JPH06103774B2 - Semiconductor optical functional light emitting device - Google Patents

Semiconductor optical functional light emitting device

Info

Publication number
JPH06103774B2
JPH06103774B2 JP18984087A JP18984087A JPH06103774B2 JP H06103774 B2 JPH06103774 B2 JP H06103774B2 JP 18984087 A JP18984087 A JP 18984087A JP 18984087 A JP18984087 A JP 18984087A JP H06103774 B2 JPH06103774 B2 JP H06103774B2
Authority
JP
Japan
Prior art keywords
layer
light
light emitting
semiconductor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18984087A
Other languages
Japanese (ja)
Other versions
JPS6432693A (en
Inventor
進 麻多
典昭 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18984087A priority Critical patent/JPH06103774B2/en
Publication of JPS6432693A publication Critical patent/JPS6432693A/en
Publication of JPH06103774B2 publication Critical patent/JPH06103774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光情報処理に用いられる半導体光機
能発光素子に関するものである。
The present invention relates to a semiconductor optical functional light emitting device used for optical communication and optical information processing.

(従来の技術) 半導体発光素子は光通信や光情報処理に用いられるキー
デバイスの一つであり、その性能と機能の向上が期待さ
れている。その中でもAlGaAs/GaAs系半導体発光素子は
現在コンパクトディスクや光ディスク装置等の単なる光
源素子として使われているが、光情報の処理の広大な需
要のために光の入力で制御できる半導体光機能発光素子
の実現が期待されている。更に、これらの光情報処理の
大容量化のために出力光はより短波長の方が望ましく、
また入力光による出力光のオンオフ機能や入力光の波長
変換機能のある素子の実現が望まれた。
(Prior Art) A semiconductor light emitting element is one of key devices used for optical communication and optical information processing, and its performance and function are expected to be improved. Among them, AlGaAs / GaAs semiconductor light emitting devices are currently used as mere light source devices for compact discs, optical disc devices, etc., but due to the vast demand for optical information processing, semiconductor optical functional light emitting devices that can be controlled by light input. Is expected to be realized. Furthermore, in order to increase the capacity of these optical information processing, it is desirable that the output light has a shorter wavelength,
Further, it has been desired to realize an element having an output light on / off function by the input light and a wavelength conversion function of the input light.

これに対し、光入力による出力光のオンオフ機能をもつ
発光素子を実現する試みは、例えばジャーナル・オブ・
アプライド・フィジックス1986年59巻596頁(G.W.Taylo
r et al.,J.Appl.Phys.59,596(1986))に記載されて
いる。この例では、吸収層および発光層はGaAs層であ
り、光吸収層に光を入射できる構造になっている。
On the other hand, an attempt to realize a light emitting element having an on / off function of an output light by an optical input has been performed by, for example, a journal of
Applied Physics 1986, 59, 596 (GWTaylo
r et al., J. Appl. Phys. 59 , 596 (1986)). In this example, the absorbing layer and the light emitting layer are GaAs layers, and the structure is such that light can enter the light absorbing layer.

(発明が解決しようとする問題点) しかしながら、より禁制帯幅の大きな発光層(AlGaAs
層)を用いて発光波長の短波長化を追求するには次のよ
うな問題点があった。すなわちGaAsに比べ禁制帯の大き
い混晶AlGaAsは、よく知られているように一定の禁制帯
幅を越えると(Al組成比が0.45を越えると)直接遷移型
から間接遷移型となり発光素子が実現できない問題があ
った。また、従来、吸収は発光層もしくは隣接層で行な
われていたが発光層の禁制帯幅は隣接層の禁制帯幅より
も大きくないから、入射光の吸収波長に比べ発光波長は
等しいか又は長波長側のものしか得られない問題があっ
た。
(Problems to be Solved by the Invention) However, a light emitting layer (AlGaAs having a larger forbidden band width)
The following problems have been encountered in pursuing a shorter emission wavelength by using a layer). In other words, as is well known, mixed crystal AlGaAs, which has a larger forbidden band than GaAs, changes from direct transition type to indirect transition type when a certain forbidden band width is exceeded (when the Al composition ratio exceeds 0.45), and a light emitting device is realized. There was a problem I couldn't do. In the past, absorption was performed in the light emitting layer or the adjacent layer, but since the forbidden band width of the light emitting layer is not larger than the forbidden band width of the adjacent layer, the emission wavelength is equal to or longer than the absorption wavelength of the incident light. There was a problem that only the wavelength side could be obtained.

そこで、本発明の目的は、上記の従来の問題点を改善
し、従来AlGaAs系素子では困難であった領域の短波長発
光素子を実現するとともに、入力波長よりも短波長の光
出力も可能な半導体光機能発光素子を提供することであ
る。
Therefore, an object of the present invention is to improve the above-mentioned conventional problems, to realize a short-wavelength light-emitting element in a region that was difficult with the conventional AlGaAs-based element, and to output light at a wavelength shorter than the input wavelength. A semiconductor optical functional light emitting device is provided.

(問題点を解決するための手段) 本発明は、活性層が2層のクラッド層で挟まれてなるダ
ブルヘテロ構造を備え、前記クラッド層のうちの少なく
とも一方のクラッド層は複数の半導体層を積層してなる
多層構造でなり、この多層構造は、禁制帯幅が所望波長
の入射光のエネルギーより小さく、光吸収層となる第1
の材料の半導体層と、この第1の材料の半導体層を両側
から挟む層であり、禁制帯幅が前記第1の材料の半導体
層の禁制帯幅より大きい第2の材料の半導体層とでな
り、前記活性層はGaAs2原子層とAlAs2原子層とを少なく
ともそれぞれ1個づつ以上組み合わせて積層した超格子
構造でなることを特徴とする。
(Means for Solving the Problems) The present invention has a double hetero structure in which an active layer is sandwiched between two cladding layers, and at least one of the cladding layers has a plurality of semiconductor layers. The multilayer structure is formed by stacking layers. The multilayer structure has a forbidden band width smaller than the energy of incident light of a desired wavelength and serves as a light absorption layer.
And a semiconductor layer of a second material having a forbidden band width larger than the forbidden band width of the semiconductor layer of the first material. In addition, the active layer has a superlattice structure in which at least one GaAs2 atomic layer and at least one AlAs2 atomic layer are combined and laminated.

(発明の作用・原理) 本発明の半導体光機能発光素子の概略的な構造を斜視図
で第1図に示す。この発光素子は、通常の発光素子のよ
うに基板11の上に、クラッド層13,15で活性層14を挟ん
でなるダブルヘテロ構造を有している。但し、そのクラ
ッド層13は内部に光吸収層12を備えており、入射光18を
入力すると、活性層14からの出力光19を制御できる構造
になっている。この構造が本発明の特徴である。第2図
は従来例のバンド構造を示す概念図であり、第3図は本
発明の半導体発光素子のバンド構造を示す概念図であ
り、20は価電子帯上端、21は伝導帯のΓ点(実線)、22
はX点(破線)位置を示す。第2図で示されるように、
従来のAlGaAs系素子の場合、活性層14の禁制帯幅を増加
して発光波長の短波長化を図ろうとすると、AlGaAsのAl
組成比が0.45を越える場合に伝導帯のΓ点21(実線)は
X点22(破線)より高く位置し、直接遷移発光素子を得
ることが出来なかった。
(Operation and Principle of the Invention) FIG. 1 is a perspective view showing a schematic structure of the semiconductor optical functional light emitting device of the present invention. This light emitting device has a double hetero structure in which an active layer 14 is sandwiched between clad layers 13 and 15 on a substrate 11 like a normal light emitting device. However, the cladding layer 13 is provided with the light absorption layer 12 inside, and has a structure in which the output light 19 from the active layer 14 can be controlled when the incident light 18 is input. This structure is a feature of the present invention. FIG. 2 is a conceptual diagram showing the band structure of a conventional example, and FIG. 3 is a conceptual diagram showing the band structure of the semiconductor light emitting device of the present invention, where 20 is the upper end of the valence band and 21 is the Γ point of the conduction band. (Solid line), 22
Indicates the position of point X (broken line). As shown in Figure 2,
In the case of a conventional AlGaAs element, if the band gap of the active layer 14 is increased to reduce the emission wavelength, the AlGaAs
When the composition ratio exceeds 0.45, the Γ point 21 (solid line) of the conduction band is located higher than the X point 22 (broken line), and a direct transition light emitting device cannot be obtained.

これに対し、本発明ではアプライド・フィジックス・レ
ターズ1976年29巻327頁(A.C.Gassardet al.,Appl.Phy
s.Lett.29,323(1976))に記載されている短周期原子
層成分変調の方法を更におし進め、最近可能になった原
子層成長技術を用いて、次のような結晶構造の活性層を
形成する。すなわち、GaAs2原子層とAlAs2原子層とを少
なくともそれぞれ1層以上交互に積層してなる活性層を
形成する。この構造の結晶層では、第4図に示すよう
に、平均Al組成比に対して伝導帯Γ点位置(○印)とX
点位置(△印)とを比較すると、Al組成比の大部分の領
域(平均組成比約0.7以下)でΓ点位置をX点位置より
低くできる。すなわち、従来のAlGaAs混晶の場合のΓ点
位置(実線)とX点位置(破線)の関係に比べ、平均Al
組成比のより広い領域で直接遷移が可能となる。本発明
では上記のような結晶構造上の特性を利用して活性層か
らの波長の短波長化を実現する。
In contrast, in the present invention, Applied Physics Letters, 1976, Vol. 29, p. 327 (AC Gassard et al., Appl.
s. Lett. 29 , 323 (1976)), the method of short-period atomic layer component modulation is further advanced, and using the recently possible atomic layer growth technique, Form an active layer. That is, an active layer is formed by alternately stacking at least one GaAs2 atomic layer and at least one AlAs2 atomic layer. In the crystal layer of this structure, as shown in FIG. 4, the conduction band Γ point position (circle) and X were compared with the average Al composition ratio.
When compared with the point position (marked with Δ), the Γ point position can be made lower than the X point position in most of the Al composition ratio region (average composition ratio of about 0.7 or less). That is, compared with the relationship between the Γ point position (solid line) and the X point position (broken line) in the case of the conventional AlGaAs mixed crystal, the average Al
Direct transition is possible in a wider range of composition ratio. In the present invention, the wavelength of the active layer is shortened by utilizing the characteristics of the crystal structure as described above.

次に光入力と発光出力との関係を説明する。先に説明し
た従来例は、pnpnサイリスタ層構造を持ち、動作原理は
光を入射しない段階でp型AlGaAsベース層と接するn型
GaAs層中に生じたキャリヤ空乏層に、光を吸収させキャ
リヤを注入して、吸収層と発光層を兼ねるGaAs層から光
を出力するものであった。
Next, the relationship between the light input and the light emission output will be described. The conventional example described above has a pnpn thyristor layer structure, and the operating principle is an n-type that contacts the p-type AlGaAs base layer at the stage when no light is incident.
In the carrier depletion layer generated in the GaAs layer, light is absorbed and carriers are injected, and the light is output from the GaAs layer which also serves as an absorption layer and a light emitting layer.

本発明は従来のpnpn構造とは異なった第3図のような層
構造を設けている。その動作の原理は、第3図(b)の
ように光を入射しない段階で、急峻組成変化のヘテロ界
面においてAl組成比増加とともに顕著となるポテンシャ
ルバリア(スパイク)31,32と空乏領域33のために活性
層14の領域に印加される電圧を十分大きく出来ないから
発光電流は殆ど流れない性質を先ず用いる。次に、光吸
収層12に光を入射すると、空乏層領域33にキャリヤが注
入され、そのキャリヤが空乏層領域33の電界で加速され
瞬時に微小電流が流れ、第3図(a)ようにポテンシャ
ルバリアが低下するに従って活性層電流が増加して活性
層14部分で発光し、遂にはレーザ発振にまで到る。
The present invention provides a layered structure as shown in FIG. 3 which is different from the conventional pnpn structure. The principle of its operation is that, as shown in FIG. 3 (b), the potential barriers (spikes) 31 and 32 and the depletion region 33 which become remarkable as the Al composition ratio increases at the hetero interface where the composition changes sharply at the stage where no light is incident. Therefore, since the voltage applied to the region of the active layer 14 cannot be increased sufficiently, the property that the emission current hardly flows is used first. Next, when light is incident on the light absorption layer 12, carriers are injected into the depletion layer region 33, the carriers are accelerated by the electric field of the depletion layer region 33, and a minute current instantaneously flows, as shown in FIG. As the potential barrier decreases, the active layer current increases and light is emitted at the active layer 14 portion, and finally laser oscillation is reached.

ここで、光吸収層として間接遷移型のAlGaAs混晶層を用
い、かつ光吸収層の禁制帯幅を活性層の禁制帯幅よりも
小さくとった場合でも、上記のメカニズムにより、光吸
収層で発光することなく、活性層へのキャリヤ注入に寄
与することができる。すなわち、発光波長よりも長波長
光でポンピングしてレーザ発光するようなことも可能で
ある。すなわち、より短波長側をも含めた波長変換素子
や光増幅素子およびスイッチ、変調素子にも本発明の素
子は適する。
Here, even when an indirect transition type AlGaAs mixed crystal layer is used as the light absorption layer and the forbidden band width of the light absorption layer is set smaller than the forbidden band width of the active layer, the above mechanism causes It can contribute to carrier injection into the active layer without emitting light. That is, it is also possible to pump light with a wavelength longer than the emission wavelength to emit laser light. That is, the element of the present invention is also suitable for a wavelength conversion element including a shorter wavelength side, an optical amplification element, a switch, and a modulation element.

以下、本発明の実施例について更に詳しく説明する。Hereinafter, examples of the present invention will be described in more detail.

(実施例1) 第1図は本発明の一実施例を示す斜視図、第3図はこの
実施例のバンド構造を示す概念図である。第1図に示す
ように、本実施例は、n型GaAs基板11上にn型AlGaAsク
ラッド層13、AlAs2原子層およびGaAs2原子層を交互に積
層してなる活性層14、p型AlGaAsクラッド層15、電流ブ
ロック層16、電極10,17を備え、n型クラッド層13の基
板側には禁制帯幅がより狭いAlGaAs光吸収層12を内部に
含んでいる。活性層14の結晶成長方法としては、単原子
層結晶成長の一方法である有機金属気相エピタキシー
(MOVPE)法を用いた。本実施例では、一例として[(G
aAs)(AlAs)(AlAs)]からなる周期的構成要
素を50周期繰返した構造の活性層(平均Al組成比0.66)
を成長した。この成長層はフォトルミネッセンス測定に
より、直接遷移型の発光を示すことが確かめられた。ま
た禁制帯幅はGaAsの1.4eVに比べ十分大きな約2eVの値を
示した。
(Embodiment 1) FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 3 is a conceptual view showing a band structure of this embodiment. As shown in FIG. 1, in the present embodiment, an n-type AlGaAs clad layer 13, an active layer 14 and a p-type AlGaAs clad layer in which an n-type AlGaAs clad layer 13, AlAs2 atomic layers and GaAs2 atomic layers are alternately laminated. 15, the current blocking layer 16, the electrodes 10 and 17, and the AlGaAs light absorption layer 12 having a narrower bandgap is included inside the n-type cladding layer 13 on the substrate side. As a crystal growth method for the active layer 14, a metal organic vapor phase epitaxy (MOVPE) method, which is one method of monoatomic layer crystal growth, was used. In this embodiment, as an example, [(G
aAs) 2 (AlAs) 2 (AlAs) 2 ] active layer with a structure in which 50 periodic structural elements are repeated (average Al composition ratio 0.66)
Grew up. It was confirmed by photoluminescence measurement that this grown layer exhibits direct transition type light emission. The forbidden band width is about 2eV, which is sufficiently larger than 1.4eV of GaAs.

活性層に隣接するクラッド層13,15には禁制帯幅が2eVよ
り大きいAl組成比0.8のAlGaAs混晶層を用い、通常のレ
ーザ素子のようにn型とp型にドーピングを行った。光
吸収層領域12には、第3図のように約300Å周期で幅200
Å,Al組成比0.5のAlGaAs混晶層を10周期設けた。以上の
層成長を行なった後、第1図のように電流狭窄のために
活性層を含むメサ構造の両側に半絶縁性の電流ブロック
層16を通常のレーザ作製プロセスに従って形成した。
For the clad layers 13 and 15 adjacent to the active layer, an AlGaAs mixed crystal layer having an Al composition ratio of 0.8 having a forbidden band width larger than 2 eV was used, and n-type and p-type doping was performed as in a normal laser device. As shown in Fig. 3, the light absorption layer region 12 has a width of 200 at a cycle of about 300Å.
Å, AlGaAs mixed crystal layer with Al composition ratio of 0.5 was provided for 10 cycles. After the above layer growth, a semi-insulating current blocking layer 16 was formed on both sides of the mesa structure including the active layer for current confinement by a normal laser manufacturing process as shown in FIG.

このような素子に対し、約1.6Vの電圧を印加し、約0.62
μmの光を入射すると素子電流が急激に流れ、活性層か
ら約0.60μmの波長のレーザ発光が観測された。
Applying a voltage of about 1.6 V to such a device,
When light of μm was incident, the device current drastically flowed, and laser emission of wavelength of about 0.60 μm was observed from the active layer.

(実施例2) 実施例1の素子の初期印加電圧を変化させることによ
り、入力光の吸収端波長を変化できた。原理は、光吸収
層(量子井戸)の吸収端が、フランツ・ケルディシュ
(Franz-Keldish)型のシフトすなわち電界による長波
長側へのシフトによるものである。従って本実施例は多
波長の入力光を処理する発光スイッチ素子、短波長化を
含む波長変換素子、光増幅素子に適用できる。
(Example 2) By changing the initial applied voltage of the device of Example 1, the absorption edge wavelength of the input light could be changed. The principle is that the absorption edge of the light absorption layer (quantum well) is shifted by the Franz-Keldish type, that is, by shifting to the long wavelength side by the electric field. Therefore, the present embodiment can be applied to a light emitting switch element that processes multi-wavelength input light, a wavelength conversion element including a shortened wavelength, and an optical amplification element.

(実施例3) 実施例1における[(GaAs)(AlAs)(AlAs)
構造の活性層のかわりに[(GaAs)(AlAs)](平
均Al組成比0.5)構造や[(AlAs)(GaAs)(AlA
s)(GaAs)(AlAs)](平均Al組成比0.6)構造
の活性層を用いても、従来のAlGaAs混晶では得られなか
った短波長の発光が得られた。
(Example 3) [(GaAs) 2 (AlAs) 2 (AlAs) 2 ] in Example 1
Instead of the active layer of the structure, [(GaAs) 2 (AlAs) 2 ] (average Al composition ratio 0.5) and [(AlAs) 2 (GaAs) 2 (AlA
Even when an active layer having a s) 2 (GaAs) 2 (AlAs) 2 ] (average Al composition ratio 0.6) structure was used, short-wavelength light emission that was not obtained by the conventional AlGaAs mixed crystal was obtained.

(実施例4) 上記実施例において活性層隣接層に回折格子を設け、更
に狭線幅のレーザ発光が得られた。また2次の回折を用
いることにより、上記実施例の面型入力面内出力光素意
に限らず、面型入力面型出力光素子として機能できる。
Example 4 In the above example, a diffraction grating was provided in the layer adjacent to the active layer, and further laser emission with a narrow line width was obtained. Further, by using the second-order diffraction, not only the planar input in-plane output light concept of the above-described embodiment but also a planar input planar output optical element can be functioned.

なお、上記実施例ではn型GaAs基板を用いたが素子全体
の上下を反転し最上層をn型キャップ層とし最下層をp
型GaAs基板としてもよい。
Although the n-type GaAs substrate is used in the above embodiment, the entire device is turned upside down and the uppermost layer is the n-type cap layer and the lowermost layer is p.
Type GaAs substrate.

(発明の効果) 以上に説明したように、本発明の半導体発光素子は、従
来のAlGaAs系発光素子では、困難であった領域の短波長
発光が可能で、そのうえ入力光を吸収させて発光電流制
御ができ、光スイッチ発光素子、多波長入力制御、短波
長化を含む波長変換素子、光増幅素子、等の種々の光情
報処理素子に適する。
(Effects of the Invention) As described above, the semiconductor light emitting device of the present invention is capable of short-wavelength light emission in a region, which was difficult with the conventional AlGaAs light emitting device, and further absorbs input light to emit light. It is controllable and is suitable for various optical information processing elements such as an optical switch light emitting element, multi-wavelength input control, wavelength conversion element including shortening of wavelength, and optical amplification element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の概略の構造を示す斜視図、
第2図は従来の半導体発光素子のバンド構造を示す概念
図、第3図は第1図実施例のバンド構造を示す概念図、
第4図は本発明の活性層材料特性を示す図である。 10……電極、11……基板、12……光吸収層、13……クラ
ッド層、14……活性層、15……クラッド層、16……電流
ブロック層、17……電極、18……入力光、19……出力
光、20……価電子帯、21……伝導帯Γ点、22……伝導帯
X点、31,32……ポテンシャルバリア、33……空乏層領
域。
FIG. 1 is a perspective view showing a schematic structure of one embodiment of the present invention,
2 is a conceptual diagram showing the band structure of a conventional semiconductor light emitting device, FIG. 3 is a conceptual diagram showing the band structure of the embodiment of FIG. 1,
FIG. 4 is a diagram showing the characteristics of the active layer material of the present invention. 10 ... Electrode, 11 ... Substrate, 12 ... Light absorption layer, 13 ... Clad layer, 14 ... Active layer, 15 ... Clad layer, 16 ... Current blocking layer, 17 ... Electrode, 18 ... Input light, 19 ... output light, 20 ... valence band, 21 ... conduction band Γ point, 22 ... conduction band X point, 31,32 ... potential barrier, 33 ... depletion layer region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】活性層が2層のクラッド層で挟まれてなる
ダブルヘテロ構造を備え、前記クラッド層のうちの少な
くとも一方のクラッド層は複数の半導体層を積層してな
る多層構造でなり、この多層構造は、禁制帯幅が所望波
長の入射光のエネルギーより小さく、光吸収層となる第
1の材料の半導体層と、この第1の材料の半導体層を両
側から挟む層であり、禁制帯幅が前記第1の材料の半導
体層の禁制帯幅より大きい第2の材料の半導体層とでな
り、前記活性層はGaAs2原子層とAlAs2原子層とを少なく
ともそれぞれ1個づつ以上組み合わせて積層した超格子
構造でなることを特徴とする半導体光機能発光素子。
1. A double hetero structure in which an active layer is sandwiched between two clad layers, and at least one of the clad layers has a multi-layer structure in which a plurality of semiconductor layers are laminated, This multi-layered structure has a forbidden band width smaller than the energy of incident light having a desired wavelength and is a semiconductor layer made of a first material that serves as a light absorption layer and a layer that sandwiches the semiconductor layer made of the first material from both sides. A semiconductor layer of a second material having a band width larger than the forbidden band width of the semiconductor layer of the first material, wherein the active layer is a combination of at least one GaAs2 atomic layer and at least one AlAs2 atomic layer. A semiconductor optical functional light emitting device having a superlattice structure described above.
JP18984087A 1987-07-28 1987-07-28 Semiconductor optical functional light emitting device Expired - Lifetime JPH06103774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18984087A JPH06103774B2 (en) 1987-07-28 1987-07-28 Semiconductor optical functional light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18984087A JPH06103774B2 (en) 1987-07-28 1987-07-28 Semiconductor optical functional light emitting device

Publications (2)

Publication Number Publication Date
JPS6432693A JPS6432693A (en) 1989-02-02
JPH06103774B2 true JPH06103774B2 (en) 1994-12-14

Family

ID=16248084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18984087A Expired - Lifetime JPH06103774B2 (en) 1987-07-28 1987-07-28 Semiconductor optical functional light emitting device

Country Status (1)

Country Link
JP (1) JPH06103774B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445653B2 (en) 1994-03-23 2003-09-08 士郎 酒井 Light emitting element
JP2007208062A (en) * 2006-02-02 2007-08-16 Sumitomo Electric Ind Ltd Semiconductor laser element
JP6319881B2 (en) * 2014-02-14 2018-05-09 国立研究開発法人物質・材料研究機構 Quantum well solar cell

Also Published As

Publication number Publication date
JPS6432693A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
JP4685845B2 (en) Semiconductor light emitting device
US5079601A (en) Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions
EP0135582B1 (en) Semiconductor device for controlling light using multiple quantum wells
US4815087A (en) High speed stable light emitting semiconductor device with low threshold current
JPS59197187A (en) Semiconductor device
US5900642A (en) Semiconductor light emitting device
JP3238760B2 (en) Tightly coupled superlattice laser-modulator integrated device
JPS6412114B2 (en)
US5027178A (en) Electrically tunable interference filters and methods for their use
JP3141080B2 (en) Semiconductor functional element
EP0167547B1 (en) Laser controlled by a multiple layer heterostructure
JPH06103774B2 (en) Semiconductor optical functional light emitting device
US5841151A (en) Quasi type II semiconductor quantum well device
JPH09179080A (en) Optical device
JP2528886B2 (en) Semiconductor light emitting device
JPH09179237A (en) Optical memory element
JP3223969B2 (en) Semiconductor laser
JPH0632343B2 (en) Semiconductor laser
JPH02262133A (en) Semiconductor device
JP2000022203A (en) Light emitting diode
KR20230161444A (en) semiconductor optoelectronic devices
JP2848615B2 (en) Semiconductor light emitting device
JP2570732B2 (en) Semiconductor laser
JPH03265124A (en) Atomic layer doped semiconductor structure
JPS62144387A (en) Semiconductor light-emitting device