JPH06104670A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JPH06104670A
JPH06104670A JP4248037A JP24803792A JPH06104670A JP H06104670 A JPH06104670 A JP H06104670A JP 4248037 A JP4248037 A JP 4248037A JP 24803792 A JP24803792 A JP 24803792A JP H06104670 A JPH06104670 A JP H06104670A
Authority
JP
Japan
Prior art keywords
signal
output
error rate
automatic gain
gain control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248037A
Other languages
Japanese (ja)
Inventor
Yasunari Nagakubo
憩功 長久保
Takashi Tsuda
高至 津田
Masaru Onishi
賢 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4248037A priority Critical patent/JPH06104670A/en
Publication of JPH06104670A publication Critical patent/JPH06104670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To provide the optical receiver keeping a frequency characteristic at an input terminal of an identification circuit of the optical receiver constant. CONSTITUTION:In the optical receiver having a light receiving element 100, an equalization amplifier section 200 provided with an automatic gain controlled amplifier 600, and an identification circuit 300, the equalization amplifier section 200 is provided with an equal error rate curve measurement means 120 receiving part of an output signal of the automatic gain controlled amplifier 600 and measuring and outputting data of an equal error rate curve by using an error rate as a parameter, and an arithmetic operation processing means 130 applying inverse Fourier transformation to an output of the equal error rate curve measurement means 120 to obtain a frequency characteristic corresponding to an input optical signal and outputting a control signal to the automatic gain controlled amplifier 600 so as to keep a frequency characteristic of the output signal from the equalization amplifier section 200 constant with the control signal being the output of the arithmetic operation processing means 130.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光伝送装置の光受信器の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an optical receiver of an optical transmission device.

【0002】[0002]

【従来の技術】図9は一例の光中継器の構成を示すブロ
ック図である。図10は従来例の等化増幅部の構成を示す
ブロック図である。
2. Description of the Related Art FIG. 9 is a block diagram showing the configuration of an example of an optical repeater. FIG. 10 is a block diagram showing a configuration of a conventional equalization amplification unit.

【0003】図11は従来例の等化増幅部出力の自動利得
制御(以下AGCと称する)による利得−周波数特性図
である。図9において、アバランシェ・ホトダイオード
(APD)1で光伝送路からの光入力信号を電気信号に
変換した後等化増幅部2に加える。図10に示す等化増幅
部2のプリアンプ5で電流信号を電圧信号に変換し、こ
の出力をAGCアンプ6と、ポストアンプ7、利得制御
部8によるフィードバックループにより自動利得制御を
行って、図11に示すような利得−周波数特性の信号をポ
ストアンプ7から出力する。
FIG. 11 is a gain-frequency characteristic diagram obtained by automatic gain control (hereinafter referred to as AGC) of the output of the equalizing amplifier of the conventional example. In FIG. 9, an avalanche photodiode (APD) 1 converts an optical input signal from the optical transmission line into an electric signal and then applies the electric signal to the equalization amplification unit 2. The preamplifier 5 of the equalization amplification unit 2 shown in FIG. 10 converts a current signal into a voltage signal, and this output is subjected to automatic gain control by a feedback loop of the AGC amplifier 6, the postamplifier 7, and the gain control unit 8, A signal having a gain-frequency characteristic as shown in 11 is output from the post amplifier 7.

【0004】この等化増幅部2の出力を分岐して識別回
路3に加えるとともに、タイミング回路4に加える。タ
イミング回路4で入力信号を識別再生するためのクロッ
クを発生し、このクロックにより識別回路3で入力信号
に対して識別再生を行う。
The output of the equalizing / amplifying unit 2 is branched and added to the discrimination circuit 3 and the timing circuit 4. The timing circuit 4 generates a clock for identifying and reproducing the input signal, and the identifying circuit 3 performs identification and reproduction for the input signal by this clock.

【0005】[0005]

【発明が解決しようとする課題】従来の光受信器では図
11に示したように、利得の制御を所定周波数範囲にわた
って均一に行っていた。このため、光送信器の周波数特
性の個別のばらつきが大きい高速光通信においては、光
受信器の識別回路の入力端での波形がばらつくため、光
受信器での最小受信感度の劣化が生じるという問題点が
あった。
However, in the conventional optical receiver,
As shown in 11, the gain was controlled uniformly over a predetermined frequency range. For this reason, in high-speed optical communication in which the individual variations in the frequency characteristics of the optical transmitter are large, the waveform at the input end of the identification circuit of the optical receiver varies, which causes deterioration of the minimum receiving sensitivity in the optical receiver. There was a problem.

【0006】したがって本発明の目的は、高速の入力光
信号に対しても最小受信感度の劣化が生じない光受信器
を提供することにある。
Therefore, an object of the present invention is to provide an optical receiver in which the deterioration of the minimum receiving sensitivity does not occur even with a high-speed input optical signal.

【0007】[0007]

【課題を解決するための手段】上記問題点は図1に示す
回路の構成によって解決される。 (請求項1) 入力光信号を電気信号に変換して出力す
る受光素子100 と、受光素子の出力に対して自動利得制
御ループにより増幅して出力する自動利得制御増幅器60
0 を具備する等化増幅部200 と、等化増幅部200の出力
信号に対して等化増幅部200で抽出したクロックにより
識別再生を行う識別回路300 とを有する光受信器におい
て、120 は、自動利得制御増幅器600 の出力信号の一部
を入力して、誤り率の値をパラメータとして等誤り率曲
線のデータを測定して出力する等誤り率曲線測定手段で
ある。
The above problems can be solved by the circuit configuration shown in FIG. (Claim 1) A light receiving element 100 for converting an input optical signal into an electric signal and outputting the electric signal, and an automatic gain control amplifier 60 for amplifying and outputting the output of the light receiving element by an automatic gain control loop.
In the optical receiver including the equalization amplification unit 200 including 0 and the identification circuit 300 that performs identification reproduction on the output signal of the equalization amplification unit 200 by the clock extracted by the equalization amplification unit 200, 120 is It is an equal error rate curve measuring means for inputting a part of the output signal of the automatic gain control amplifier 600 and measuring and outputting data of the equal error rate curve using the value of the error rate as a parameter.

【0008】130 は、等誤り率曲線測定手段120 の出力
に対して逆フーリェ変換を行って、前記入力光信号に対
応する周波数特性を求め制御信号を自動利得制御増幅器
600に出力する演算処理手段である。上記120 及び130を
等化増幅部200 に設ける。
Reference numeral 130 denotes an inverse Fourier transform for the output of the equal error rate curve measuring means 120 to obtain a frequency characteristic corresponding to the input optical signal and obtain a control signal as an automatic gain control amplifier.
It is an arithmetic processing means for outputting to 600. The above 120 and 130 are provided in the equalization amplification section 200.

【0009】そして、演算処理手段130 の出力の制御信
号により等化増幅部200 の出力の信号周波数特性を一定
に保つように構成する。 (請求項2) 入力光信号を電気信号に変換して出力す
る受光素子100 と、受光素子の出力に対して自動利得制
御ループにより増幅して出力する自動利得制御増幅器60
0 を具備する等化増幅部200 と、等化増幅部の出力信号
に対して等化増幅部で抽出したクロックにより識別再生
を行う識別回路300 とを有する光受信器において、120
は、自動利得制御増幅器600 の出力信号の一部を入力し
て、誤り率の値をパラメータとして等誤り率曲線のデー
タを測定して出力する等誤り率曲線測定手段である。
Then, the signal frequency characteristic of the output of the equalizing and amplifying section 200 is kept constant by the control signal of the output of the arithmetic processing means 130. (Claim 2) A light receiving element 100 which converts an input optical signal into an electric signal and outputs the electric signal, and an automatic gain control amplifier 60 which amplifies and outputs the output of the light receiving element by an automatic gain control loop.
In an optical receiver including an equalization amplification unit 200 including 0 and an identification circuit 300 that performs identification reproduction with a clock extracted by the equalization amplification unit with respect to an output signal of the equalization amplification unit,
Is an equal error rate curve measuring means for inputting a part of the output signal of the automatic gain control amplifier 600 and measuring and outputting data of the equal error rate curve using the value of the error rate as a parameter.

【0010】135 は、自動利得制御増幅器600 の出力信
号の一部を入力して、自動利得制御増幅器600 の出力信
号の振幅が一定になるように第1の制御信号を自動利得
制御増幅器600 に出力するとともに、等誤り率曲線測定
手段120 の出力に対して逆フーリェ変換を行って、前記
入力光信号に対応する周波数特性を求め第2の制御信号
を自動利得制御増幅器600 に出力する演算処理手段であ
る。上記120 及び135を等化増幅部200 に設ける。
135 receives a part of the output signal of the automatic gain control amplifier 600 and outputs the first control signal to the automatic gain control amplifier 600 so that the amplitude of the output signal of the automatic gain control amplifier 600 becomes constant. An arithmetic process of outputting the second control signal to the automatic gain control amplifier 600 by performing the inverse Fourier transform on the output of the equal error rate curve measuring means 120 while obtaining the frequency characteristic corresponding to the input optical signal. It is a means. The above 120 and 135 are provided in the equalization amplification section 200.

【0011】そして、演算処理手段135 の出力の第1及
び第2の制御信号により等化増幅部200 の出力の信号周
波数特性を一定に保つように構成する。
Then, the signal frequency characteristic of the output of the equalizing and amplifying section 200 is kept constant by the first and second control signals of the output of the arithmetic processing means 135.

【0012】[0012]

【作用】図1において、(請求項1) 等誤り率曲線測
定手段120 で測定した等誤り率曲線のデータに対して、
演算処理手段130で逆フーリェ変換を行って、前記入力
光信号に対応する周波数特性を求める。そして、この周
波数特性をキャンセルして理想的な周波数特性を得るた
めの制御信号を自動利得制御増幅器600 に出力する。
In FIG. 1, (claim 1) the data of the equal error rate curve measured by the equal error rate curve measuring means 120,
The inverse Fourier transform is performed by the arithmetic processing means 130 to obtain the frequency characteristic corresponding to the input optical signal. Then, the control signal for canceling this frequency characteristic and obtaining the ideal frequency characteristic is output to the automatic gain control amplifier 600.

【0013】この結果、光受信器の等化増幅部2で、光
送信器(図示しない)から送られてくる信号の周波数特
性を常に補正し、その出力端で理想に近い周波数特性を
保つことにより、最小受信感度の劣化を防ぐことができ
る。
As a result, the equalization amplification unit 2 of the optical receiver always corrects the frequency characteristic of the signal sent from the optical transmitter (not shown), and maintains the frequency characteristic close to ideal at the output end. This makes it possible to prevent deterioration of the minimum receiving sensitivity.

【0014】(請求項2) 演算処理手段135 で、自動
利得制御増幅器600 の出力信号の一部を入力して、自動
利得制御増幅器600 の出力信号の振幅が一定になるよう
に第1の制御信号を自動利得制御増幅器600 に出力す
る。
(Claim 2) In the arithmetic processing means 135, a part of the output signal of the automatic gain control amplifier 600 is input and the first control is performed so that the amplitude of the output signal of the automatic gain control amplifier 600 becomes constant. The signal is output to the automatic gain control amplifier 600.

【0015】同時に、等誤り率曲線測定手段120 の出力
の等誤り率曲線のデータに対して、演算処理手段135 で
逆フーリェ変換を行って、前記入力光信号に対応する周
波数特性を求める。そして、この周波数特性をキャンセ
ルして理想的な周波数特性を得るための第2の制御信号
を自動利得制御増幅器600 に出力する。
At the same time, the data of the equal error rate curve output from the equal error rate curve measuring means 120 is subjected to an inverse Fourier transform by the arithmetic processing means 135 to obtain the frequency characteristic corresponding to the input optical signal. Then, the second control signal for canceling this frequency characteristic and obtaining the ideal frequency characteristic is output to the automatic gain control amplifier 600.

【0016】そして、第1の制御信号による制御の方が
第2の制御信号による制御動作よりも速く行われるた
め、第2の制御信号による制御は微調整ですみ、自動利
得制御ループ全体の応答速度が速くなる。この結果、入
力信号レベルの変動に対して高速で応答することができ
る。
Since the control by the first control signal is performed faster than the control operation by the second control signal, the control by the second control signal requires fine adjustment, and the response of the entire automatic gain control loop is required. Speed up. As a result, it is possible to respond to the fluctuation of the input signal level at high speed.

【0017】[0017]

【実施例】図2は請求項1の発明の実施例の等化増幅部
の構成を示すブロック図である。図3は実施例における
光送信器(LD)出力波形の等誤り率曲線図である。
2 is a block diagram showing the structure of an equalizing / amplifying unit according to an embodiment of the present invention. FIG. 3 is an equal error rate curve diagram of the output waveform of the optical transmitter (LD) in the example.

【0018】図4は図3のデータを逆フーリェ展開して
得られる光送信器出力の周波数特性図である。図5は実
施例の識別回路の入力端で要求される周波数特性図であ
る。
FIG. 4 is a frequency characteristic diagram of the output of the optical transmitter obtained by inverse Fourier expansion of the data of FIG. FIG. 5 is a frequency characteristic diagram required at the input end of the identification circuit of the embodiment.

【0019】図6は図4の周波数特性をキャンセルする
ための光受信器の周波数特性図である。図7は図6の周
波数特性を満足するための各AGCアンプの周波数特性
図である。
FIG. 6 is a frequency characteristic diagram of the optical receiver for canceling the frequency characteristic of FIG. FIG. 7 is a frequency characteristic diagram of each AGC amplifier for satisfying the frequency characteristic of FIG.

【0020】図8は請求項2の発明の実施例の等化増幅
部の構成を示すブロック図である。全図を通じて同一符
号は同一対象物を示す。図2において、9-1 〜9-n は帯
域中心周波数が少しずつ異なる帯域通過フィルタ(以下
BPFと称する)である。6-1 〜6-n は各BPF9-1 〜
9-n を通過した信号をAGCループにより増幅するAG
Cアンプである。11はこれらAGCアンプ6-1 〜6-n の
出力を加算する加算器である。
FIG. 8 is a block diagram showing the structure of the equalizing / amplifying unit according to the second embodiment of the invention. The same reference numerals denote the same objects throughout the drawings. In FIG. 2, 9-1 to 9-n are band pass filters (hereinafter referred to as BPFs) whose band center frequencies are slightly different from each other. 6-1 to 6-n are each BPF9-1 to
AG that amplifies the signal that has passed 9-n by the AGC loop
It is a C amplifier. Reference numeral 11 is an adder for adding the outputs of these AGC amplifiers 6-1 to 6-n.

【0021】12はポストアンプ7の出力(つまり、等化
増幅部2の出力)の信号波形に対して、誤り率の値をパ
ラメータとして等誤り率曲線を測定する等誤り率曲線測
定部である。
Reference numeral 12 denotes an equal error rate curve measuring section for measuring an equal error rate curve using the value of the error rate as a parameter for the signal waveform of the output of the post amplifier 7 (that is, the output of the equalization amplifying section 2). .

【0022】ポストアンプ7の出力の一部を等誤り率曲
線測定部12に加えると、等誤り率曲線測定部12では光送
信器(図示しない)から伝送されてきた光信号波形に対
して、例えば図3に示すような等誤り率曲線が測定され
る。この測定データがCPU13で逆フーリェ展開処理さ
れて、図4に示すような周波数特性が得られる。
When a part of the output of the post-amplifier 7 is added to the equal error rate curve measuring section 12, the equal error rate curve measuring section 12 receives the optical signal waveform transmitted from the optical transmitter (not shown). For example, an equal error rate curve as shown in FIG. 3 is measured. This measurement data is subjected to inverse Fourier expansion processing by the CPU 13 to obtain the frequency characteristic as shown in FIG.

【0023】一方、最小受信感度の劣化を防ぐために
は、光送信器(図示しない)による光信号の周波数特性
がばらついても、識別回路3の入力端では図5に示すよ
うな理想的な周波数特性になる必要がある。このため、
光送信器(図示しない)の出力の周波数特性(図4参
照)をキャンセルするために、光受信器では図6に示す
ような周波数特性を持つ必要がある。
On the other hand, in order to prevent the deterioration of the minimum receiving sensitivity, even if the frequency characteristic of the optical signal due to the optical transmitter (not shown) varies, the ideal frequency as shown in FIG. It has to be a characteristic. For this reason,
In order to cancel the frequency characteristic (see FIG. 4) of the output of the optical transmitter (not shown), the optical receiver needs to have the frequency characteristic as shown in FIG.

【0024】そこで、CPU13で逆フーリェ展開処理さ
れた周波数特性から光受信器で必要な周波数特性を計算
する。本発明の実施例では、等化増幅部は図2に示すよ
うに周波数領域を分割した複数個のAGCアンプ6-1 〜
6-n で構成されるため、光受信器で必要な周波数特性に
なるようにそれぞれのAGCアンプ6-1 〜6-n の利得を
CPU13で計算し、例えば図7に示すような結果を得
る。この計算にしたがってCPU13から各AGCアンプ
6-1 〜6-n に制御信号を出力して、光受信器として図6
に示すような周波数特性を得るようにする。
Therefore, the CPU 13 calculates the frequency characteristic required for the optical receiver from the frequency characteristic subjected to the inverse Fourier expansion process. In the embodiment of the present invention, the equalizing / amplifying unit includes a plurality of AGC amplifiers 6-1 to 6-1 whose frequency domain is divided as shown in FIG.
Since it is composed of 6-n, the gain of each AGC amplifier 6-1 to 6-n is calculated by the CPU 13 so as to obtain the frequency characteristic required for the optical receiver, and the result as shown in FIG. 7 is obtained, for example. . According to this calculation, CPU13 to each AGC amplifier
The control signals are output to 6-1 to 6-n, and the optical receiver is shown in FIG.
The frequency characteristics shown in are obtained.

【0025】以上の動作により光受信器の等化増幅部2
で、光送信器(図示しない)から送られてくる信号の周
波数特性を常に補正し、その出力端で理想に近い周波数
特性を保つことにより、最小受信感度の劣化を防ぐこと
ができる。
By the above operation, the equalization amplification section 2 of the optical receiver
Thus, by constantly correcting the frequency characteristic of the signal sent from the optical transmitter (not shown) and maintaining the frequency characteristic close to the ideal at the output end, the deterioration of the minimum receiving sensitivity can be prevented.

【0026】次に図8に示す本発明の第2の実施例につ
いて説明する。前述した図2の実施例と異なる点は、ポ
ストアンプ7の出力の一部を分岐して等誤り率曲線測定
部12に加えるとともにCPU13にも加えるようにし、等
誤り率曲線測定部12を含まないAGCループと等誤り率
曲線測定部12を含むAGCループの二重ループ構成にし
たことにある。
Next, a second embodiment of the present invention shown in FIG. 8 will be described. The difference from the embodiment of FIG. 2 described above is that a part of the output of the postamplifier 7 is branched and added to the equal error rate curve measuring section 12 and also to the CPU 13, and the equal error rate curve measuring section 12 is included. This is because there is a double loop configuration of an AGC loop which does not include an AGC loop and an equal error rate curve measuring unit 12.

【0027】即ち、等誤り率曲線測定部12を含まないA
GCループにおいて、CPU13で、ポストアンプ7の出
力パルスの"H" と"L" レベルの値を検出してこれらの値
を初期設定し、プリアンプ5への入力信号が変動しても
ポストアンプ7から一定振幅のパルス信号を出力するよ
うに、AGCアンプ6-1 〜6-n に同じ制御信号を出力す
る。そしてポストアンプ7の出力(等化増幅部2の出
力)パルスの振幅を一定にして平均的な周波数特性を与
える。その後、等誤り率曲線測定部12を含むAGCルー
プにより、前述した図2で説明したと同じ動作原理でポ
ストアンプ7の出力(等化増幅部2の出力)信号の周波
数特性の微調整をする。
That is, A that does not include the equal error rate curve measuring unit 12
In the GC loop, the CPU 13 detects the "H" and "L" level values of the output pulse of the postamplifier 7 and initializes these values, and the postamplifier 7 does not change even if the input signal to the preamplifier 5 changes. The same control signal is output to the AGC amplifiers 6-1 to 6-n so as to output a pulse signal having a constant amplitude. The amplitude of the output pulse of the post-amplifier 7 (output of the equalizing / amplifying unit 2) is kept constant to give an average frequency characteristic. After that, the AGC loop including the equal error rate curve measuring unit 12 finely adjusts the frequency characteristic of the output signal of the post amplifier 7 (output of the equalizing amplification unit 2) according to the same operation principle as described in FIG. .

【0028】この結果、各AGCアンプ6-1 〜6-nの利
得調整は微調整ですみ、AGCループ全体の応答速度が
速くなる。この結果、入力信号レベルの変動に対して高
速で応答することができる。
As a result, the gain adjustment of each of the AGC amplifiers 6-1 to 6-n need only be finely adjusted, and the response speed of the entire AGC loop becomes faster. As a result, it is possible to respond to the fluctuation of the input signal level at high speed.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、高
速の入力光信号に対しても最小受信感度の劣化が生じな
いようにすることができる。又、入力信号レベルの変動
に対して高速で応答することができる。
As described above, according to the present invention, it is possible to prevent deterioration of the minimum receiving sensitivity even for a high-speed input optical signal. Further, it is possible to respond at high speed to the fluctuation of the input signal level.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の原理図、FIG. 1 is a principle diagram of the present invention,

【図2】は請求項1の発明の実施例の等化増幅部の構成
を示すブロック図、
FIG. 2 is a block diagram showing a configuration of an equalizing / amplifying unit according to an embodiment of the invention of claim 1;

【図3】は実施例における光送信器(LD)出力波形の
等誤り率曲線図、
FIG. 3 is an equal error rate curve diagram of an optical transmitter (LD) output waveform in the embodiment,

【図4】は図3のデータを逆フーリェ展開して得られる
光送信器出力の周波数特性図、
FIG. 4 is a frequency characteristic diagram of an optical transmitter output obtained by performing an inverse Fourier expansion on the data of FIG.

【図5】は実施例の識別回路の入力端で要求される周波
数特性図、
FIG. 5 is a frequency characteristic diagram required at the input end of the identification circuit of the embodiment,

【図6】は図4の周波数特性をキャンセルするための光
受信器の周波数特性図、
6 is a frequency characteristic diagram of an optical receiver for canceling the frequency characteristic of FIG. 4,

【図7】は図6の周波数特性を満足するための各AGC
アンプの周波数特性図、
FIG. 7 is each AGC for satisfying the frequency characteristic of FIG.
Amplifier frequency characteristic diagram,

【図8】は請求項2の発明の実施例の等化増幅部の構成
を示すブロック図、
FIG. 8 is a block diagram showing a configuration of an equalizing / amplifying unit according to an embodiment of the invention of claim 2;

【図9】は一例の光中継器の構成を示すブロック図、FIG. 9 is a block diagram showing a configuration of an example optical repeater,

【図10】は従来例の等化増幅部の構成を示すブロック
図、
FIG. 10 is a block diagram showing a configuration of a conventional equalization amplification unit,

【図11】は従来例の等化増幅部出力のAGCによる利
得−周波数特性図である。
FIG. 11 is a gain-frequency characteristic diagram by AGC of the equalization amplification unit output of the conventional example.

【符号の説明】[Explanation of symbols]

100 は受光素子、 120 は等誤り率曲線測定手段、 130 、135は演算処理手段、 200 は等化増幅部、 300 は識別回路、 600 は自動利得制御増幅器 を示す。 100 is a light receiving element, 120 is an equal error rate curve measuring means, 130 and 135 are arithmetic processing means, 200 is an equalizing amplifier, 300 is an identification circuit, and 600 is an automatic gain control amplifier.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入力光信号を電気信号に変換して出力す
る受光素子(100) と、該受光素子の出力に対して自動利
得制御ループにより増幅して出力する自動利得制御増幅
器(600) を具備する等化増幅部(200) と、該等化増幅部
の出力信号に対して該等化増幅部で抽出したクロックに
より識別再生を行う識別回路(300) とを有する光受信器
において、 前記自動利得制御増幅器(600)の出力信号の一部を入力
して、誤り率の値をパラメータとして等誤り率曲線のデ
ータを測定して出力する等誤り率曲線測定手段(120)
と、 該等誤り率曲線測定手段(120)の出力に対して逆フーリ
ェ変換を行って、前記入力光信号に対応する周波数特性
を求め制御信号を前記自動利得制御増幅器(600)に出力
する演算処理手段(130) とを前記等化増幅部(200) に設
け、 該演算処理手段(130) の出力の制御信号により前記等化
増幅部(200) の出力の信号周波数特性を一定に保つよう
にしたことを特徴とする光受信器。
1. A light receiving element (100) for converting an input optical signal into an electric signal and outputting the electric signal, and an automatic gain control amplifier (600) for amplifying and outputting the output of the light receiving element by an automatic gain control loop. An optical receiver having an equalization amplification section (200) provided and an identification circuit (300) for performing identification reproduction with respect to an output signal of the equalization amplification section by a clock extracted by the equalization amplification section, An equal error rate curve measuring means (120) for inputting a part of the output signal of the automatic gain control amplifier (600) and measuring and outputting data of the equal error rate curve using the error rate value as a parameter.
And an operation for performing an inverse Fourier transform on the output of the equal error rate curve measuring means (120) to obtain a frequency characteristic corresponding to the input optical signal and outputting a control signal to the automatic gain control amplifier (600). A processing means (130) is provided in the equalization amplification section (200), and a signal frequency characteristic of the output of the equalization amplification section (200) is kept constant by a control signal of the output of the arithmetic processing means (130). An optical receiver characterized in that
【請求項2】 入力光信号を電気信号に変換して出力す
る受光素子(100) と、該受光素子の出力に対して自動利
得制御ループにより増幅して出力する自動利得制御増幅
器(600) を具備する等化増幅部(200) と、該等化増幅部
の出力信号に対して該等化増幅部で抽出したクロックに
より識別再生を行う識別回路(300) とを有する光受信器
において、 前記自動利得制御増幅器(600)の出力信号の一部を入力
して、誤り率の値をパラメータとして等誤り率曲線のデ
ータを測定して出力する等誤り率曲線測定手段(120)
と、 前記自動利得制御増幅器(600)の出力信号の一部を入力
して、前記自動利得制御増幅器(600)の出力信号の振幅
が一定になるように第1の制御信号を前記自動利得制御
増幅器(600)に出力するとともに、該等誤り率曲線測定
手段(120)の出力に対して逆フーリェ変換を行って、前
記入力光信号に対応する周波数特性を求め第2の制御信
号を前記自動利得制御増幅器(600)に出力する演算処理
手段(135)とを前記等化増幅部(200) に設け、 該演算処理手段(135) の出力の第1及び第2の制御信号
により前記等化増幅部(200) の出力の信号周波数特性を
一定に保つようにしたことを特徴とする光受信器。
2. A light receiving element (100) which converts an input optical signal into an electric signal and outputs the electric signal, and an automatic gain control amplifier (600) which amplifies and outputs the output of the light receiving element by an automatic gain control loop. An optical receiver having an equalization amplification section (200) provided and an identification circuit (300) for performing identification reproduction with respect to an output signal of the equalization amplification section by a clock extracted by the equalization amplification section, An equal error rate curve measuring means (120) for inputting a part of the output signal of the automatic gain control amplifier (600) and measuring and outputting data of the equal error rate curve using the error rate value as a parameter.
And a part of the output signal of the automatic gain control amplifier (600) is input, and the first control signal is input to the automatic gain control so that the amplitude of the output signal of the automatic gain control amplifier (600) becomes constant. In addition to outputting to the amplifier (600), inverse Fourier transform is performed on the output of the equal error rate curve measuring means (120) to obtain the frequency characteristic corresponding to the input optical signal, and the second control signal is automatically transmitted. An arithmetic processing unit (135) for outputting to the gain control amplifier (600) is provided in the equalization amplification unit (200), and the equalization is performed by the first and second control signals output from the arithmetic processing unit (135). An optical receiver characterized in that the signal frequency characteristic of the output of the amplification section (200) is kept constant.
JP4248037A 1992-09-17 1992-09-17 Optical receiver Pending JPH06104670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248037A JPH06104670A (en) 1992-09-17 1992-09-17 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248037A JPH06104670A (en) 1992-09-17 1992-09-17 Optical receiver

Publications (1)

Publication Number Publication Date
JPH06104670A true JPH06104670A (en) 1994-04-15

Family

ID=17172262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248037A Pending JPH06104670A (en) 1992-09-17 1992-09-17 Optical receiver

Country Status (1)

Country Link
JP (1) JPH06104670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095740A1 (en) * 2003-04-23 2004-11-04 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
US9735887B2 (en) 2014-07-22 2017-08-15 Nec Corporation Optical reception device and optical reception method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095740A1 (en) * 2003-04-23 2004-11-04 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
US7505695B2 (en) 2003-04-23 2009-03-17 Mitsubishi Denki Kabushiki Kaisha Optical receiver and optical transmission system
US9735887B2 (en) 2014-07-22 2017-08-15 Nec Corporation Optical reception device and optical reception method

Similar Documents

Publication Publication Date Title
EP0541789B1 (en) Feed forward amplifier network with frequency swept pilot tone
KR100445910B1 (en) Optical signal receiving apparatus and method having suitable receiving performance in spite of change of intensity of the optical signal
JPH08511395A (en) Method and apparatus for automatic gain control for receiver circuits
JP3148060B2 (en) Listening position automatic correction device
US6480315B1 (en) Method and apparatus for SNR measurement
JPH06104670A (en) Optical receiver
US4352190A (en) Device for automatic equalization of electrical data transmission channels
JPH0251282B2 (en)
JP3263017B2 (en) Detection circuit and transmission device and reception device using the same
JP3479124B2 (en) AGC method for CATV optical receiver
JPH06140993A (en) Optical receiver
JP2001320329A (en) Device and method for detecting pulse distortion, and recording medium with program recorded thereon
JPS645774B2 (en)
JP3237933B2 (en) Temperature compensation method
JPH08186524A (en) Equalizer
JPH02206261A (en) Optical input disconnecting/detecting circuit
JP2962219B2 (en) Optical receiver
JPH0563504A (en) Coaxial cable loss equalization amplifier
JP3114821B2 (en) Optical receiver circuit for ternary APD
KR200147519Y1 (en) High frequency stabilization circuit
JPH04334137A (en) Burst optical receiver
JP2676555B2 (en) Analog delay circuit
JPS6221419B2 (en)
KR0124837Y1 (en) An apparatus for wireless headphone in parallel modulation method
JPH07336274A (en) Automatic equalizer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020423