JP3168263B2 - Novel polymer and drug using the same - Google Patents

Novel polymer and drug using the same

Info

Publication number
JP3168263B2
JP3168263B2 JP7844298A JP7844298A JP3168263B2 JP 3168263 B2 JP3168263 B2 JP 3168263B2 JP 7844298 A JP7844298 A JP 7844298A JP 7844298 A JP7844298 A JP 7844298A JP 3168263 B2 JP3168263 B2 JP 3168263B2
Authority
JP
Japan
Prior art keywords
lactic acid
weight
glycolic acid
copolymer
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7844298A
Other languages
Japanese (ja)
Other versions
JPH111443A (en
Inventor
幹晃 田中
泰亮 小川
力 宮川
俊雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Takeda Pharmaceutical Co Ltd
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd, Takeda Pharmaceutical Co Ltd, Fujifilm Wako Pure Chemical Corp filed Critical Wako Pure Chemical Industries Ltd
Priority to JP7844298A priority Critical patent/JP3168263B2/en
Publication of JPH111443A publication Critical patent/JPH111443A/en
Application granted granted Critical
Publication of JP3168263B2 publication Critical patent/JP3168263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、生体吸収性医薬製剤用
基剤として有用な、乳酸とグリコール酸との共重合体
(以下、本発明の共重合体と称することもある。)に関
する。 【0002】 【発明の背景】近年、プラスチック公害を緩和するため
の易分解性高分子として、また、生体吸収性医薬製剤用
高分子としてなど、分解性高分子が少なからず注目され
ている。 【0003】上記の如き目的の為のものとして、特開昭
56-45920号公報に、乳酸とグリコール酸とを強酸性イオ
ン交換樹脂の存在下で重合させる方法が開示されてお
り、それによると、重量平均分子量が約6,000乃至35,00
0の実質的に重合触媒を含有していない重合体が得られ
るとされている。 【0004】しかしながら、上記方法で製造された重合
体は、ゲル浸透クロマトグラフィー法により求めた分子
量分散度が3前後或はそれ以上と大きく、使用に際し、
溶解性、その他の面に於て要因が複雑になり、コントロ
ールに多大の問題があるので、生体吸収性医薬製剤用高
分子として用いる場合などにはあまり好ましいとはいえ
ない。しかもこの方法では、重合触媒として用いられる
強酸性イオン交換樹脂が加熱重縮合反応時に熱によって
劣化し、得られる重合体中に溶け込んで、それが重合体
の着色となって現われる。更にまた、一旦着色した重合
体からそのような着色を除去するのは難しく、完全に除
去するのは実際上不可能である。かかる着色は商品価値
を落とすのみならず、それが不純物に起因するものであ
る以上好ましくない状態であることはいうを俟たない。 【0005】 【発明の目的】かかる状況に鑑み、本発明者らは、乳酸
とグリコール酸との共重合体の有効で且つ上記の如き欠
点のない製造法について鋭意研究を重ねた結果、乳酸及
びグリコール酸又はそれらの低分子の重合物若しくは共
重合物を無触媒で減圧下加熱する重縮合反応に付すこと
により、重量平均分子量が約5,000以上30,000以下と大
きく、ゲル浸透クロマトグラフィー法による分散度が約
1.5〜2と小さい、且つ重合触媒を全く含有していな
い、無色乃至殆ど白色の共重合体が得られることを見出
し、これに基づいて更に研究した結果、本発明を完成し
た。 【0006】 【発明の構成】本発明は、下記(1)〜(8)の構成か
らなる。 (1)重量平均分子量5,000以上30,000以下で、触媒を
全く含まず、ゲル浸透クロマトグラフィー法により求め
た分散度が1.5〜2である、乳酸50〜95重量%及びグリ
コール酸50〜5重量%からなる乳酸・グリコール酸共重
合体。 【0007】(2)重量平均分子量5,000以上30,000以
下で、触媒を全く含まず、ゲル浸透クロマトグラフィー
法により求めた分散度が1.5〜2で、乳酸50〜95重量%
及びグリコール酸50〜5重量%からなる乳酸・グリコー
ル酸共重合体を含んでなる、生体吸収性医薬製剤用基
剤。 【0008】(3)重量平均分子量5,000以上30,000以
下で、触媒及びその加熱劣化生成物を全く含まず、ゲル
浸透クロマトグラフィー法により求めた分散度が1.5〜
2で、乳酸50〜95重量%及びグリコール酸50〜5重量%
からなる乳酸・グリコール酸共重合体。 【0009】(4)重量平均分子量5,000以上30,000以
下で、触媒及びその加熱劣化生成物を全く含まず、ゲル
浸透クロマトグラフィー法により求めた分散度が1.5〜
2で、乳酸50〜95重量%及びグリコール酸50〜5重量%
からなる乳酸・グリコール酸共重合体を含んでなる、生
体吸収性医薬製剤用基剤。 【0010】(5)重量平均分子量5,000以上30,000以
下で、触媒及びその加熱劣化生成物を全く含まず、ゲル
浸透クロマトグラフィー法により求めた分散度が1.5〜
2で、乳酸50〜95重量%及びグリコール酸50〜5重量%
からなる、無色乃至白色の乳酸・グリコール酸共重合
体。 【0011】(6)重量平均分子量5,000以上30,000以
下で、触媒及びその加熱劣化生成物を全く含まず、ゲル
浸透クロマトグラフィー法により求めた分散度が1.5〜
2で、乳酸50〜95重量%及びグリコール酸50〜5重量%
からなる無色乃至白色の乳酸・グリコール酸共重合体を
含んでなる、生体吸収性医薬製剤用基剤。 【0012】(7)重量平均分子量5,000以上30,000以
下で、触媒を全く含まず、ゲル浸透クロマトグラフィー
法により求めた分散度が1.5〜2である、乳酸50〜95重
量%及びグリコール酸50〜5重量%からなる乳酸・グリ
コール酸共重合体を基剤として含む医薬。 【0013】(8)重量平均分子量5,000以上30,000以
下で、触媒を全く含まず、ゲル浸透クロマトグラフィー
法により求めた分散度が1.5〜2である、乳酸50〜95重
量%及びグリコール酸50〜5重量%からなる、無色乃至
白色の乳酸・グリコール酸共重合体を基剤として含む医
薬。 【0014】本発明の共重合体を製造するに当り、原料
として用いる乳酸としては通常各種濃度の乳酸水溶液が
任意に選ばれるが、作業性の点からいえば乳酸濃度は高
い方が良く、85%以上が望ましい。また、入手可能なら
ば水溶液としてではなく乳酸そのものを用いた方が良い
ことはいうまでもない。また、グリコール酸としては、
通常、結晶のものがそのまま用いられるが、水溶液とし
て用いても一向に差し支えない。乳酸とグリコール酸と
を結晶等の固体のものを用いる場合には、要すればこれ
らを溶解する溶媒を用いてもかまわない。該溶媒として
は、例えば、水,メタノール,エタノール,アセトンな
どが挙げられる。 【0015】本発明の共重合体を製造するに当り、原料
として用いられる乳酸およびグリコール酸としては、乳
酸の低分子重合物、グリコール酸の低分子重合物、乳酸
とグリコール酸との低分子共重合物でもよい。 【0016】該低分子重合物としては、たとえば乳酸の
オリゴマー(例、ダイマー,トリマーなど)、グリコー
ル酸のオリゴマー(例、ダイマー,トリマーなど)など
が挙げられる。 【0017】また、該低分子重合物あるいは低分子共重
合物としては、乳酸および/またはグリコール酸を触媒
の非存在下に重縮合させて得られたものが挙げられる。
該低分子重合物あるいは低分子共重合物を製造する際の
反応温度及び反応時間は、100〜150℃/350〜30mmHgで
2時間以上、通常は2〜10時間程度、例えば、105℃/3
50mmHgから150℃/30mmHgまで段階的に温度及び減圧度
を高めながら5〜6時間減圧下加熱反応させることによ
り水分を除去すればよい。このようにして、分子量約2,
000〜4,000の低分子重合物あるいは低分子共重合物が容
易に得られる。 【0018】また、該低分子重合物あるいは低分子共重
合物としては、無触媒で行なう公知の方法で重縮合して
得られたものでもよい。該公知方法としては、例えば工
業化学雑誌第68巻 983〜986頁(1965年)に記載された
方法、すなわち乳酸とグリコール酸とを常圧下無触媒で
202℃、6時間反応させる方法が挙げられる。また、該
公知方法としては、たとえば、米国特許第2,362,511号
公報に記載された方法、即ち、乳酸とグリコール酸とを
200℃の温度で2時間反応させ、次いで減圧下1/2時間加
熱を続ける方法なども挙げられる。 【0019】本発明の共重合体は、乳酸及びグリコール
酸の割合が、乳酸約50〜95重量%及びグリコール酸約50
〜5重量%、好ましくは乳酸約60〜95重量%及びグリコ
ール酸約40〜5重量%、より好ましくは、乳酸約60〜85
重量%及びグリコール酸約40〜15重量%から成る。乳酸
とグリコール酸との特に好ましい比率としては、乳酸約
75±2モル%及びグリコール酸約25±2モル%が挙げら
れる。 【0020】本発明の共重合体を製造する際の重縮合反
応における加熱温度は、例えば通常約150〜250℃であ
り、好ましくは約150〜200℃である。減圧としては、例
えば通常約30〜1mmHg、好ましくは約10〜1mmHgであ
る。反応時間は、例えば約10時間以上であり、好ましく
は約10〜150時間、更に好ましくは約10〜100時間であ
る。 【0021】乳酸及びグリコール酸を原料物質として用
いる場合の反応条件としては、次のものが好ましい。例
えば、100〜150℃/350〜30mmHgで2時間以上、通常は
2〜10時間程度、例えば、105℃/350mmHgから150℃/3
0mmHgまで段階的に温度及び減圧度を高めながら5〜6
時間減圧下加熱反応させることにより水分を除去した
後、150〜200℃/10〜1mmHgで10時間以上(通常は100
時間ぐらい迄でよい)脱水重縮合反応させればよい。 【0022】また、上記した低分子の重合物或は共重合
物を原料物質として用いる場合の反応条件としては、次
のものが好ましい。即ち、例えば、150〜200℃/10〜1
mmHgで10時間以上(通常は100時間ぐらい迄でよい)脱
水重縮合反応させればよい。 【0023】反応終了後は、反応液を単に熱時濾過する
か、或は塩化メチレン、ジクロルエタン、クロロホル
ム、アセトン等の適当な溶媒(重合体と同量乃至10倍量
程度使用)に重合体を溶かして濾過する等によりゴミを
除き、前者即ち反応液をそのまま濾過した場合にはそれ
だけで、また後者即ち反応液を溶媒に溶かして濾過した
場合には、用いた溶媒を濃縮留去することにより、目的
の高分子量共重合体を容易に得ることができる。また、
要すれば、濾過した反応液を直接、或は溶媒を用いた場
合には濃縮した濾液を、大量の沈澱剤中に注ぐ等常法に
より分離してもよいし、更に必要であれば再沈澱等によ
り精製すればよい。以下に実験例及び実施例を挙げて本
発明を更に詳細に説明する。 【0024】 【実施例】 実験例1.85%乳酸水溶液 160g(1.5モル)とグリコ
ール酸 38g(0.5モル)とを混合し、窒素気流下100〜1
50℃/350〜30mmHgで段階的に6時間減圧加熱を行ない
留出水を除去した後、175℃/6〜5mmHgで72時間脱水
縮合反応させた。 【0025】本法による乳酸とグリコール酸との共重合
体製造に於ける反応時間と到達重量平均分子量との関係
を表1に示す。 【0026】また、比較のために、重合触媒として市販
の強酸性イオン交換樹脂であるダウエックス50W〔ダウ
ケミカル社製(米国),登録商標〕を用いた場合の結果
も併せて表1に示す。 【0027】 【表1】 *:各反応時間毎に得られた共重合体を、4倍量の塩化メチレンに溶解し、濾 過した後濃縮して溶媒を留去し、得られた共重合体をJISK8004の 2に従い(即ち、試料約3gを時計皿にとり、白紙の上において調べる) 試験した。 【0028】尚、表中の重量平均分子量及び分散度(重
量平均分子量/数平均分子量)は、分子量既知の標準ポ
リスチレンを用いたゲル浸透クロマトグラフィー法によ
り測定し、求めた。 【0029】表1から明らかなように、本発明に係る製
造法によれば、容易に、重量平均分子量約5,000以上の
高分子量乳酸・グリコール酸共重合体を得ることがで
き、得られた共重合体には着色は観測されず、分子量分
散度も2以下と小さいものが得られる。 【0030】上記で得られた本発明の共重合体を重クロ
ロホルム溶液として核磁気共鳴スペクトルで、乳酸とグ
リコール酸との共重合組成を分析した結果を表2に示
す。 【0031】 【表2】【0032】実施例1.温度計、コンデンサー、窒素導
入管を備えた四頸フラスコに、85%乳酸水溶液191g及
びグリコール酸 17.5gをとり、窒素気流下、内温及び
内圧をそれぞれ105℃、350mmHgから150℃、30mmHgまで
6時間かけて減圧加熱を行ない、留出水を除去した。引
き続き、減圧度を3mmHgとし、内温175℃で72時間加熱
を行なった。反応液を室温まで冷却して、乳酸とグリコ
ール酸との共重合体として殆ど無色の塊状重合体 140g
を得た。共重合体の重量平均分子量及び分散度は、22,0
00及び1.70であった。尚、これら重量平均分子量及び分
散度は、ゲル浸透ゲルクロマトグラフィー法により求め
た(以下、同じ。)。更に得られた共重合体を重クロロ
ホルム溶液として核磁気共鳴スペクトルで分析した結
果、共重合体中の乳酸とグリコール酸との組成は、89モ
ル%:11モル%(90.9重量%:9.1重量%)であった。 【0033】比較例1.85%乳酸水溶液 191g及びグリ
コール酸 17.5gに、市販の強酸性イオン交換樹脂であ
るダウエックス50W(架橋ポリスチレン樹脂) 6.8gを
加え、実施例1と同様に、窒素気流下、内温及び内圧を
それぞれ105℃、350mmHgから150℃、30mmHgまで6時間
かけて減圧加熱を行ない、留出水を除去した。更にダウ
エックス50W 6.8gを追加して、減圧度を3mmHgとし、
内温175℃で72時間加熱を行なった。反応液を熱時濾過
してダウエックス50Wを除き、濾液を室温まで冷却し
て、重量平均分子量23,700、分散度2.88の塊状重合体 1
31gを得たが、重合体は褐色に着色していた。尚、得ら
れた共重合体中の乳酸とグリコール酸との組成は、88.5
モル%:11.5モル%(90.5重量%:9.5重量%)であっ
た。 【0034】実施例2.実施例1と同じ重合装置に、85
%乳酸水溶液 106g及びグリコール酸 76gをとり、窒
素気流下、内温及び内圧をそれぞれ105℃、350mmHgから
150℃、30mmHgまで3時間かけて減圧加熱を行ない、留
出水を除去した。引き続き減圧度を3mmHgとし、内温18
0℃で36時間加熱を行なった。反応液を室温まで冷却し
て、乳酸とグリコール酸との共重合体として殆ど無色の
塊状重合体 124gを得た。共重合体の重量平均分子量及
び分散度は、15,300及び1.73であった。更に得られた共
重合体を重クロロホルム溶液として核磁気共鳴スペクト
ルで分析した結果、共重合体中の乳酸とグリコール酸と
の組成は、50.5モル%:49.5モル%(55.9重量%:44.1
重量%)であった。 【0035】実施例3.93%乳酸水溶液 146g及びグリ
コール酸 38gを用い、202℃で6時間の加熱反応を行な
い、重量平均分子量2,700、共重合組成 乳酸:グリコー
ル酸=75モル%:25モル%の共重合物を得た。このよう
にして得られた共重合物 100gを用いて、5mmHg、175
℃で70時間、減圧・加熱反応を行なった。反応液を室温
まで冷却して殆ど無色の塊状共重合体 92gを得た。共
重合体の重量平均分子量及び分散度はそれぞれ17,700及
び1.85であり、更に乳酸とグリコール酸の共重合組成は
75.5モル%:24.5モル%(79.3重量%:20.7重量%)で
あった。 【0036】実施例4.実施例1と同じ重合装置に、乳
酸2量体(乳酸ラクテート) 97g及びグリコール酸2
量体(グリコール酸グリコレート) 54gを取り、窒素
気流下で直接5mmHg、180℃の減圧・加熱反応を48時間
行なった。反応液を室温まで冷却し、乳酸とグリコール
酸との共重合体として殆ど白色の塊状共重合体 105gを
得た。共重合体の重量平均分子量及び分散度はそれぞれ
18,300及び1.76であり、更に乳酸とグリコール酸との共
重合組成は60モル%:40モル%(65.1重量%:34.9重量
%)であった。 【0037】実施例5.実施例1と同様の重合装置に、
89%乳酸水溶液 3337g(33モル)及びグリコール酸 83
6g(11モル)をとり、窒素気流下、内温及び内圧をそ
れぞれ100℃、350mmHgから150℃、30mmHgまで6時間か
けて減圧加熱を行ない、留出水を除去した。引き続き減
圧度を5mmHgとし、内温175℃で50時間加熱を行なっ
た。反応液を室温まで冷却して、乳酸とグリコール酸と
の共重合体として殆ど無色の塊状重合体 2400gを得
た。共重合体の重量平均分子量及び分散度はそれぞれ1
4,400及び1.66であり、更に乳酸とグリコール酸との共
重合組成は、75モル%:25モル%(78.8重量%:21.2重
量%)であった。 【0038】 【発明の効果】本発明の共重合体は、重量平均分子量約
5,000〜30,000の高分子量であり、ゲル浸透クロマトグ
ラフィー法による分散度が約1.5乃至2と小さい。本発
明の共重合体は、重合触媒を全く用いずに重縮合するた
め、得られた共重合体は重合触媒を全く含んでおらず、
従って外観着色は殆ど観測されない。 【0039】本発明の共重合体は、主に医薬品の製剤基
剤として利用できる。例えばステロイドホルモン類、ペ
プチドホルモン類、或は制ガン剤等を含有させ、埋込み
型若しくはマイクロカプセル型徐放性製剤として、或は
制ガン剤を含有した微粒を造り塞栓治療剤として有利に
利用できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copolymer of lactic acid and glycolic acid (hereinafter referred to as a copolymer of the present invention) useful as a base for a bioabsorbable pharmaceutical preparation. (Also referred to as coalescence). BACKGROUND OF THE INVENTION In recent years, degradable polymers have attracted considerable attention as easily degradable polymers for alleviating plastic pollution, and as polymers for bioabsorbable pharmaceutical preparations. For the purpose described above, Japanese Patent Application Laid-Open
No. 56-45920 discloses a method of polymerizing lactic acid and glycolic acid in the presence of a strongly acidic ion exchange resin, according to which the weight average molecular weight is about 6,000 to 35,000.
It is stated that a polymer substantially free of a polymerization catalyst can be obtained. However, the polymer produced by the above method has a large molecular weight dispersity determined by gel permeation chromatography of about 3 or more.
Factors are complicated in solubility and other aspects, and there are many problems in control. Therefore, it is not very preferable when used as a polymer for a bioabsorbable pharmaceutical preparation. Moreover, in this method, the strongly acidic ion exchange resin used as the polymerization catalyst is degraded by heat during the heat polycondensation reaction, and is dissolved in the obtained polymer, which appears as a coloration of the polymer. Furthermore, it is difficult to remove such coloration from the once colored polymer, and it is practically impossible to completely remove it. Such coloring not only lowers the commercial value but also is not preferable because it is caused by impurities. SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors have conducted intensive studies on a method for producing a copolymer of lactic acid and glycolic acid which is effective and free from the above-mentioned disadvantages. By subjecting glycolic acid or their low molecular weight polymers or copolymers to a polycondensation reaction in which the polymer or copolymer is heated under reduced pressure without a catalyst, the weight average molecular weight is as large as about 5,000 to 30,000 or less, and the dispersity by gel permeation chromatography Is about
The present inventors have found that a colorless to almost white copolymer which is as small as 1.5 to 2 and does not contain any polymerization catalyst can be obtained. As a result of further studies based on this, the present invention has been completed. The present invention comprises the following constitutions (1) to (8). (1) from 50 to 95% by weight of lactic acid and 50 to 5% by weight of lactic acid having a weight average molecular weight of 5,000 to 30,000, containing no catalyst, and having a dispersity of 1.5 to 2 determined by gel permeation chromatography. Lactic acid-glycolic acid copolymer. (2) It has a weight average molecular weight of 5,000 to 30,000, contains no catalyst, has a dispersity of 1.5 to 2 determined by gel permeation chromatography, and 50 to 95% by weight of lactic acid.
And a lactic acid / glycolic acid copolymer comprising 50 to 5% by weight of glycolic acid. (3) It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat-degraded products, and has a dispersity of 1.5 to 1.5 determined by gel permeation chromatography.
2, 50-95% by weight of lactic acid and 50-5% by weight of glycolic acid
A lactic acid / glycolic acid copolymer comprising (4) It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst or its heat-degraded product, and has a dispersity of 1.5 to 1.5 determined by gel permeation chromatography.
2, 50-95% by weight of lactic acid and 50-5% by weight of glycolic acid
A base for a bioabsorbable pharmaceutical preparation, comprising a lactic acid / glycolic acid copolymer comprising (5) It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst or its heat-degraded product, and has a dispersity of 1.5 to 1.5 determined by gel permeation chromatography.
2, 50-95% by weight of lactic acid and 50-5% by weight of glycolic acid
A colorless to white lactic acid / glycolic acid copolymer comprising: (6) It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat degradation products, and has a dispersity of 1.5 to 1.5 determined by gel permeation chromatography.
2, 50-95% by weight of lactic acid and 50-5% by weight of glycolic acid
A base for a bioabsorbable pharmaceutical preparation, comprising a colorless to white lactic acid / glycolic acid copolymer comprising: (7) 50-95% by weight of lactic acid and 50-5% by weight of lactic acid having a weight average molecular weight of 5,000 or more and 30,000 or less, containing no catalyst, and having a dispersity of 1.5-2 determined by gel permeation chromatography. A pharmaceutical comprising, as a base, a lactic acid / glycolic acid copolymer comprising 100% by weight. (8) 50-95% by weight of lactic acid and 50-5% by weight of lactic acid having a weight average molecular weight of 5,000 or more and 30,000 or less, containing no catalyst, and having a dispersity of 1.5-2 determined by gel permeation chromatography. A pharmaceutical comprising, as a base, a colorless to white lactic acid / glycolic acid copolymer consisting of a weight percent. In the production of the copolymer of the present invention, lactic acid used as a raw material is usually arbitrarily selected from various concentrations of lactic acid aqueous solution. From the viewpoint of workability, the higher the lactic acid concentration, the better. % Or more is desirable. Needless to say, it is better to use lactic acid itself instead of an aqueous solution if available. Also, as glycolic acid,
Usually, crystals are used as they are, but they can be used as an aqueous solution. When lactic acid and glycolic acid are used as solids such as crystals, a solvent that dissolves them may be used if necessary. Examples of the solvent include water, methanol, ethanol, acetone and the like. In producing the copolymer of the present invention, lactic acid and glycolic acid used as raw materials include a low molecular weight polymer of lactic acid, a low molecular weight polymer of glycolic acid, and a low molecular weight copolymer of lactic acid and glycolic acid. It may be a polymer. Examples of the low molecular weight polymer include lactic acid oligomers (eg, dimers, trimers, etc.) and glycolic acid oligomers (eg, dimers, trimers, etc.). Examples of the low molecular weight polymer or low molecular weight copolymer include those obtained by polycondensing lactic acid and / or glycolic acid in the absence of a catalyst.
The reaction temperature and reaction time for producing the low molecular weight polymer or low molecular weight copolymer are 100 to 150 ° C./350 to 30 mmHg for 2 hours or more, usually about 2 to 10 hours, for example, 105 ° C./3
The water may be removed by performing a heating reaction under reduced pressure for 5 to 6 hours while gradually increasing the temperature and the degree of reduced pressure from 50 mmHg to 150 ° C./30 mmHg. In this way, a molecular weight of about 2,2
000-4,000 low molecular weight polymers or low molecular weight copolymers can be easily obtained. The low molecular weight polymer or low molecular weight copolymer may be one obtained by polycondensation by a known method carried out without a catalyst. As the known method, for example, a method described in Kogaku Kagaku Zasshi, Vol. 68, pp. 983-986 (1965), that is, lactic acid and glycolic acid are reacted under normal pressure without a catalyst.
A method of reacting at 202 ° C. for 6 hours may be used. Further, as the known method, for example, a method described in U.S. Pat. No. 2,362,511, that is, lactic acid and glycolic acid
A method in which the reaction is carried out at a temperature of 200 ° C. for 2 hours, and then heating is continued under reduced pressure for 1/2 hour, may be mentioned. In the copolymer of the present invention, the ratio of lactic acid and glycolic acid is about 50 to 95% by weight of lactic acid and about 50% by weight of glycolic acid.
-5% by weight, preferably about 60-95% by weight lactic acid and about 40-5% by weight glycolic acid, more preferably about 60-85% lactic acid.
% By weight and about 40 to 15% by weight of glycolic acid. A particularly preferred ratio of lactic acid to glycolic acid is about lactic acid.
75 ± 2 mol% and about 25 ± 2 mol% of glycolic acid. The heating temperature in the polycondensation reaction for producing the copolymer of the present invention is, for example, usually about 150 to 250 ° C., preferably about 150 to 200 ° C. The reduced pressure is, for example, usually about 30 to 1 mmHg, preferably about 10 to 1 mmHg. The reaction time is, for example, about 10 hours or more, preferably about 10 to 150 hours, and more preferably about 10 to 100 hours. When lactic acid and glycolic acid are used as starting materials, the following reaction conditions are preferred. For example, at 100 to 150 ° C./350 to 30 mmHg for 2 hours or more, usually about 2 to 10 hours, for example, from 105 ° C./350 mmHg to 150 ° C./3
5-6 while increasing the temperature and the degree of decompression gradually to 0 mmHg
After removing water by heating under reduced pressure for 10 hours, the temperature is reduced to 150-200 ° C / 10-1 mmHg for 10 hours or more (usually 100
Dehydration polycondensation reaction may be performed. The reaction conditions when the above-mentioned low molecular weight polymer or copolymer is used as a starting material are preferably as follows. That is, for example, 150 to 200 ° C./10 to 1
The dehydration polycondensation reaction may be carried out at 10 mmHg or more (usually about 100 hours) at mmHg. After completion of the reaction, the reaction solution is simply filtered while hot, or the polymer is added to a suitable solvent such as methylene chloride, dichloroethane, chloroform, acetone or the like (using the same amount to about 10 times the amount of the polymer). By removing the dust by dissolving and filtering, etc., the former, ie, when the reaction solution is filtered as it is, by itself, and the latter, ie, when the reaction solution is dissolved and filtered, by concentrating and distilling the solvent used. The desired high molecular weight copolymer can be easily obtained. Also,
If necessary, the filtered reaction solution may be separated directly or, if a solvent is used, the concentrated filtrate may be separated by a conventional method such as pouring into a large amount of a precipitating agent. And the like. Hereinafter, the present invention will be described in more detail with reference to Experimental Examples and Examples. EXPERIMENTAL EXAMPLE 1. 160 g (1.5 mol) of an 85% aqueous lactic acid solution and 38 g (0.5 mol) of glycolic acid were mixed and mixed under a nitrogen stream at 100 to 1 g.
After heating under reduced pressure stepwise at 50 ° C./350-30 mmHg for 6 hours to remove distillate water, a dehydration condensation reaction was carried out at 175 ° C./6-5 mmHg for 72 hours. Table 1 shows the relationship between the reaction time and the achieved weight average molecular weight in the production of a copolymer of lactic acid and glycolic acid according to the present method. For comparison, Table 1 also shows the results obtained when Dowex 50W (a registered trademark of Dow Chemical Co., USA) was used as a polymerization catalyst. . [Table 1] *: The copolymer obtained at each reaction time was dissolved in 4 times the amount of methylene chloride, filtered, concentrated and the solvent was distilled off. The obtained copolymer was subjected to JIS K8004-2 ( That is, about 3 g of a sample was placed on a watch glass and examined on a white sheet of paper). The weight average molecular weight and the degree of dispersion (weight average molecular weight / number average molecular weight) in the table were determined by gel permeation chromatography using standard polystyrene having a known molecular weight. As apparent from Table 1, according to the production method of the present invention, a high molecular weight lactic acid / glycolic acid copolymer having a weight average molecular weight of about 5,000 or more can be easily obtained. No coloring is observed in the polymer, and a polymer having a small molecular weight dispersity of 2 or less is obtained. Table 2 shows the results of analyzing the copolymer composition of lactic acid and glycolic acid by nuclear magnetic resonance spectroscopy using the above-obtained copolymer of the present invention as a heavy chloroform solution. [Table 2] Embodiment 1 In a four-necked flask equipped with a thermometer, a condenser, and a nitrogen inlet tube, 191 g of an 85% aqueous lactic acid solution and 17.5 g of glycolic acid are taken. Heating under reduced pressure was performed over time to remove distillate water. Subsequently, the pressure was reduced to 3 mmHg, and heating was performed at an internal temperature of 175 ° C for 72 hours. The reaction solution was cooled to room temperature, and as a copolymer of lactic acid and glycolic acid, 140 g of an almost colorless bulky polymer was obtained.
I got The weight average molecular weight and the degree of dispersion of the copolymer are 22,0
00 and 1.70. The weight average molecular weight and the degree of dispersion were determined by gel permeation gel chromatography (the same applies hereinafter). Further, the obtained copolymer was analyzed by a nuclear magnetic resonance spectrum as a heavy chloroform solution. As a result, the composition of lactic acid and glycolic acid in the copolymer was 89 mol%: 11 mol% (90.9 wt%: 9.1 wt% )Met. Comparative Example 1. To 191 g of an 85% aqueous lactic acid solution and 17.5 g of glycolic acid, 6.8 g of Dowex 50W (cross-linked polystyrene resin), which is a commercially available strongly acidic ion exchange resin, was added. Under the conditions, the internal temperature and the internal pressure were increased from 105 mm and 350 mmHg to 150 ° C and 30 mmHg, respectively, under reduced pressure for 6 hours to remove distillate water. Further, 6.8 g of Dowex 50W was added to reduce the degree of decompression to 3 mmHg.
Heating was performed at an internal temperature of 175 ° C. for 72 hours. The reaction solution was filtered while hot to remove Dowex 50W, and the filtrate was cooled to room temperature to obtain a bulk polymer 1 having a weight average molecular weight of 23,700 and a dispersity of 2.88.
31 g were obtained, but the polymer was colored brown. Incidentally, the composition of lactic acid and glycolic acid in the obtained copolymer is 88.5
Mol%: 11.5 mol% (90.5 wt%: 9.5 wt%). Embodiment 2 FIG. In the same polymerization apparatus as in Example 1, 85
A 106% aqueous solution of lactic acid and 76 g of glycolic acid were taken and the internal temperature and internal pressure were increased from 105 ° C and 350 mmHg, respectively, under a nitrogen stream.
The mixture was heated under reduced pressure to 150 ° C. and 30 mmHg for 3 hours to remove distillate water. Continue to reduce the pressure to 3 mmHg,
Heating was performed at 0 ° C. for 36 hours. The reaction solution was cooled to room temperature to obtain 124 g of a substantially colorless bulky polymer as a copolymer of lactic acid and glycolic acid. The weight average molecular weight and the degree of dispersion of the copolymer were 15,300 and 1.73. Further, the obtained copolymer was analyzed by a nuclear magnetic resonance spectrum as a heavy chloroform solution. As a result, the composition of lactic acid and glycolic acid in the copolymer was 50.5 mol%: 49.5 mol% (55.9 wt%: 44.1 mol%).
Wt%). Example 3 A heating reaction was carried out at 202 ° C. for 6 hours using 146 g of a 93% aqueous lactic acid solution and 38 g of glycolic acid, with a weight average molecular weight of 2,700 and a copolymer composition lactic acid: glycolic acid = 75 mol%: 25 mol% Was obtained. Using 100 g of the copolymer thus obtained, 5 mmHg, 175
The reaction was performed under reduced pressure and heating at 70 ° C. for 70 hours. The reaction solution was cooled to room temperature to obtain 92 g of an almost colorless bulky copolymer. The weight average molecular weight and dispersity of the copolymer are 17,700 and 1.85, respectively, and the copolymer composition of lactic acid and glycolic acid is
75.5 mol%: 24.5 mol% (79.3 wt%: 20.7 wt%). Embodiment 4 FIG. In the same polymerization apparatus as in Example 1, 97 g of lactic acid dimer (lactic acid lactate) and glycolic acid 2
A monomer (glycolic acid glycolate) (54 g) was taken and subjected to a reduced pressure / heat reaction at 180 ° C. and 5 mmHg directly under a nitrogen stream for 48 hours. The reaction solution was cooled to room temperature to obtain 105 g of an almost white block copolymer as a copolymer of lactic acid and glycolic acid. The weight average molecular weight and the degree of dispersion of the copolymer are respectively
18,300 and 1.76, and the copolymer composition of lactic acid and glycolic acid was 60 mol%: 40 mol% (65.1 wt%: 34.9 wt%). Embodiment 5 FIG. In the same polymerization apparatus as in Example 1,
3337 g (33 mol) of 89% lactic acid aqueous solution and glycolic acid 83
6 g (11 mol) was taken and heated under reduced pressure from 350 mmHg to 150 ° C and 30 mmHg for 6 hours at 100 ° C and 350 mmHg in a nitrogen stream to remove distillate. Subsequently, the pressure was reduced to 5 mmHg, and heating was performed at an internal temperature of 175 ° C for 50 hours. The reaction solution was cooled to room temperature to obtain 2400 g of an almost colorless bulk polymer as a copolymer of lactic acid and glycolic acid. The weight average molecular weight and the degree of dispersion of the copolymer are each 1
4,400 and 1.66, and the copolymer composition of lactic acid and glycolic acid was 75 mol%: 25 mol% (78.8 wt%: 21.2 wt%). The copolymer of the present invention has a weight average molecular weight of about
It has a high molecular weight of 5,000 to 30,000 and a small degree of dispersion of about 1.5 to 2 by gel permeation chromatography. Since the copolymer of the present invention is polycondensed without using any polymerization catalyst, the obtained copolymer does not contain any polymerization catalyst,
Therefore, almost no external coloring is observed. The copolymer of the present invention can be used mainly as a pharmaceutical preparation base. For example, a steroid hormone, a peptide hormone, an anticancer agent, or the like is contained therein, and it can be advantageously used as an implantable or microcapsule-type sustained-release preparation, or as a microparticle containing an anticancer agent, as an embolic therapeutic agent.

───────────────────────────────────────────────────── フロントページの続き 審査官 佐藤 健史 (56)参考文献 特開 昭56−45920(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page                       Examiner Takeshi Sato                (56) References JP-A-56-45920 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.重量平均分子量5,000以上30,000以下で、触媒を全
く含まず、ゲル浸透クロマトグラフィー法により求めた
分散度が1.5〜2である、乳酸50〜95重量%及びグリコ
ール酸50〜5重量%からなる乳酸・グリコール酸共重合
体。 2.重量平均分子量5,000以上30,000以下で、触媒を全
く含まず、ゲル浸透クロマトグラフィー法により求めた
分散度が1.5〜2で、乳酸50〜95重量%及びグリコール
50〜5重量%からなる乳酸・グリコール酸共重合体を
含んでなる、生体吸収性医薬製剤用基剤。 3.重量平均分子量5,000以上30,000以下で、触媒及び
その加熱劣化生成物を全く含まず、ゲル浸透クロマトグ
ラフィー法により求めた分散度が1.5〜2で、乳酸50〜9
5重量%及びグリコール酸50〜5重量%からなる乳酸・
グリコール酸共重合体。 4.重量平均分子量5,000以上30,000以下で、触媒及び
その加熱劣化生成物を全く含まず、ゲル浸透クロマトグ
ラフィー法により求めた分散度が1.5〜2で、乳酸50〜9
5重量%及びグリコール酸50〜5重量%からなる乳酸・
グリコール酸共重合体を含んでなる、生体吸収性医薬製
剤用基剤。 5.重量平均分子量5,000以上30,000以下で、触媒及び
その加熱劣化生成物を全く含まず、ゲル浸透クロマトグ
ラフィー法により求めた分散度が1.5〜2で、乳酸50〜9
5重量%及びグリコール酸50〜5重量%からなる、無色
乃至白色の乳酸・グリコール酸共重合体。 6.重量平均分子量5,000以上30,000以下で、触媒及び
その加熱劣化生成物を全く含まず、ゲル浸透クロマトグ
ラフィー法により求めた分散度が1.5〜2で、乳酸50〜9
5重量%及びグリコール酸50〜5重量%からなる無色乃
至白色の乳酸・グリコール酸共重合体を含んでなる、生
体吸収性医薬製剤用基剤。 7.重量平均分子量5,000以上30,000以下で、触媒を全
く含まず、ゲル浸透クロマトグラフィー法により求めた
分散度が1.5〜2である、乳酸50〜95重量%及びグリコ
ール酸50〜5重量%からなる乳酸・グリコール酸共重合
体を基剤として含む医薬。 8.重量平均分子量5,000以上30,000以下で、触媒を全
く含まず、ゲル浸透クロマトグラフィー法により求めた
分散度が1.5〜2である、乳酸50〜95重量%及びグリコ
ール酸50〜5重量%からなる、無色乃至白色の乳酸・グ
リコール酸共重合体を基剤として含む医薬。
(57) [Claims] Lactic acid comprising 50 to 95 % by weight of lactic acid and 50 to 5 % by weight of glycolic acid, having a weight average molecular weight of 5,000 to 30,000 , containing no catalyst, and having a dispersity of 1.5 to 2 determined by gel permeation chromatography. Glycolic acid copolymer. 2. A weight average molecular weight of 5,000 to 30,000, not including the catalyst at all, the degree of dispersion determined by gel permeation chromatography method is 1.5 to 2, a lactic acid-glycolic consisting of lactic acid 50 to 95 wt% and 50 to 5 wt% glycolic acid A base for a bioabsorbable pharmaceutical preparation, comprising an acid copolymer. 3. It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat-degraded products, has a dispersity of 1.5 to 2 determined by gel permeation chromatography, and has a lactic acid of 50 to 9
Lactic acid comprising 5 % by weight and 50-5 % by weight of glycolic acid
Glycolic acid copolymer. 4. It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat-degraded products, has a dispersity of 1.5 to 2 determined by gel permeation chromatography, and has a lactic acid of 50 to 9
Lactic acid comprising 5 % by weight and 50-5 % by weight of glycolic acid
A base for a bioabsorbable pharmaceutical preparation, comprising a glycolic acid copolymer. 5. It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat-degraded products, has a dispersity of 1.5 to 2 determined by gel permeation chromatography, and has a lactic acid of 50 to 9
5 % by weight and 50-5 % by weight of glycolic acid, colorless
To white lactic acid / glycolic acid copolymer. 6. It has a weight average molecular weight of 5,000 or more and 30,000 or less, does not contain any catalyst and its heat-degraded products, has a dispersity of 1.5 to 2 determined by gel permeation chromatography, and has a lactic acid of 50 to 9
5 wt% and colorless乃 consisting 50-5 wt% glycolic acid
A base for a bioabsorbable pharmaceutical preparation, comprising a very white lactic acid / glycolic acid copolymer. 7. Lactic acid comprising 50 to 95 % by weight of lactic acid and 50 to 5 % by weight of glycolic acid, having a weight average molecular weight of 5,000 to 30,000 , containing no catalyst, and having a dispersity of 1.5 to 2 determined by gel permeation chromatography. A medicament comprising a glycolic acid copolymer as a base. 8. Colorless , 50-95 % by weight of lactic acid and 50-5 % by weight of glycolic acid, having a weight average molecular weight of 5,000 or more and 30,000 or less, containing no catalyst, and having a dispersity of 1.5-2 determined by gel permeation chromatography. Or a pharmaceutical containing a white lactic acid / glycolic acid copolymer as a base.
JP7844298A 1984-07-06 1998-03-11 Novel polymer and drug using the same Expired - Lifetime JP3168263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7844298A JP3168263B2 (en) 1984-07-06 1998-03-11 Novel polymer and drug using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7844298A JP3168263B2 (en) 1984-07-06 1998-03-11 Novel polymer and drug using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5142844A Division JPH0733433B2 (en) 1984-07-06 1993-05-21 New polymer

Publications (2)

Publication Number Publication Date
JPH111443A JPH111443A (en) 1999-01-06
JP3168263B2 true JP3168263B2 (en) 2001-05-21

Family

ID=13662170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7844298A Expired - Lifetime JP3168263B2 (en) 1984-07-06 1998-03-11 Novel polymer and drug using the same

Country Status (1)

Country Link
JP (1) JP3168263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7342048B2 (en) 2005-04-28 2008-03-11 Nipro Corporation Bioabsorbable pharmaceutical formulation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192773A (en) 2001-12-26 2003-07-09 Mitsui Chemicals Inc Bioabsorptive polyhydroxy carboxylic acid and its production method
CN102161752B (en) * 2011-03-14 2013-02-27 南京大学 Process method for synthesizing medical biodegradable polylactic acid by polycondensation of lactic acid in presence of creatinine catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7342048B2 (en) 2005-04-28 2008-03-11 Nipro Corporation Bioabsorbable pharmaceutical formulation

Also Published As

Publication number Publication date
JPH111443A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
EP0171907B2 (en) Use of a copolymer in a controlled drug release composition
JPH0733433B2 (en) New polymer
EP0299730B1 (en) Process of preparing dl-lactic acid-glycolic acid-copolymer
DE69838731T2 (en) POLYANHYDRIDE WITH THERAPEUTICALLY APPLICABLE ABBAUPRODUCTS
DE69825618T2 (en) BIODEGRADABLE ANIONIC POLYMERS DERIVED FROM THE AMINO ACID L-TYROSINE
JPH0445525B2 (en)
HU197032B (en) Process for producing polyesters
JPH08169818A (en) Sustained release microcapsule for injection
CH685298A5 (en) Oligodésoxyribo nucleotides having anti-ischemic properties and their preparation process.
JP3168263B2 (en) Novel polymer and drug using the same
JPH0317077A (en) Improved production of d, l-lactide
US11359050B2 (en) Synthesis of tyrosine derived polyarylates
JP2000517312A (en) Manufacturing method of iohexol
JPH0610252B2 (en) Polymer manufacturing method
JPH0725802B2 (en) Process for producing curdlan or lentinan sulfate or salt thereof
JPH08109250A (en) Method for purifying polyhydroxycarboxylic acid
JPH0940766A (en) Method for removing catalyst from lactic acid polymer
JPS63115845A (en) Manufacture of beta-oxybutyric acid and salt of same by hydrolysis of oligomer of beta-oxybutyric acid in basic medium
CH666406A5 (en) METHOD FOR PRODUCING microcapsules BROMOKRIPTINMESYLAT AS PHARMACOLOGICAL ACTIVE INCLUDED.
JPH01246293A (en) Method for purifying sugaralcohol ester of fatty acid
CN115707697A (en) Purification method of crude glycolide and obtained glycolide
KR840001675B1 (en) Polymerization proces
CN116041673A (en) Polycaprolactone and synthesis method thereof
JPH1180202A (en) Fucoidan of different acetic acid content from natural and cultured okinawa mozuku and its manufacture
KR20190053168A (en) Method for purifying biodegradable polymers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

EXPY Cancellation because of completion of term