JPH0610252B2 - Polymer manufacturing method - Google Patents

Polymer manufacturing method

Info

Publication number
JPH0610252B2
JPH0610252B2 JP60183185A JP18318585A JPH0610252B2 JP H0610252 B2 JPH0610252 B2 JP H0610252B2 JP 60183185 A JP60183185 A JP 60183185A JP 18318585 A JP18318585 A JP 18318585A JP H0610252 B2 JPH0610252 B2 JP H0610252B2
Authority
JP
Japan
Prior art keywords
catalyst
acid
polymer
lactic acid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60183185A
Other languages
Japanese (ja)
Other versions
JPS61111326A (en
Inventor
幹晃 田中
泰亮 小川
力 宮川
俊雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Takeda Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP60183185A priority Critical patent/JPH0610252B2/en
Publication of JPS61111326A publication Critical patent/JPS61111326A/en
Publication of JPH0610252B2 publication Critical patent/JPH0610252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 本発明は、乳酸若しくはグリコール酸の重合体又はそれ
らの共重合体(以下、これらを総称してポリ乳酸類と略
記する。)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polymer of lactic acid or glycolic acid or a copolymer thereof (hereinafter collectively referred to as polylactic acids).

近年プラスチック公害を緩和するための易分解性高分
子として、また、生体吸収性医薬製剤用高分子としてな
ど、分解性高分子が少なからず注目されている。
In recent years, degradable polymers have attracted considerable attention as easily degradable polymers for mitigating plastic pollution and as polymers for bioabsorbable pharmaceutical preparations.

上記の如き目的の為のものとして、特開昭56-45920号公
報に、乳酸とグリコール酸とを強酸性イオン交換樹脂の
存在下で重合させる方法が開示されており、それによる
と、、重量平均分子量が約6,000乃至35,000の実質的に
重合触媒を含有していない重合体が得られるとされてい
る。
As a purpose for the above purposes, JP-A-56-45920 discloses a method of polymerizing lactic acid and glycolic acid in the presence of a strongly acidic ion exchange resin, according to which, It is said that a polymer having an average molecular weight of about 6,000 to 35,000 and containing substantially no polymerization catalyst can be obtained.

しかしながら、上記方法で製造された重合体は、分子量
分散度が3前後或いはそれ以上と大きく、作用に際し、
溶解性、その他の面に於て要因が複雑になり、コントロ
ールに多大の問題があるので、生体吸収性医薬製剤用高
分子として用いる場合などにはあまり好ましいとはいえ
ない。しかもこの方法では、重合触媒として用いられる
強酸性イオン交換樹脂が加熱重縮合反応時に熱によって
劣化し、得られる重合体中に溶け込んで、それが重合体
の着色となって現われる。更にまた、一旦着色した重合
体からそのような着色を除去するのは難しく、完全に除
去するのは実際上不可能である。かかる着色は商品価値
を落すのみならず、それが不純物に起因するものである
以上好ましくない状態であることはいうを俟たない。
However, the polymer produced by the above method has a large molecular weight dispersity of about 3 or more, and when it acts,
Since factors such as solubility and other aspects are complicated and there are many problems in control, it is not preferable when used as a polymer for bioabsorbable pharmaceutical preparations. Moreover, in this method, the strongly acidic ion-exchange resin used as the polymerization catalyst is deteriorated by heat during the heat polycondensation reaction and is dissolved in the obtained polymer, which appears as coloring of the polymer. Furthermore, it is difficult to remove such color from once colored polymers and practically impossible to completely remove it. It goes without saying that such coloring not only reduces the commercial value but is also in an unfavorable state because it is caused by impurities.

かかる状況に鑑み、本発明者らは、ポリ乳酸類の有効で
且つ上記の如き欠点のない製造法について鋭意研究を重
ねた結果、乳酸及び/又はグリコール酸を無機固体酸触
媒の存在下に重縮合反応させることにより、重量平均分
子量が約5,000以上と大きく分散度が約1.5〜2と小さ
い、且つ重合触媒を全く含有していない、若しくは実質
的に含有していない無色乃至殆ど白色のポリ乳酸類が得
られることを見出し、これに基づいて更に研究した結
果、本発明を完成した。
In view of such a situation, the inventors of the present invention have conducted earnest studies on a production method of polylactic acid which is effective and does not have the above-mentioned drawbacks, and as a result, lactic acid and / or glycolic acid was added in the presence of an inorganic solid acid catalyst. A colorless or almost white polylactic acid having a large weight-average molecular weight of about 5,000 or more and a low polydispersity of about 1.5 to 2 by the condensation reaction and containing no or substantially no polymerization catalyst. The present invention has been completed as a result of the discovery that a class of compounds can be obtained and further research based on this.

本発明は、乳酸及び/又はグリコール酸を重縮合させて
高分子重合体を製造するに際し、触媒として無機固体酸
触媒を用いることを特徴とする、乳酸若しくはグリコー
ル酸の重合体又はそれらの共重合体の製造法である。
The present invention is characterized by using an inorganic solid acid catalyst as a catalyst when polycondensing lactic acid and / or glycolic acid to produce a polymer, and polymer of lactic acid or glycolic acid or copolymers thereof. It is a manufacturing method of coalescence.

本発明のポリ乳酸類の製造法に於て、原料として用いる
乳酸とては通常各種濃度の乳酸水溶液が任意に選ばれる
が、作業性の点からいえば乳酸濃度は高い方が良く、85
%以上が望ましい。また、入手可能ならば水溶液として
ではなく乳酸そのものを用いた方が良いことはいうまで
もない。また、グリコール酸としては、通常、結晶のも
のがそのまま用いられるが、水溶液として用いても一向
に差し支えない。乳酸とグリコール酸とを例えば結晶等
の固体のものを用いる場合には、要すればこれらを溶解
する溶媒を用いてもかまわない。該溶媒としては、例え
ば、水,メタノール,エタノール,アセトンなどが挙げ
られる。
In the method for producing polylactic acid of the present invention, an aqueous lactic acid solution having various concentrations is usually arbitrarily selected as the lactic acid used as a raw material, but from the viewpoint of workability, the higher the lactic acid concentration, the better.
% Or more is desirable. Needless to say, it is better to use lactic acid itself rather than the aqueous solution if available. As the glycolic acid, crystalline one is usually used as it is, but it may be used as an aqueous solution. When solid lactic acid and glycolic acid such as crystals are used, a solvent that dissolves them may be used if necessary. Examples of the solvent include water, methanol, ethanol, acetone and the like.

本発明のポリ乳酸類の製造法において、原料として用い
られる乳酸及び/又はグリコール酸としては、それらの
低分子重合物を用いてもよいし、また、共重合体を得る
場合にはそれらの低分子共重合物を用いてもよい。
In the method for producing polylactic acid of the present invention, as lactic acid and / or glycolic acid used as a raw material, a low molecular weight polymer thereof may be used, or in the case of obtaining a copolymer, a low molecular weight polymer thereof may be used. A molecular copolymer may be used.

該低分子重合物としては、例えば乳酸のオリゴマー
(例、ダイマー,トリマーなど)、グリコール酸のオリ
ゴマー(例、ダイマー,トリマーなど)などが挙げられ
る。
Examples of the low molecular weight polymer include lactic acid oligomers (eg, dimers, trimers, etc.), glycolic acid oligomers (eg, dimers, trimers, etc.), and the like.

また、該低分子重合物或は低分子重合物としては、乳酸
及び/又はグリコール酸を触媒の非存在下に重縮合させ
て得られたものが挙げられる。該低分子重合物或は低分
子共重合物を製造する際の反応温度及び反応時間として
は、例えば 100〜150℃/350mmHgで2時間以上、通常
は2〜10時間程度、例えば、105℃/350mmHgから150℃
/30mmHgまで段階的に温度及び減圧度を高めながら5〜
6時間減圧下加熱反応させることにより水分を除去すれ
ばよい。このようにして、分子量約2000〜4000の低分子
重合物或は低分子重合物が容易に得られる。
Further, examples of the low molecular weight polymer or the low molecular weight polymer include those obtained by polycondensing lactic acid and / or glycolic acid in the absence of a catalyst. The reaction temperature and reaction time for producing the low molecular weight polymer or low molecular weight copolymer are, for example, 100 to 150 ° C./350 mmHg for 2 hours or more, usually about 2 to 10 hours, for example, 105 ° C. / 350mmHg to 150 ℃
/ 30mmHg while gradually increasing the temperature and decompression degree
Moisture may be removed by heating and reacting under reduced pressure for 6 hours. In this way, a low molecular weight polymer having a molecular weight of about 2000 to 4000 or a low molecular weight polymer can be easily obtained.

また、該低分子重合物或は低分子重合物としては、無触
媒で行なう公知の方法で重縮合して得られたものでもよ
い。該公知方法としては、例えば工業化学雑誌第68巻98
3〜986頁(1965年)に記載された方法、即ち乳酸とグリ
コール酸とを常圧下無触媒で202℃、6時間反応させる
方法が挙げられる。また、該公知方法としては、例えば
米国特許第2,362,511号公報に記載された方法、即ち乳
酸とグリコール酸とを200℃の温度で2時間反応させ、
次いで減圧下1/2時間加熱を続ける方法なども挙げられ
る。
Further, the low molecular weight polymer or the low molecular weight polymer may be obtained by polycondensation by a known method without catalyst. Examples of the known method include, for example, Industrial Chemistry Magazine Vol. 68, 98.
The method described on pages 3 to 986 (1965), that is, the method of reacting lactic acid and glycolic acid at 202 ° C. for 6 hours at atmospheric pressure without a catalyst can be mentioned. As the known method, for example, the method described in US Pat. No. 2,362,511, that is, lactic acid and glycolic acid are reacted at a temperature of 200 ° C. for 2 hours,
Then, a method of continuing heating under reduced pressure for 1/2 hour may be used.

本発明に係るポリ乳酸類は、乳酸単独の乳酸の重合体若
しくはグリコール酸単独のグリコール酸の重合体、又は
乳酸とグリコール酸との任意の割合、好ましくは乳酸約
50〜95重量%及びグリコール酸約50〜5重量%、より好
ましくは乳酸約60〜95%及びグリコール酸約40〜5重量
%、更に好ましくは乳酸約60〜85重量%及びグリコール
酸約40〜15重量%の乳酸とグリコール酸との共重合体か
ら成る。乳酸とグリコール酸との共重合体における特に
好ましい比率としては、乳酸約75±2モル%及びグリコ
ール酸約25±2モル%が挙げられる。
The polylactic acid according to the present invention is a polymer of lactic acid containing only lactic acid or a polymer of glycolic acid containing only glycolic acid, or any ratio of lactic acid to glycolic acid, preferably about lactic acid.
50-95% by weight and about 50-5% by weight glycolic acid, more preferably about 60-95% by weight lactic acid and about 40-5% by weight glycolic acid, even more preferably about 60-85% by weight lactic acid and about 40-% glycolic acid. It consists of a copolymer of 15% by weight of lactic acid and glycolic acid. Particularly preferred ratios in the copolymer of lactic acid and glycolic acid include about 75 ± 2 mol% lactic acid and about 25 ± 2 mol% glycolic acid.

本発明に於て用いられる無機固体酸触媒としては、例え
ば、酸性白土、活性白土、ベントナイト、カオリン、タ
ルク、ケイ酸アルミ、ケイ酸マグネシウム、アルミナボ
リラ、ケイ酸等が挙げられる。これらは夫々単独でも二
種以上混合してでも使用でき、いずれもそのままで、或
いは要すれば金属イオン等を除く為に、例えば約5〜20
%濃度の塩酸等で洗浄して用いられる。
Examples of the inorganic solid acid catalyst used in the present invention include acidic clay, activated clay, bentonite, kaolin, talc, aluminum silicate, magnesium silicate, alumina bolilla, silicic acid and the like. These may be used either individually or as a mixture of two or more thereof, and either of them may be used as they are or, if necessary, for removing metal ions, for example, about 5 to 20.
It is used after being washed with hydrochloric acid having a concentration of%.

本発明に於て用いられる無機固体酸触媒の量は、乳酸及
び/又はグリコール酸の総量に対し、通常約0.5〜30%W
/W、好ましくは約1〜20%W/W程度が、1乃至数回に分
けて用いられる。該触媒は反応系中に反応の途中で添加
してもよい。
The amount of the inorganic solid acid catalyst used in the present invention is usually about 0.5 to 30% W based on the total amount of lactic acid and / or glycolic acid.
/ W, preferably about 1 to 20% W / W is used once or several times in a divided manner. The catalyst may be added to the reaction system during the reaction.

本発明の重縮合反応に於ける反応温度は、例えば通常約
150〜250℃であり、好ましくは約150〜200℃である。本
反応は、減圧下に行なうのが好ましく、減圧としては例
えば通常約30〜1mmHg、好ましくは約10〜1mmHgであ
る。本反応の反応時間は例えば通常約10時間以上であ
り、好ましくは約10〜150時間、更に好ましくは約10〜1
00時間である。
The reaction temperature in the polycondensation reaction of the present invention is, for example, usually about
The temperature is 150 to 250 ° C, preferably about 150 to 200 ° C. This reaction is preferably carried out under reduced pressure, and the reduced pressure is, for example, usually about 30 to 1 mmHg, preferably about 10 to 1 mmHg. The reaction time of this reaction is, for example, usually about 10 hours or longer, preferably about 10 to 150 hours, more preferably about 10 to 1 hours.
It's 00 hours.

乳酸及び/又はグリコール酸を原料物質として用いる場
合の反応条件としては、次のものが好ましい。例えば、
100〜150℃/350〜30mmHgで2時間以上、通常は2〜1
0時間程度、例えば、 105℃/350mmHgから150℃/30mm
Hgまで段階的に温度及び減圧度を高めながら5〜6時間
減圧下加熱反応させることにより水分を除去した後、15
0〜200℃/10〜1mmHgで10時間以上(通常は 100時間
ぐらい迄でよい)脱水重縮合反応させる。
The following reaction conditions are preferable when lactic acid and / or glycolic acid is used as the raw material. For example,
100-150 ℃ / 350-30mmHg for 2 hours or more, usually 2-1
About 0 hours, for example, 105 ℃ / 350mmHg to 150 ℃ / 30mm
After removing water by heating reaction under reduced pressure for 5 to 6 hours while gradually increasing temperature and reduced pressure to Hg, 15
The dehydration polycondensation reaction is performed at 0 to 200 ° C / 10 to 1 mmHg for 10 hours or more (usually about 100 hours).

また、上記した低分子の重合物或は共重合物を原料物質
として用いられる場合の反応条件としては、次のものが
好ましい。即ち、例えば、 150〜200℃/10〜1mmHgで
10時間以上(通常は 100時間ぐらい迄でよい)脱水重
縮合反応させる。
The following reaction conditions are preferable when the above-mentioned low molecular weight polymer or copolymer is used as a raw material. That is, for example, at 150-200 ℃ / 10-1mmHg
Allow dehydration polycondensation reaction for 10 hours or more (usually about 100 hours).

反応終了後は、反応液を単に熱時過するか、或は塩化
メチレン、ジクロルエタン、クロロホルム、アセトン等
の適当な溶媒(重合体と同量乃至10倍量程度使用)に重
合体を溶かして過する等により、用いた固体酸触媒を
取り除けば(本発明の固体酸触媒法は通常の定性用紙
を用いた吸引過等により容易に取り除くことができ
る)、前者即ち反応液をそのまま過した場合にはそれ
だけで、また後者即ち反応液を溶媒に溶かして過した
場合には、用いた溶媒を濃縮留去することにより、目的
の高分子量ポリ乳酸類を容易に得ることができる。ま
た、要すれば、過した反応液を直接、或は溶媒を用い
た場合には濃縮した液を、大量の沈澱剤中に注ぐ等常
法により分離してもよいし、更に必要であれば再沈澱等
により精製すればよい。尚、前記イオン交換樹脂と触媒
として用いた場合にはこのような操作を繰り返してもそ
の着色は容易には除去し得ない。
After completion of the reaction, the reaction solution is simply heated, or the polymer is dissolved in an appropriate solvent such as methylene chloride, dichloroethane, chloroform, or acetone (the same amount to about 10 times as much as the polymer is used). By removing the solid acid catalyst used (the solid acid catalyst method of the present invention can be easily removed by suction suction using ordinary qualitative paper, etc.). By itself, and in the latter case, that is, when the reaction solution is dissolved in a solvent and passed over, the target high molecular weight polylactic acid can be easily obtained by concentrating and distilling off the solvent used. If necessary, the excess reaction solution may be separated directly, or in the case of using a solvent, a concentrated solution may be separated by a conventional method such as pouring into a large amount of a precipitant, or if necessary, further. It may be purified by reprecipitation or the like. When the ion exchange resin and the catalyst are used, the coloring cannot be easily removed even by repeating such operations.

本発明によれば、重量平均分子量約5,000以上(好まし
くは約5,000〜30,000)の高分子量ポリ乳酸類を得るこ
とができ、得られた重合体は分散度が約1.5乃至2と小
さく、また外観着色は殆ど観測されず、重合触媒は全く
含有していない、若しくは実質的に含有していない。
According to the present invention, a high molecular weight polylactic acid having a weight average molecular weight of about 5,000 or more (preferably about 5,000 to 30,000) can be obtained, and the obtained polymer has a small dispersity of about 1.5 to 2 and an appearance. Almost no coloring was observed, and no or substantially no polymerization catalyst was contained.

本発明によれば、その製造は工業的に容易に実施でき
る。また、用いられる重合触媒はポリ乳酸類にも溶媒に
も溶解しないので、生成物から完全に除去することがで
きる。従って、得られた重合体中への重合触媒の混入は
実質的になく、また重合体の着色も殆どない、分散度が
約1.5乃至2と小さい高分子量の重合体を容易に得るこ
とができる。
According to the present invention, the production can be easily carried out industrially. Further, since the polymerization catalyst used is neither soluble in polylactic acid nor in a solvent, it can be completely removed from the product. Therefore, it is possible to easily obtain a high molecular weight polymer having a dispersion degree of about 1.5 to 2 with substantially no mixing of the polymerization catalyst into the obtained polymer and almost no coloring of the polymer. .

本発明方法に於ては、無機固体酸触媒を用いるので、無
触媒でこれを行った場合と比べ、反応時間が短縮できる
というメリットがある。即ち、同じ分子量の重合体或は
共重合体を得るのに本発明方法によれば無触媒で行う場
合よりも短かい反応時間でこれを得ることができる。
In the method of the present invention, since an inorganic solid acid catalyst is used, there is an advantage that the reaction time can be shortened as compared with the case where this is carried out without a catalyst. That is, according to the method of the present invention, a polymer or copolymer having the same molecular weight can be obtained with a reaction time shorter than that in the case of carrying out without a catalyst.

本発明の重合体或は共重合体は主に医薬品の製剤基剤と
して利用できる。例えばステロイドホルモン類、ペプチ
ドホルモン類、或は制ガン剤等を含有させ、埋込み型若
しくはマイクロカプセル型徐放性製剤として、或は制ガ
ン剤を含有した微粒を造り塞栓治療剤として有利に利用
できる。
The polymer or copolymer of the present invention can be mainly used as a drug formulation base. For example, steroid hormones, peptide hormones, or carcinostatic agents, etc. are contained, and they can be advantageously used as implantable or microcapsule sustained-release preparations, or fine particles containing carcinostatic agents are prepared and embolization therapeutic agents.

以下に実験例及び実施例を挙げて本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples.

実験例 1. (乳酸単独重合) 85%乳酸水溶液 160g(乳酸として1.5mol)に無機固体
酸触媒 6.8gを添加し、窒素気流下 100〜150℃/350
〜30mmHgで段階的に6時間減圧加熱を行ない留出水を除
去した。その後更に固体酸触媒6.8gを追加し、 175℃
/6〜5mmHgで72時間脱水重縮合反応させた。
Experimental example 1. (Lactic acid homopolymerization) 6.8g of inorganic solid acid catalyst was added to 160g of 85% lactic acid aqueous solution (1.5mol of lactic acid), and 100-150 ℃ / 350 under nitrogen stream.
Distilled water was removed by heating under reduced pressure stepwise at -30 mmHg for 6 hours. After that, 6.8g of solid acid catalyst was added and 175 ℃
The dehydration polycondensation reaction was carried out at / 6 to 5 mmHg for 72 hours.

本法による乳酸の重合体製造に於ける反応時間と到達重
量平均分子量との関係を表1に示す。
Table 1 shows the relationship between the reaction time and the reached weight average molecular weight in the production of lactic acid polymer by this method.

また、比較のために、重合触媒として市販の強酸性イオ
ン交換樹脂であるダウエックス50W〔ダウケミカル社製
(米国),登録商標〕を用いた場合の結果も併せて表1
に示す。
In addition, for comparison, the results obtained when a commercially available strong acid ion exchange resin, Dowex 50W [Dow Chemical Company (USA), registered trademark] is used as a polymerization catalyst are also shown in Table 1.
Shown in.

尚、本明細書に於ては、重量平均分子量及び分散度(分
散度=重量平均分子量/数平均分子量)は、分子量既知
の標準ポリスチレンを用いたゲル浸透クロマトグラフィ
ー法により測定し、求めた。
In the present specification, the weight average molecular weight and the dispersity (dispersion degree = weight average molecular weight / number average molecular weight) are determined by gel permeation chromatography using standard polystyrene having a known molecular weight.

表中、触媒添加量(1)は最初の触媒添加量を、触媒添加
量(2)は水分除去後の175℃/6〜5mmHgの重縮合反応開
始時に追加した触媒添加量を夫々表わし、反応時間は17
5℃/6〜5mmHgでのそれを表わす。また、表中到達分
子量の下の( )内の値は分散度を表わす。
In the table, the catalyst addition amount (1) represents the initial catalyst addition amount, and the catalyst addition amount (2) represents the catalyst addition amount added at the start of the polycondensation reaction of 175 ° C./6 to 5 mmHg after removal of water. Time is 17
It represents that at 5 ° C / 6-5 mmHg. The value in parentheses below the reached molecular weight in the table represents the degree of dispersion.

表1から明らかなように、本発明によれば、容易に、重
合触媒の溶存が殆どない、重量平均分子量約5,000以上
の高分子ポリ乳酸を得ることができ、得られた重合体に
は殆ど着色は観測されず、分子量分酸度はいずれも2以
下と小さいものが得られ、また、重合反応の反応速度も
触媒の添加によって明らかに促進された。
As is apparent from Table 1, according to the present invention, it is possible to easily obtain a high molecular weight polylactic acid having a weight average molecular weight of about 5,000 or more, in which a polymerization catalyst is hardly dissolved, and almost no polymer is obtained. No coloration was observed, and the molecular weight and acidity were all as small as 2 or less, and the reaction rate of the polymerization reaction was obviously accelerated by the addition of the catalyst.

実験例 2. (乳酸・グリコール酸共重合) 85%乳酸水溶液 160g(1.5mol)とグリコール酸38g(0.5m
ol)との混合し、これに無機固体酸触媒8.7gを添加し
て、窒素気流下100〜150℃/350〜30mmHgで6時間減圧
加熱を行ない留出水を除去した。その後更に固体酸触媒
8.7gを追加し、175℃/6〜5mmHgで72時間脱水縮合
反応させた。
Experimental example 2. (Lactic acid / glycolic acid copolymerization) 85% lactic acid aqueous solution 160g (1.5mol) and glycolic acid 38g (0.5m
ol), and 8.7 g of an inorganic solid acid catalyst was added thereto, and the mixture was heated under reduced pressure at 100 to 150 ° C./350 to 30 mmHg for 6 hours under a nitrogen stream to remove distilled water. Then further solid acid catalyst
An additional 8.7 g was added and a dehydration condensation reaction was carried out at 175 ° C./6-5 mmHg for 72 hours.

本法による乳酸とグリコール酸の共重合体製造に於ける
反応時間と到達時間と到達重量平均分子量との関係を表
2に示す。
Table 2 shows the relationship between the reaction time, the reaching time and the reaching weight average molecular weight in the production of the lactic acid-glycolic acid copolymer by this method.

また、比較のために、重合触媒として強酸性イオン交換
樹脂(ダウエックス50W)を用いた場合の結果も併せて
表2に示す。
For comparison, Table 2 also shows the results when a strongly acidic ion exchange resin (Dowex 50W) was used as the polymerization catalyst.

表2中、触媒添加量(1)は最初の触媒添加量を、触媒添
加量(2)は水分除去後の175℃/6〜5mmHgでの重縮合反
応開始時に追加した触媒添加量を夫々表わし、反応時間
は175℃/6〜5mmHgでのそれを表わす。また、表中到
達分子量の下の( )内の値は分散度を表わす。
In Table 2, the catalyst addition amount (1) represents the initial catalyst addition amount, and the catalyst addition amount (2) represents the catalyst addition amount added at the start of the polycondensation reaction at 175 ° C./6 to 5 mmHg after the removal of water. The reaction time represents that at 175 ° C./6-5 mmHg. The value in parentheses below the reached molecular weight in the table represents the degree of dispersion.

表2から明らかなように、本発明によれば、容易に、重
合触媒の溶存が殆どない、重量平均分子量約5,000以上
の高分子量乳酸・グリコール酸共重合体を得ることがで
き、得られた共重合体には殆ど着色は観測されず、分子
量分酸度も全て2以下と小さいものが得られる。また、
重合反応の反応速度も触媒の添加によって明らかに促進
された。
As is apparent from Table 2, according to the present invention, a high-molecular-weight lactic acid / glycolic acid copolymer having a weight average molecular weight of about 5,000 or more and having almost no dissolved polymerization catalyst can be easily obtained. Almost no coloration was observed in the copolymer, and a polymer having a small molecular weight acidity of 2 or less was obtained. Also,
The reaction rate of the polymerization reaction was also obviously accelerated by the addition of the catalyst.

上記の本発明の共重合体を重クロロホルム溶液として核
磁気共鳴スペクトルで、乳酸とグリコール酸との共重合
組成を分析した結果を表3に示す。
Table 3 shows the results of analyzing the copolymerization composition of lactic acid and glycolic acid by nuclear magnetic resonance spectroscopy using the above-mentioned copolymer of the present invention as a deuterated chloroform solution.

実施例 1. 温度計、コンデンサー、窒素導入管を備えた四頚フラス
コに、85%乳酸水溶液 160g及び酸性白土 13.6gを加
え、窒素気流下で、内温及び内圧をそれぞれ105℃、350
mmHgから150℃、30mmHgまで、段階的に温度及び減圧度
を高めながら、6時間かけて減圧加熱を行ない、留出水
を除去した。引き続き内圧を3mmHgとし、内温175℃で5
0時間加熱を行なった。反応液を室温まで冷却し、塩化
メチレン400mlを加えて、撹拌溶解後、酸性白土を過
(東洋紙No.131を使用)して除き、液を濃縮乾固し
て、殆ど白色の重合体 100gを得た。この重合体の重量
平均分子量及び分散度は、それぞれ22,000及び1.75であ
った。
Example 1. To a four-necked flask equipped with a thermometer, a condenser and a nitrogen inlet tube, 160 g of 85% lactic acid aqueous solution and 13.6 g of acid clay were added, and the internal temperature and internal pressure were 105 ° C and 350 ° C, respectively, under a nitrogen stream.
Distilled water was removed by heating under reduced pressure for 6 hours while gradually increasing the temperature and the degree of reduced pressure from mmHg to 150 ° C. and 30 mmHg. Continue to set the internal pressure to 3 mmHg and the internal temperature to 175 ° C for 5
Heating was carried out for 0 hours. The reaction solution was cooled to room temperature, 400 ml of methylene chloride was added, dissolved with stirring, the acid clay was removed by excess (using Toyo Paper No. 131), and the solution was concentrated to dryness to give 100 g of almost white polymer. Got The weight average molecular weight and dispersity of this polymer were 22,000 and 1.75, respectively.

尚、得られた共重合体中への残存触媒については、共重
合体を白金シャーレ上にとり、炭酸ナトリウム溶融処理
を行なった後、アルミニウム及びケイ素について、それ
ぞれアルミノン法及びモリブデンブルー法を適用して比
色定量した結果、いずれも不検出であり、触媒の混入は
認められなかった。
Regarding the residual catalyst in the obtained copolymer, the copolymer was placed on a platinum Petri dish and subjected to a sodium carbonate melting treatment, and then aluminum and silicon were subjected to the aluminone method and the molybdenum blue method, respectively. As a result of colorimetric determination, none was detected, and no catalyst was found to be mixed.

実施例 2. 触媒としてケイ酸アルミ 27.2gを用いた以外は、全て
実施例1.と同様に反応を行ない、殆ど無色の重合体
92gを得た。この重合体の重量平均分子量及び分散度
は、それぞれ21,900及び1.70であった。触媒をカオリン
又はタルクにしても同様であった。
Example 2. Example 1 except that 27.2 g of aluminum silicate was used as the catalyst. Almost colorless polymer that reacts in the same manner as
92g was obtained. The weight average molecular weight and polydispersity index of this polymer were 21,900 and 1.70, respectively. The same was true when the catalyst was kaolin or talc.

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

実施例 3. 実施例1.と同様に、85%乳酸水溶液160gを用い、酸
性白土の代りに活性白土6.8gを仕込み、留出水を除去し
た後の加熱反応を内圧5mmHg、内温185℃で96時間行な
い、殆ど白色の重合体90gを得た。この重合体の重量平
均分子量及び分散度は、それぞれ29,600及び1.85であっ
た。
Example 3. Example 1. In the same manner as above, using 160 g of 85% lactic acid aqueous solution, 6.8 g of activated clay was charged in place of the acid clay, and the heating reaction after removing the distilled water was carried out at an internal pressure of 5 mmHg and an internal temperature of 185 ° C. for 96 hours. 90 g of polymer was obtained. The weight average molecular weight and dispersity of this polymer were 29,600 and 1.85, respectively.

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

実施例 4. 85%乳酸水溶液 160g、グリコール酸 38g及び活性白
土 17.4gを用いた以外は、全て実施例1.と同様に反
応を行ない、殆ど白色の共重合体122gを得た。この共重
合体の重量平均分子量及び分散度は、それぞれ20,100及
び1.70であった。更に得られた共重合体を重クロロホル
ム溶液として核磁気共鳴スペクトルで分析した結果、乳
酸とグリコール酸との共重合組成は76mol%:24mol%
(79.7重量%:20.3重量%)であった。
Example 4. Example 1 except that 160 g of 85% aqueous lactic acid solution, 38 g of glycolic acid and 17.4 g of activated clay were used. The same reaction was carried out to obtain 122 g of an almost white copolymer. The weight average molecular weight and dispersity of this copolymer were 20,100 and 1.70, respectively. Further, the obtained copolymer was analyzed by nuclear magnetic resonance spectrum as a deuterated chloroform solution. As a result, the copolymerization composition of lactic acid and glycolic acid was 76 mol%: 24 mol%.
(79.7% by weight: 20.3% by weight).

尚、得られた共重合体中への残存触媒については実施例
1.と同様に残存触媒の検出を行なった結果、触媒の混
入は認められなかった。
The catalyst remaining in the obtained copolymer is described in Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

実施例 5. 85%乳酸水溶液 160g及びグリコール酸 17.5g及び酸
性白土 9gを仕込み、留出水を除去した後の加熱反応を
内圧 3mmHg、内温 170℃で96時間行ない、殆ど白色
の共重合体130gを得た。この共重合体の重量平均分子量
及び分散度は、それぞれ28.100及び1.73であり、更に、
乳酸とグリコール酸との共重合体組成は89mol%:11mol
%(90.9重量%:9.1重量%)であった。
Example 5. After charging 160 g of 85% lactic acid aqueous solution, 17.5 g of glycolic acid and 9 g of acid clay, the heating reaction after removing distilled water was carried out at an internal pressure of 3 mmHg and an internal temperature of 170 ° C. for 96 hours to obtain 130 g of an almost white copolymer. . The weight average molecular weight and dispersity of this copolymer are 28.100 and 1.73, respectively,
The copolymer composition of lactic acid and glycolic acid is 89 mol%: 11 mol
% (90.9% by weight: 9.1% by weight).

触媒をケイ酸アルミ、ベントナイト、カオリンにしても
同様の反応及び結果が得られた。
Similar reactions and results were obtained when the catalyst was aluminum silicate, bentonite, or kaolin.

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

実施例 6. 93%乳酸水溶液146g及びグリコール酸 38gを用い、202
℃で6時間の加熱反応を行ない、重量平均分子量2,70
0、共重合組成 乳酸:グリコール酸=75mol%:25mol%
の共重合物を得た。
Example 6. 202% by using 146 g of 93% lactic acid aqueous solution and 38 g of glycolic acid
Heat reaction at ℃ for 6 hours, weight average molecular weight 2,70
0, copolymer composition lactic acid: glycolic acid = 75mol%: 25mol%
To obtain a copolymer of

実施例1.と同じ重合装置に、得られた共重合物100gと
酸性白土 10gをとり、内圧を5mmHgとし、内圧 180℃
で50時間加熱を行なった。反応液を室温まで冷却し、塩
化メチレン 500mlを加えて、撹拌溶解後、酸性白土を
過(東洋紙No.131を使用)して除き、液を濃縮乾
固して、殆ど白色の重合体 82gを得た。この重合体の
重量平均分子量及び分散度は、それぞれ23,700及び1.73
であり、更に、乳酸とグリコール酸との共重合組成は75
mol%:25mol%(78.8重量%:21.2重量%)であった。
Example 1. 100 g of the obtained copolymer and 10 g of acid clay were placed in the same polymerization equipment as above, the internal pressure was set to 5 mmHg, and the internal pressure was 180 ° C.
And heated for 50 hours. The reaction solution was cooled to room temperature, added with 500 ml of methylene chloride, dissolved with stirring, the acidic clay was removed by excess (using Toyo Paper No.131), and the solution was concentrated to dryness to give almost white polymer 82 g. Got The weight average molecular weight and dispersity of this polymer were 23,700 and 1.73, respectively.
Furthermore, the copolymerization composition of lactic acid and glycolic acid is 75
It was 25% by mol (78.8% by weight: 21.2% by weight).

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

実施例 7. 乳酸二量体(乳酸ラクテート)97g、グリコール酸二量
体(グリコール酸クリコレート) 54g及び酸性白土
7.5gを用いた以外は、全て実施例6.と同様に反応を行
ない、殆ど白色の共重合体98gを得た。この重合体の共
重量平均分子量及び分散度は、それぞれ21,000及び1.75
であり、更に乳酸とグリコール酸との共重合組成は59.5
mol%:40.5mol%:(64.6重量%:35.4重量%)であっ
た。
Example 7. Lactic acid dimer (lactic acid lactate) 97 g, glycolic acid dimer (glycolic acid glycolate) 54 g and acid clay
Example 6, except that 7.5 g was used. The reaction was performed in the same manner as in (1) to give 98 g of an almost white copolymer. The co-weight average molecular weight and dispersity of this polymer are 21,000 and 1.75, respectively.
And the copolymer composition of lactic acid and glycolic acid is 59.5.
It was mol%: 40.5 mol%: (64.6 wt%: 35.4 wt%).

尚、得られた共重合体中への残存触媒については、実施
例1.と同様に残存触媒の検出を行なった結果、触媒の
混入は認められなかった。
Regarding the residual catalyst in the obtained copolymer, Example 1. As a result of detection of the residual catalyst in the same manner as in, no contamination of the catalyst was observed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−41327(JP,A) 特開 昭52−147691(JP,A) 特開 昭56−45920(JP,A) 工業化学雑誌、第67巻、第6号(1964 年)、浅原・片山「ポリラクチドの合成反 応と生成物の性状」P.956〜961 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-51-41327 (JP, A) JP-A-52-147691 (JP, A) JP-A-56-45920 (JP, A) Industrial chemistry magazine, No. 1 Vol. 67, No. 6 (1964), Asahara and Katayama, "Synthetic Reaction of Polylactide and Properties of Products", p. 956 ~ 961

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】乳酸及び/又はグリコール酸を重縮合させ
て高分子重合体を製造するに際し、触媒として無機固体
酸触媒を用いることを特徴とする、乳酸若しくはグリコ
ール酸の重合体又はそれらの共重合体の製造法。
1. A polymer of lactic acid or glycolic acid, or a copolymer thereof, characterized by using an inorganic solid acid catalyst as a catalyst when polycondensing lactic acid and / or glycolic acid to produce a polymer. Polymer production method.
JP60183185A 1985-08-21 1985-08-21 Polymer manufacturing method Expired - Lifetime JPH0610252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183185A JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183185A JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59140356A Division JPH0678425B2 (en) 1984-07-06 1984-07-06 New polymer manufacturing method

Publications (2)

Publication Number Publication Date
JPS61111326A JPS61111326A (en) 1986-05-29
JPH0610252B2 true JPH0610252B2 (en) 1994-02-09

Family

ID=16131257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183185A Expired - Lifetime JPH0610252B2 (en) 1985-08-21 1985-08-21 Polymer manufacturing method

Country Status (1)

Country Link
JP (1) JPH0610252B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY108621A (en) * 1990-08-01 1996-10-31 Novartis Ag Polylactide preparation and purification
EP0764671A1 (en) * 1994-04-15 1997-03-26 Kyowa Hakko Kogyo Co., Ltd. Process for producing poly(hydroxy carboxylic acid)
AU6710196A (en) * 1995-08-29 1997-03-19 Kyowa Hakko Kogyo Co. Ltd. Process for producing polyhydroxy carboxylic acid
WO1997031049A1 (en) * 1996-02-23 1997-08-28 Kyowa Hakko Kogyo Co., Ltd. Process for the preparation of polyhydroxycarboxylic acid
DE60315472T2 (en) 2002-09-24 2008-04-30 Asahi Kasei Chemicals Corp. GLYCOL COASTER COPOLYMER AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1017804B (en) * 1974-08-01 1977-08-10 Montedison Spa PROCEDURE FOR THE PREPARATION OF GLYCOLIC ACID AND ITS POLYMERS
US4048256A (en) * 1976-06-01 1977-09-13 American Cyanamid Company Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4273920A (en) * 1979-09-12 1981-06-16 Eli Lilly And Company Polymerization process and product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工業化学雑誌、第67巻、第6号(1964年)、浅原・片山「ポリラクチドの合成反応と生成物の性状」P.956〜961

Also Published As

Publication number Publication date
JPS61111326A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
EP0172636B1 (en) Method for producing a polymer or copolymer of lactic acid and/or glycolic acid
JPH0649185A (en) New polymer
JPH08169818A (en) Sustained release microcapsule for injection
JP2641840B2 (en) Biodegradable poly (lactic acid) s having improved physical properties and methods for their production
EP2229417B1 (en) Process for the preparation of highly pure amphiphilic copolymer comprising hydrophobic block from alpha-hydroxy acid
JPH01103622A (en) Preparation of dl-lactic acid-glycolic acid copolymer
JPH0610252B2 (en) Polymer manufacturing method
US6232497B1 (en) Method for producing alkali metal and alkaline earth metal pyruvates
JP3168263B2 (en) Novel polymer and drug using the same
EP1265856B1 (en) Novel process for the preparation of alpha-(2-4-disulfophenyl)-n-tert-butylnitrone and pharmaceutically acceptable salts thereof
JP2560073B2 (en) Calcium lactate-glycerol adduct and process for producing the same
EP0555290B1 (en) Aryl-ether-sulphone monomers and aryl-ether-ketone-sulphone polymers
JPS63115845A (en) Manufacture of beta-oxybutyric acid and salt of same by hydrolysis of oligomer of beta-oxybutyric acid in basic medium
JPH03123752A (en) Production of 4,4'-dihydroxybenzophenone
EP0075389B1 (en) Production of dihydroxy arylophenones
JPH07126379A (en) Production of polysuccinimide
EP0498560B1 (en) Synthesis of poly(vinyl phosphonic acid)
JP2003519679A (en) Novel process for producing .alpha .- (2-4-disulfophenyl) -N-tert-butylnitrone and pharmaceutically acceptable salts thereof
JPH0899984A (en) Production of sarcomine
JP2001039996A (en) Production of trehalose derivative
JPS60224660A (en) Production of p-dialkylaminocinnamaldehyde
GB2347425A (en) Radio Labelled Acrylic Acid Monomers and Polymers obtained therefrom
JPH0257082B2 (en)
JPS5833244B2 (en) Manufacturing method of polytetramethylene glycol
JP2002105133A (en) Method for producing styrene-maleic anhydride copolymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term