JPH06102072A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH06102072A
JPH06102072A JP24951392A JP24951392A JPH06102072A JP H06102072 A JPH06102072 A JP H06102072A JP 24951392 A JP24951392 A JP 24951392A JP 24951392 A JP24951392 A JP 24951392A JP H06102072 A JPH06102072 A JP H06102072A
Authority
JP
Japan
Prior art keywords
circuit
electromagnetic flowmeter
auxiliary electrode
main electrode
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24951392A
Other languages
Japanese (ja)
Inventor
Masao Fukunaga
正雄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24951392A priority Critical patent/JPH06102072A/en
Publication of JPH06102072A publication Critical patent/JPH06102072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable two-wire operation or the excitation of a permanent magnet as a result of enabling DC excitation and driving due to a small current, to enable miniaturization, wt. reduction, low power consumption and cost reduction and to eliminate the effect of slurry noise or flow noise. CONSTITUTION:A magnetic circuit 1 generates a DC magnetic field and the electromotive force generated in a fluid is detected by main electrodes 4 but auxiliary electrodes 5 are provided to the peripheries of the electrodes 4 and the potentials thereof are changed over between earth potentials and main electrode potentials by a changeover circuit 10. These modulation signals are amplified by an amplifying circuit 6 and the difference between the modulation signals is taken out by a synchronous rectifier circuit 7 and rectified to be transmitted to a conversion circuit 8 as an output signal. A changeover control circuit 9 controls the timing of the changeover circuit 10 to simultaneously send a synchronizing signal to the synchronous rectifier circuit 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工業用電磁流量計に係
り、その励磁方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial electromagnetic flowmeter, and its excitation method.

【0002】[0002]

【従来の技術】従来は、例えば図7に示す原理となって
いた(電磁流量計による流量測定方法(JIS Z87
64)より引用)。
2. Description of the Related Art Conventionally, for example, the principle shown in FIG. 7 has been used (flow rate measuring method using an electromagnetic flow meter (JIS Z87).
64)).

【0003】図7において平均流速Vの導電性流体に垂
直に磁界(磁束密度B)を印加する。この時に流体流れ
方向と磁界印加方向の両者に垂直な方向に対向して設け
た一対の電極間に発生する信号起電力をE(V)とすれ
ば、Eは次式で表わされる。 E=kBdV ここに k:定数 B:磁束密度(T) d:内径(m) V:平均流速(m/s) 実際には直流磁界による直流起電力を得ようとしても流
体と電極間に発生する界面電位があるために安定な計測
は困難で、一般には交流磁界(矩形波または正弦波)を
印加して差分を求めることによって界面電位の影響を打
ち消している。
In FIG. 7, a magnetic field (magnetic flux density B) is applied vertically to a conductive fluid having an average flow velocity V. At this time, if the signal electromotive force generated between a pair of electrodes provided facing each other in the direction perpendicular to both the fluid flow direction and the magnetic field application direction is E (V), E is expressed by the following equation. E = kBdV where: k: constant B: magnetic flux density (T) d: inner diameter (m) V: average flow velocity (m / s) Actually, a DC electromotive force generated by a DC magnetic field occurs between the fluid and the electrode. It is difficult to perform stable measurement because there is an interfacial potential, and the influence of the interfacial potential is generally canceled by applying an alternating magnetic field (rectangular wave or sine wave) to obtain the difference.

【0004】[0004]

【発明が解決しようとする課題】前記した従来技術には
次の問題がある。
The above-mentioned prior art has the following problems.

【0005】1)高い起電力を得るためには、磁束密度
Bを大きくする必要があるが、そのためには起磁力を大
きくしなければならない。しかしそれによって磁気回路
のインダクタンスが大きくなり、矩形波の励磁電流を流
した場合に磁束密度Bしたがって起電力Eが整定するま
でにはある程度の時間が必要となる。また磁気回路に発
生する渦電流も磁界の応答性を遅らせる要因となる。こ
のために矩形波の励磁周波数を高めるには限界があり、
通常は3Hz〜25Hzの間で使用されている。しかし
流体中にスラリやスラッジが含まれる場合にはスラリノ
イズと呼ばれるDC〜100Hz程度の周波数成分を有
する低周波ノイズが発生し、流量計の安定性を低下させ
る。また低導電性流体を測定する場合にもフローノイズ
と呼ばれるノイズが発生して上記と同様安定性を低下さ
せる。これを除くためには100Hzより高い周波数の
交流磁界を印加しなければならないが、上記理由で実現
困難である。
1) In order to obtain a high electromotive force, it is necessary to increase the magnetic flux density B, but for that purpose the magnetomotive force must be increased. However, this increases the inductance of the magnetic circuit, and when a rectangular wave exciting current is passed, it takes some time for the magnetic flux density B and thus the electromotive force E to settle. In addition, the eddy current generated in the magnetic circuit also becomes a factor that delays the response of the magnetic field. Therefore, there is a limit to increase the excitation frequency of the rectangular wave,
Usually, it is used between 3 Hz and 25 Hz. However, when the fluid contains slurry or sludge, low frequency noise having a frequency component of about DC to 100 Hz called slurry noise is generated, and the stability of the flow meter is deteriorated. Also, when measuring a low-conductivity fluid, noise called flow noise is generated, and the stability is reduced as in the above case. In order to remove this, it is necessary to apply an AC magnetic field having a frequency higher than 100 Hz, but it is difficult to realize for the above reason.

【0006】2)1)項でも述べた通り、抵抗,インダ
クタンスと実装スペースの制約からコイルのターン数に
は限界があり、それによる起磁力(磁束密度),起電力
の低下を補うために0.1A 〜1A程度の大きな励磁電
流を流している。そのために励磁回路が大形化し、消費
電力も大きくなる。これが流量計自体の大形化,発熱に
よる信頼性低下などを招く要因となっている。
2) As described in the section 1), the number of turns of the coil is limited due to the restrictions of the resistance and the inductance and the mounting space, and in order to compensate the decrease in the magnetomotive force (magnetic flux density) and the electromotive force, 0 A large exciting current of about 1 A to 1 A is applied. Therefore, the excitation circuit becomes large in size and power consumption also increases. This is a factor that causes the flowmeter itself to become larger and reduce reliability due to heat generation.

【0007】[0007]

【課題を解決するための手段】本発明では、上記目的を
達成するために印加磁界を直流磁界とし、それによって
発生する界面電位の影響を打ち消すために、主電極の周
囲に補助磁極を設けてその電位を接地電位と主電極電位
間で周期的に切り換える変調手段を設け、その差分のみ
を取り出して整流する同期整流手段によって正確な流量
起電力を得るようにしたものである。
In the present invention, in order to achieve the above object, the applied magnetic field is a DC magnetic field, and an auxiliary magnetic pole is provided around the main electrode in order to cancel the influence of the interface potential generated thereby. A modulating means for periodically switching the potential between the ground potential and the main electrode potential is provided, and an accurate flow electromotive force is obtained by the synchronous rectifying means for extracting and rectifying only the difference.

【0008】[0008]

【作用】このような構成をとれば、磁気回路の切換動作
が不要となり、電極信号のみの切換となるので、電子回
路の応答速度に近い高速まで切換が可能となる。また、
直流磁界でよいために励磁電流が少なくてもコイルのタ
ーン数を大きくすれば非常に大きな起磁力が得られる。
さらに永久磁石の使用も可能となり、磁気回路,励磁回
路の小形化と大幅な低消費電力化が可能となる。
With this structure, the switching operation of the magnetic circuit is not required, and only the electrode signal is switched, so that the switching can be performed up to a high speed close to the response speed of the electronic circuit. Also,
Since a DC magnetic field is sufficient, a very large magnetomotive force can be obtained by increasing the number of coil turns even if the exciting current is small.
Furthermore, it is possible to use permanent magnets, which makes it possible to reduce the size of the magnetic circuit and excitation circuit and significantly reduce power consumption.

【0009】[0009]

【実施例】以下、本発明の実施例を(図1)により説明
する。
EXAMPLE An example of the present invention will be described below with reference to FIG.

【0010】測定管2には被測定流体3が満たされてお
り、磁気回路1によって発生する直流磁界が印加されて
両端の主電極4間にはファラデーの法則により数1式に
相当する起電力が発生する。その信号は増幅回路6によ
って増幅された後、同期整流回路7を経て変換回路8を
通り、最終的に流量に比例した信号が得られる。一方、
主電極4の周囲には補助電極5が配置され、その電位は
切換制御部9の指令により切換回路10によって接地電
位と主電極電位の間を周期的に切り換えられる。それに
よって増幅回路6の入出力信号は矩形波信号となるが、
同期整流回路7によって差分のみが整流され、流量に比
例した信号が得られて変換回路8の入力信号となる。そ
の動作を(図2)により説明する。
The measurement tube 2 is filled with the fluid 3 to be measured, and a DC magnetic field generated by the magnetic circuit 1 is applied between the main electrodes 4 at both ends to the electromotive force corresponding to the formula 1 by Faraday's law. Occurs. The signal is amplified by the amplifier circuit 6, then passes through the synchronous rectification circuit 7 and the conversion circuit 8, and finally a signal proportional to the flow rate is obtained. on the other hand,
An auxiliary electrode 5 is arranged around the main electrode 4, and the potential of the auxiliary electrode 5 is periodically switched between a ground potential and the main electrode potential by a switching circuit 10 according to a command from a switching control unit 9. As a result, the input / output signal of the amplifier circuit 6 becomes a rectangular wave signal,
Only the difference is rectified by the synchronous rectification circuit 7, and a signal proportional to the flow rate is obtained and becomes the input signal of the conversion circuit 8. The operation will be described with reference to FIG.

【0011】切換回路10が非接地の状態(補助電極が
主電極に接続されている状態)では電極には(図2)−
(a)に示す電位が発生している。それは数1式に示す
ファラデーの法則による流量起電力と界面電位の合成さ
れた直流電位である。界面電位は数百mV〜数Vの大き
な電位を持ち、界面状態により変動するがその周波数成
分は数Hz以下の比較的低周波成分が主体である。
When the switching circuit 10 is not grounded (the auxiliary electrode is connected to the main electrode), the electrodes are (Fig. 2)-
The potential shown in (a) is generated. It is a direct current potential that is a combination of the flow electromotive force and the interfacial potential according to Faraday's law shown in Equation 1. The interface potential has a large potential of several hundred mV to several V and varies depending on the interface state, but its frequency component is mainly a relatively low frequency component of several Hz or less.

【0012】次に切換回路10が接地の状態(補助電極
が接地された状態)では、主電極4の周囲の流体電位は
接地電位となるために、測定管中に起電力が発生してい
ても流量起電力分は打ち消され、界面電位のみが主電極
4に検出される。
Next, when the switching circuit 10 is grounded (the auxiliary electrode is grounded), the fluid potential around the main electrode 4 becomes the ground potential, so that an electromotive force is generated in the measuring tube. Also, the flow rate electromotive force is canceled and only the interface potential is detected by the main electrode 4.

【0013】切換回路10が連続動作して上記2モード
間を切換動作した時に電極に得られる信号は(図2)−
(b)となる。同期整流回路7で変調分のみを取り出す
と(図2)−(c)となり、界面電位の直流分が除かれ
る。整流後に変換回路を経て(図2)−(d)の流量信号
が得られる。
The signal obtained at the electrodes when the switching circuit 10 continuously operates to switch between the two modes is (FIG. 2)-
It becomes (b). When only the modulated component is taken out by the synchronous rectification circuit 7, it becomes (Fig. 2)-(c), and the direct current component of the interface potential is removed. After rectification, the flow rate signal of (Fig. 2)-(d) is obtained through the conversion circuit.

【0014】この場合に、界面電位の変動周波数成分よ
り高い周波数で変調をかけることにより界面電位のバッ
クグラウンドを取り除くことができる。またスラリによ
って電極に発生するスラリノイズに対しても主電極と補
助電極が近接した配置となっているために主電極,補助
電極共に界面電位に受ける影響がほぼ同じであり、打ち
消されて影響を受けない。
In this case, the background of the interfacial potential can be removed by applying the modulation at a frequency higher than the fluctuation frequency component of the interfacial potential. Moreover, since the main electrode and the auxiliary electrode are arranged close to each other, the influence of the interface potential on both the main electrode and the auxiliary electrode is almost the same as for the slurry noise generated in the electrode due to the slurry, and the influence is canceled out. I do not receive it.

【0015】(図3)は2線式直流励磁形電磁流量計の
構成を示す。直流電源23から供給された電流は、負荷
抵抗24を経て電磁流量計側に供給され、一部は定電流
回路22を経て励磁コイル19に入り、直流定電流で磁
気回路1を励磁する。他の電流は低電圧回路21に給電
された後、前記励磁電流と共に直流電源23に戻る。定
電圧回路21では電圧を安定化して信号処理部20の駆
動電源とする。定電流回路22では信号電流の最小値以
下の定電流を励磁コイル19に供給する。DC4〜20
mAの信号伝送系の場合は、励磁電流は4mA以下の小
さな値に設定されるが、直流電流のため励磁コイル19
は線径を細くしてターン数を大きくすることが可能で、
そのために従来の電磁流量計と同等以上の起磁力と流量
計としての感度を得ることが可能である。上記説明では
信号電流の一部で励磁コイルを励磁する場合について述
べたが、直流磁界が得られればよいので永久磁石でもか
まわない。その場合に磁界の経時変化や温度による変動
まで補正するために磁気センサを設けて磁界を計測し、
それで信号処理部の補正を行えばより安定で高精度な永
久磁石励磁の電磁流量計が実現できる。
FIG. 3 shows the structure of a two-wire type DC excitation type electromagnetic flow meter. The current supplied from the DC power supply 23 is supplied to the electromagnetic flow meter side via the load resistance 24, and a part of the current flows into the exciting coil 19 via the constant current circuit 22 to excite the magnetic circuit 1 with the DC constant current. Another current is supplied to the low voltage circuit 21, and then returns to the DC power supply 23 together with the exciting current. The constant voltage circuit 21 stabilizes the voltage and uses it as a driving power source for the signal processing unit 20. The constant current circuit 22 supplies a constant current equal to or less than the minimum value of the signal current to the exciting coil 19. DC 4-20
In the case of a mA signal transmission system, the exciting current is set to a small value of 4 mA or less, but since it is a direct current, the exciting coil 19
Can reduce the wire diameter and increase the number of turns,
Therefore, it is possible to obtain a magnetomotive force equal to or higher than that of a conventional electromagnetic flowmeter and a sensitivity as a flowmeter. In the above description, the case where the exciting coil is excited by a part of the signal current has been described, but a permanent magnet may be used as long as a DC magnetic field can be obtained. In that case, a magnetic sensor is installed in order to correct the change over time of the magnetic field and the change due to temperature, and the magnetic field is measured.
Therefore, if the signal processing unit is corrected, a more stable and highly accurate electromagnetic flow meter of permanent magnet excitation can be realized.

【0016】(図4)は具体的な構造例を示す。パイプ
11の表面には例えば四フッ化エチレン樹脂のPFAな
どでライニングが形成され、そこに挿入して被測定流体
3に接液する形で電極が挿入されている。電極の構造は
(図5)に示すように主電極4のまわりに絶縁部13を
介して補助電極5が形成されている。これらの電極は絶
縁シート17,18を介してコイルバネ16でライニン
グ面に押しつけられて機密性を保っている。コイルバネ
16の他の端面はパイプ11にネジ固定されたフタ14
の内面を押すことによって気密に必要な面圧を確保して
いる。主電極4と補助電極5からは電極リード線15に
よって信号が取り出される。このような電極はセラミッ
クを部分的に白金などでメタライズしたりサーメット状
にしたりして一体焼成すれば製作できるし、導電性セラ
ミックスを部分的に絶縁体化することによっても実現で
きる。更には主電極4と補助電極5を金属で製作し、そ
の間をOリングでシールしたり、絶縁体を挿入すること
によっても実現できる。また、上記説明ではパイプ11
とライニング12とは別の部品として説明したが、セラ
ミックや他の絶縁性材料で一体に形成することももちろ
ん可能である。
FIG. 4 shows a concrete structure example. A lining is formed on the surface of the pipe 11 by using, for example, PFA of tetrafluoroethylene resin, and an electrode is inserted into the lining so as to be in contact with the fluid 3 to be measured. As for the structure of the electrode, as shown in FIG. 5, the auxiliary electrode 5 is formed around the main electrode 4 via the insulating portion 13. These electrodes are pressed against the lining surface by the coil spring 16 via the insulating sheets 17 and 18 to keep the airtightness. The other end surface of the coil spring 16 is a lid 14 screwed to the pipe 11.
By pressing the inner surface of the, the necessary surface pressure is secured in an airtight manner. A signal is taken out from the main electrode 4 and the auxiliary electrode 5 by an electrode lead wire 15. Such an electrode can be manufactured by partially metallizing the ceramic with platinum or the like or forming it into a cermet and integrally firing it, or can be realized by partially making the conductive ceramic an insulator. Further, the main electrode 4 and the auxiliary electrode 5 may be made of metal, and an O-ring may be used to seal between them, or an insulator may be inserted. In the above description, the pipe 11
Although the lining 12 and the lining 12 are described as separate parts, they may be integrally formed of ceramic or other insulating material.

【0017】図6は更に他の実施例で上記した場合と同
様絶縁性測定管2に直接主電極4と補助電極5を形成し
たものであり、セラミックの一体成形や樹脂モールドの
場合に好適な構造である。
FIG. 6 shows another embodiment in which the main electrode 4 and the auxiliary electrode 5 are directly formed on the insulating measuring tube 2 as in the case described above, which is suitable for integral molding of ceramics or resin molding. It is a structure.

【0018】また、信号処理部はアナログ回路で基本動
作を説明したが、マイクロプロセッサなどを用いてソフ
トウェアで同様の処理を行うことはもちろん可能であ
る。
Although the basic operation of the signal processing unit has been described as an analog circuit, it is of course possible to perform the same processing by software using a microprocessor or the like.

【0019】[0019]

【発明の効果】以上述べた通り、本発明によれば直流励
磁で電磁流量計が構成できるので、大幅な小形・軽量・
低消費電力化・コストダウンが可能となり、2線式動作
や永久磁石励磁なども可能となる。また従来方式では困
難であった高速の変調が可能となるために、スラリノイ
ズやフローノイズ等の従来安定な計測を困難にしていた
諸問題に対しても信号処理で除けば対処できる。さら
に、低消費電力になる結果、内部の発熱が減り、電子回
路の信頼性が向上すると同時に耐環境温度も広範囲に選
択できる。
As described above, according to the present invention, since the electromagnetic flowmeter can be constructed by the direct current excitation, the size and weight can be greatly reduced.
Low power consumption and cost reduction are possible, and 2-wire operation and permanent magnet excitation are also possible. Moreover, since high-speed modulation, which is difficult with the conventional method, is possible, it is possible to deal with various problems such as slurry noise and flow noise, which have been difficult to perform stable measurement in the past, except for signal processing. Furthermore, as a result of low power consumption, internal heat generation is reduced, the reliability of the electronic circuit is improved, and at the same time, the environmental resistance temperature can be selected in a wide range.

【0020】このように従来の電磁流量計の大きな制約
となっていた交流励磁を用いることなく直流励磁が可能
となる結果、大きな自由度が得られてその効果は大き
い。
As described above, as a result of enabling DC excitation without using AC excitation, which has been a major limitation of conventional electromagnetic flowmeters, a large degree of freedom is obtained and its effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な実施例を示す図である。FIG. 1 is a diagram showing a specific example of the present invention.

【図2】図1の動作を説明する図である。FIG. 2 is a diagram for explaining the operation of FIG.

【図3】本発明の他の実施例を説明する図である。FIG. 3 is a diagram illustrating another embodiment of the present invention.

【図4】本発明の具体的な実施例を示す図である。FIG. 4 is a diagram showing a specific example of the present invention.

【図5】本発明の他の実施例を示す図である。FIG. 5 is a diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す図である。FIG. 6 is a diagram showing another embodiment of the present invention.

【図7】従来技術を説明する図である。FIG. 7 is a diagram illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1…磁気回路、2…測定管、3…被測定流体、4…主電
極、5…補助電極、6…増幅回路、7…同期整流回路、
8…変換回路、9…切換制御部、10…切換回路、11
…パイプ、12…ライニング、13…絶縁部、14…フ
タ、15…電極リード線、16…コイルバネ、17,1
8…絶縁シート、19…励磁コイル、20…信号処理
部、21…低電圧回路、22…定電流回路、23…直流
電流、24…負荷抵抗。
1 ... Magnetic circuit, 2 ... Measuring tube, 3 ... Fluid to be measured, 4 ... Main electrode, 5 ... Auxiliary electrode, 6 ... Amplifying circuit, 7 ... Synchronous rectifying circuit,
8 ... conversion circuit, 9 ... switching control unit, 10 ... switching circuit, 11
... pipe, 12 ... lining, 13 ... insulating part, 14 ... lid, 15 ... electrode lead wire, 16 ... coil spring, 17, 1
8 ... Insulating sheet, 19 ... Excitation coil, 20 ... Signal processing part, 21 ... Low voltage circuit, 22 ... Constant current circuit, 23 ... DC current, 24 ... Load resistance.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】被測定流体を流す内面が絶縁体で覆われた
導管と、その管軸方向に垂直に直流磁界を印加するため
の磁気回路と、前記流体の流れ方向と磁界の両者に直交
する位置に対向して配置した一対の電極とを有し、被測
定流体の流速に比例した信号に変換する電磁流量計にお
いて、 前記電極として主電極とその近傍に設けた補助電極とを
有し、該補助電極の電位を周期的に接地電位に切り換え
るための切換回路と、該切換回路を制御する切換制御部
と、該切換制御部と同期して動作する同期整流回路と、
該同期整流信号を伝送信号に変換する変換回路とを有す
ることを特徴とする電磁流量計。
1. A conduit whose inner surface through which a fluid to be measured flows is covered with an insulator, a magnetic circuit for applying a DC magnetic field perpendicular to the tube axis direction thereof, and a direction orthogonal to both the flow direction and the magnetic field of the fluid. In the electromagnetic flowmeter that has a pair of electrodes arranged opposite to each other and converts into a signal proportional to the flow velocity of the fluid to be measured, the main electrode and an auxiliary electrode provided in the vicinity thereof are provided as the electrodes. A switching circuit for periodically switching the potential of the auxiliary electrode to the ground potential, a switching control unit for controlling the switching circuit, and a synchronous rectification circuit that operates in synchronization with the switching control unit,
An electromagnetic flowmeter, comprising: a conversion circuit that converts the synchronous rectified signal into a transmission signal.
【請求項2】請求項1において、磁気回路として永久磁
石を用いたことを特徴とする電磁流量計。
2. An electromagnetic flowmeter according to claim 1, wherein a permanent magnet is used as the magnetic circuit.
【請求項3】請求項1において、前記磁気回路として直
流定電流伝送信号の一部又は全部を励磁コイルに流して
直流磁界を発生させることを特徴とする電磁流量計。
3. The electromagnetic flowmeter according to claim 1, wherein a part or the whole of a DC constant current transmission signal as the magnetic circuit is caused to flow through an exciting coil to generate a DC magnetic field.
【請求項4】請求項1において、前記切換回路,切換制
御回路,同期整流回路,変換回路の駆動電源を電流伝送
ラインから供給して動作することを特徴とする電磁流量
計。
4. An electromagnetic flowmeter according to claim 1, wherein the switching circuit, the switching control circuit, the synchronous rectification circuit, and the conversion circuit are supplied with drive power from a current transmission line to operate.
【請求項5】請求項1において、主電極と補助電極を同
軸構造とし、主電極を軸中心に、補助電極と同心状の外
側に配置したことを特徴とする電磁流量計。
5. The electromagnetic flowmeter according to claim 1, wherein the main electrode and the auxiliary electrode have a coaxial structure, and the main electrode is arranged outside the center of the auxiliary electrode and concentric with the auxiliary electrode.
【請求項6】請求項5において、主電極と補助電極を一
体のセラミックで形成し、主電極及び補助電極を導電性
金属又は導電性セラミックで形成したことを特徴とする
電磁流量計。
6. The electromagnetic flowmeter according to claim 5, wherein the main electrode and the auxiliary electrode are formed of an integral ceramic, and the main electrode and the auxiliary electrode are formed of a conductive metal or a conductive ceramic.
【請求項7】請求項1において、切換回路の切換速度を
1Hz〜10kHzに選定したことを特徴とする電磁流
量計。
7. The electromagnetic flowmeter according to claim 1, wherein the switching speed of the switching circuit is selected to be 1 Hz to 10 kHz.
【請求項8】請求項1において、導管をセラミックまた
は絶縁性樹脂材料で形成し、その一部を導電性にするこ
とによって主電極と補助電極を形成したことを特徴とす
る電磁流量計。
8. The electromagnetic flowmeter according to claim 1, wherein the conduit is formed of ceramic or an insulating resin material, and a main electrode and an auxiliary electrode are formed by making a part of the conduit conductive.
JP24951392A 1992-09-18 1992-09-18 Electromagnetic flowmeter Pending JPH06102072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24951392A JPH06102072A (en) 1992-09-18 1992-09-18 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24951392A JPH06102072A (en) 1992-09-18 1992-09-18 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPH06102072A true JPH06102072A (en) 1994-04-12

Family

ID=17194097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24951392A Pending JPH06102072A (en) 1992-09-18 1992-09-18 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPH06102072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340638A (en) * 2001-05-14 2002-11-27 Yokogawa Electric Corp Electromagnetic flowmeter
CN100434872C (en) * 2006-05-26 2008-11-19 李斌 Signal processing method and system for constant magnetic electromagnetic flowmeter
JP2012206143A (en) * 2011-03-30 2012-10-25 Sukegawa Electric Co Ltd Inductive electromagnetic pump for molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340638A (en) * 2001-05-14 2002-11-27 Yokogawa Electric Corp Electromagnetic flowmeter
CN100434872C (en) * 2006-05-26 2008-11-19 李斌 Signal processing method and system for constant magnetic electromagnetic flowmeter
JP2012206143A (en) * 2011-03-30 2012-10-25 Sukegawa Electric Co Ltd Inductive electromagnetic pump for molten metal

Similar Documents

Publication Publication Date Title
US5218873A (en) Mass flowmeter working on the coriolis principle
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US5372045A (en) Bridge pulse controlled constant current driver for magnetic flowmeter
US5621293A (en) Variable-reluctance servocontrolled linear motor
US3965738A (en) Magnetic flowmeter
US4953408A (en) Capacitive type electromagnetic flowmeter
US4206641A (en) Electromagnetic flow meter
JPH06102072A (en) Electromagnetic flowmeter
JP2986950B2 (en) Electromagnetic flow meter
JP3130729B2 (en) Electromagnetic flow meter
JPH09126849A (en) Two-wire type electromagnetic flowmeter
US5747704A (en) Meter for flowing media
JPH06229852A (en) Force detecting device
KR100359235B1 (en) Electromagnetic flowmeter
JPH063381B2 (en) Electromagnetic flow meter
JPH11142199A (en) Electromagnetic flowmeter
JP2751152B2 (en) Electromagnetic flow meter
JPS62238418A (en) Electromagnetic flowmeter
JPS5827849B2 (en) electromagnetic flow meter
JPH03146823A (en) Signal processing circuit for electromagnetic flow meter
JPH04369434A (en) Electromagnetic flowmeter
JPH0829222A (en) Electromagnetic flowmeter
RU2239789C1 (en) Method of measuring flow rate of liquid and electromagnetic transducer for measuring flow rate of liquid
SU1307407A1 (en) Device for measuring parameters of barkhausen effect
JPH07286875A (en) Two-wire type electromagnetic flowmeter