 2.
2 or NiO-based oxide alone ceramic powder, the same metal element powder as the cations in the oxide is added to the ceramic powder 100vol% 1-10vol% ceramic spray material and pretreatment in a series of ceramic spray processes including, the Al 2 O 3, ZrO 2, Cr 2 O 3, the ceramic powder of the oxide single TiO 2 or NiO system, the same metallic element powder and a cation in the oxide, the Ceramic powder 100vol%
1 to 10 vol% of the ceramic sprayed material is applied to the coating surface during or / and immediately after thermal spraying while maintaining the base material at 550 to 200 ° C while the coating surface is once heat-treated below 1300 ° C. , A good bonded state of the film is obtained, and the adhesion is good. Therefore, according to the present invention, heat resistance is not significantly impaired, good adhesion and long-life coating can be achieved, coating and function can be improved by densification and improvement of bonding strength, and further heat treatment makes it more dense. This is a great invention where the ceramic coating having excellent heat resistance can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるセラミック溶射皮膜の積層形態
(断面)図、第2図〜第6図は従来例1〜従来例5によ
るセラミック溶射皮膜の積層形態((断面)図である。 1はセラミック層、2は基材、3はアンダーコート層、
10は疑似サーメット層。
FIG. 1 is a stacking form (cross section) of a ceramic sprayed coating according to the present invention, and FIGS. 2 to 6 are stacking forms ((cross section) views of ceramic sprayed coatings according to Conventional Example 1 to Conventional Example 5. Ceramic layer, 2 as substrate, 3 as undercoat layer,
10 is a pseudo cermet layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Al2O3、ZrO2、Cr2O3、TiO2もしくはNiO系の酸
化物単体のセラミック粉末に、酸化物中の陽イオンと同
一の金属元素粉末を、前記セラミック粉末100vol%に対
して1〜10vol%添加して成ることを特徴とするセラミ
ック溶射材料。
1. A ceramic powder consisting of Al 2 O 3 , ZrO 2 , Cr 2 O 3 , TiO 2 or NiO oxide alone, and a metal element powder which is the same as the cation in the oxide are mixed with 100 vol of the ceramic powder. % To 1% to 10% by volume of the ceramic sprayed material.
【請求項2】事前処理を含む一連のセラミック溶射過程
において、Al2O3、ZrO2、Cr2O3、TiO2もしくはNiO系の酸化
物単体のセラミック粉末に、酸化物中の陽イオンと同一
の金属元素粉末を、前記セラミック粉末100vol%に対し
て1〜10vol%添加して成るセラミック溶射材料の溶射
時あるいは/及び溶射直後に基材を550〜200℃に保持し
つつ、皮膜表面を1300℃未満で一旦加熱処理することを
特徴とするセラミック溶射方法。
2. In a series of ceramic thermal spraying processes including pretreatment, Al 2 O 3 , ZrO 2 , Cr 2 O 3 , TiO 2 or NiO-based oxide alone is added to a ceramic powder, and cations in the oxide are added to the ceramic powder. The same metal element powder is added to the ceramic powder in an amount of 1 to 10 vol% with respect to 100 vol% of the ceramic powder, and / or immediately after the thermal spraying of the ceramic spray material, while holding the substrate at 550 to 200 ° C. A ceramic thermal spraying method characterized in that heat treatment is performed once at a temperature of less than 1300 ° C.
JP61141186A 1986-06-16 1986-06-16 Ceramic spraying material and spraying method Expired - Lifetime JPH06104887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141186A JPH06104887B2 (en) 1986-06-16 1986-06-16 Ceramic spraying material and spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141186A JPH06104887B2 (en) 1986-06-16 1986-06-16 Ceramic spraying material and spraying method

Publications (2)

Publication Number Publication Date
JPS62297451A JPS62297451A (en) 1987-12-24
JPH06104887B2 true JPH06104887B2 (en) 1994-12-21

Family

ID=15286157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141186A Expired - Lifetime JPH06104887B2 (en) 1986-06-16 1986-06-16 Ceramic spraying material and spraying method

Country Status (1)

Country Link
JP (1) JPH06104887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062101A (en) * 1992-06-15 1994-01-11 Kurosaki Refract Co Ltd Alumina-zircon thermal spraying material containing metal powder
FR2835534B1 (en) * 2002-02-06 2004-12-24 Saint Gobain NON STOECHIOMETRIC CERAMIC TARGET NiOx

Also Published As

Publication number Publication date
JPS62297451A (en) 1987-12-24

Similar Documents

Publication Publication Date Title
US4808487A (en) Protection layer
CN104561882B (en) High-temperature oxidation resistant coating on niobium alloy surface and preparation method of high-temperature oxidation resistant coating
JP3983323B2 (en) Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer
US3927223A (en) Method of forming refractory oxide coatings
RU2451043C2 (en) Strontium and titanium oxides and abrasive coatings obtained on their basis
TWI323294B (en)
CN106011721B (en) A method of laminated coating is prepared using hot spray process
US20070259126A1 (en) Method for the Production of Thin Dense Ceramic Layers
CN113151772A (en) Novel high-temperature corrosion-resistant thermal barrier coating with double ceramic layer structure and preparation method thereof
CN106460140A (en) Method for producing laminate, and laminate
EP2113582A2 (en) Process for forming an improved durability thick ceramic coating
JP2011502091A (en) CERAMIC LAYER COMPOSITE AND METHOD FOR PRODUCING THE CERAMIC LAYER COMPOSITE
CN105386041B (en) A kind of method that laser melting coating prepares modified compound Hf Ta metal coatings
CN110117764A (en) Thermal barrier/high-temperature low-infrared-emissivity integrated coating, metal composite material with coating and preparation method of metal composite material
CN107779829B (en) The preparation method of MULTILAYER COMPOSITE high-temperature corrosion resistance coating based on high-temperature nickel-base alloy
CN108296602A (en) A kind of metal base functor and its increase material preparation for processing
CN108034857A (en) A kind of titanium fire preventing flame retardant coating and preparation method thereof
JPH06104887B2 (en) Ceramic spraying material and spraying method
JP2008137860A (en) Ceramics burning tool material for electronic components
Mohammed et al. Investigation of ceramic coating by thermal spray with diffusion of copper
CN114045456A (en) High-temperature-resistant composite coating containing rare-earth aluminate and preparation method thereof
CN110616394A (en) Preparation method for improving thermal shock resistance of double-ceramic-layer TBCs
KR100801910B1 (en) Y2o3 spray-coated member and production method thereof
CN106011716B (en) A kind of W-WSi2Functionally graded material and preparation method thereof
CN117265452B (en) Water-cooled copper crucible heat shielding composite coating and preparation method thereof