JPH06101981A - Rotary heat storage type heat exchanger - Google Patents

Rotary heat storage type heat exchanger

Info

Publication number
JPH06101981A
JPH06101981A JP27373992A JP27373992A JPH06101981A JP H06101981 A JPH06101981 A JP H06101981A JP 27373992 A JP27373992 A JP 27373992A JP 27373992 A JP27373992 A JP 27373992A JP H06101981 A JPH06101981 A JP H06101981A
Authority
JP
Japan
Prior art keywords
heat storage
storage core
temperature gas
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27373992A
Other languages
Japanese (ja)
Inventor
Sadao Arakawa
貞雄 荒川
Yoshiyuki Ito
吉幸 伊藤
Kazuo Ohashi
一生 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP27373992A priority Critical patent/JPH06101981A/en
Publication of JPH06101981A publication Critical patent/JPH06101981A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance sealing performance by minimizing the generation of warp or strain. CONSTITUTION:A straight running part 3 of a sealing board 1 is cut in the middle part and arranged so that both end edges 3a is opposed to each other with a small span G1 separated while recessed parts 4 are formed on both end edges. An auxiliary sealing board 5 whose shape is matched with the recessed parts are laid out in the recessed parts and fixed with a support member 7. This constitution makes it possible to eliminate the generation of warp or strain induced by thermal expansion or push force from a lateral direction, thereby securing excellent sealing performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は回転蓄熱式熱交換装置
のシール性能の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of sealing performance of a rotary heat storage type heat exchange device.

【0002】[0002]

【従来の技術】回転蓄熱式熱交換装置は高温ガス流路と
低温ガス流路を近接して配置し、この高温ガス流路と低
温ガス流路の両方にまたがるように円盤状の蓄熱コアを
配置してこの蓄熱コアを回転駆動し、高温ガスで加熱さ
れた蓄熱コアに低温ガスを接触させることにより熱交換
を行って低温ガスを加熱するものであり、例えばガスタ
ービンエンジンなどに使用されている。この場合、ガス
の漏洩を防ぐために蓄熱コアとこれを支持するハウジン
グあるいはハウジングに取り付けられたリテーナなどの
支持部材との間にシール板が設けられるが、その形状は
蓄熱コアの外周部に対応する環状部及び高温ガス流路と
低温ガス流路の境界部に対応する直線状部を備えた形状
が一般的である(例えば実開平2−74538号公報等
参照)。
2. Description of the Related Art In a rotary heat storage type heat exchange device, a high temperature gas passage and a low temperature gas passage are arranged close to each other, and a disk-shaped heat storage core is provided so as to extend over both the high temperature gas passage and the low temperature gas passage. It is arranged to rotate and drive this heat storage core, and heats the low temperature gas by contacting the low temperature gas with the heat storage core heated by the high temperature gas to heat the low temperature gas. There is. In this case, a seal plate is provided between the heat storage core and a housing that supports the heat storage core or a supporting member such as a retainer attached to the housing in order to prevent gas leakage, and its shape corresponds to the outer peripheral portion of the heat storage core. Generally, a shape having an annular portion and a linear portion corresponding to a boundary portion between the high temperature gas passage and the low temperature gas passage is provided (see, for example, Japanese Utility Model Laid-Open No. 2-74538).

【0003】図13はこのようなシール板の概略図であ
ってシール板21は環状部22と直線状部23で構成さ
れており、(a)は環状部22と直線状部23が一体とな
った一体型、(b)は両者を切離した別体型をそれぞれ示
している。稼働時にはシール板1は一様に加熱される
が、一体型では熱膨張量が同じであれば直線状部23の
伸びが環状部22の直径の伸びを上回るため、直線状部
23が環状部22を突き上げ、また直線状部23は環状
部22から圧縮力を受けることになり、直線状部23に
反りが生じてシール漏れの原因となる。また別体型では
このような応力による反りは生じないが、環状部22と
直線状部23との間に隙間が生ずるのでここがシール漏
れの原因となる。
FIG. 13 is a schematic view of such a seal plate. The seal plate 21 is composed of an annular portion 22 and a linear portion 23. In FIG. 13A, the annular portion 22 and the linear portion 23 are integrally formed. Shows the integrated type, and (b) shows the separate type with the two separated. The seal plate 1 is heated uniformly during operation, but in the integrated type, if the amount of thermal expansion is the same, the expansion of the linear portion 23 exceeds the expansion of the diameter of the annular portion 22, so that the linear portion 23 has an annular portion. 22 is pushed up, and the linear portion 23 receives a compressive force from the annular portion 22, causing the linear portion 23 to warp and causing a seal leak. Further, in the separate type, such warpage does not occur, but a gap is formed between the annular portion 22 and the linear portion 23, which causes a seal leakage.

【0004】更にガスタービンエンジンの場合には、比
較的低圧の排気ガスと圧縮機で圧縮された高圧空気がそ
れぞれ上記の高温ガスと低温ガスに相当するが、直線状
部23は高圧空気により横から押されるためにねじれが
生じ、これもシール漏れの原因となる。特に、一体型で
は直線状部23の付け根付近に過大な応力を発生させた
り、環状部22の面圧を不均一にしたりしてシール板2
1を損傷させたり、環状部22のシール性を阻害したり
する可能性が高かった。
Further, in the case of a gas turbine engine, relatively low-pressure exhaust gas and high-pressure air compressed by a compressor correspond to the above-mentioned high-temperature gas and low-temperature gas, respectively. It is twisted due to being pushed from, which also causes seal leakage. Particularly, in the case of the integral type, the seal plate 2 is caused by generating an excessive stress near the base of the linear portion 23 or making the surface pressure of the annular portion 22 uneven.
1 was likely to be damaged or the sealing property of the annular portion 22 was impaired.

【0005】[0005]

【発明が解決しようとする課題】この発明はこのような
問題点に着目し、シール板の反りやねじれなどを極力少
なくし、また隙間のシール構造を改善してシール性を向
上することを課題としてなされたものである。
SUMMARY OF THE INVENTION The present invention focuses on such problems and aims to minimize warpage and twist of the seal plate and to improve the seal structure by improving the seal structure of the gap. It was made as.

【0006】[0006]

【課題を解決するための手段】上記の課題を達成するた
めに、第1の発明では、シール板の直線状部を中間で切
断して両端縁を小間隔を隔てて対向させると共に各端縁
に凹部を形成し、この凹部に対応した形状の補助シール
板を凹部内に配置してハウジング等の支持部材に固定し
ている。また第2の発明では、シール板の直線状部を中
間で切断し、あるいは環状部と直線状部との間を切断し
て両端縁を対向させ、対向する端縁間に配置されて両端
縁にそれぞれ圧接されるシールばねを設けている。また
第3の発明では、環状部及び直線状部を備えたシール板
を蓄熱コアの両面に配置している。更に第4の発明で
は、シール板の直線状部を熱膨張係数の異なる素材から
なる少なくとも2種類の板材を積層して形成している。
In order to achieve the above object, in the first aspect of the present invention, the straight portions of the seal plate are cut in the middle so that both end edges of the seal plate face each other with a small space between them. A concave portion is formed in the concave portion, and an auxiliary seal plate having a shape corresponding to the concave portion is arranged in the concave portion and fixed to a supporting member such as a housing. Further, in the second invention, the linear portion of the seal plate is cut in the middle, or the annular portion and the linear portion are cut so that both end edges are opposed to each other, and the both end edges are arranged. A seal spring that is pressed against each other is provided. Further, in the third invention, the seal plates having the annular portion and the linear portion are arranged on both sides of the heat storage core. Further, in the fourth invention, the linear portion of the seal plate is formed by laminating at least two types of plate materials made of materials having different thermal expansion coefficients.

【0007】[0007]

【作用】第1の発明は、シール板の直線状部を切断して
小間隔を隔てて対向させているので、熱膨張や横からの
押圧力による直線状部の反りやねじれが生じにくく、ま
た横からの押圧力で直線状部端縁の凹部が補助シール板
に押し付けられて切断したことによって生じている隙間
が閉じられるので、良好なシール性が得られる。第2の
発明は、シール板の直線状部を切断し、あるいは環状部
と直線状部との間を切断しているので、第1の発明と同
様に反りやねじれが生じにくく、また切断部はシールば
ねが圧接されるので、良好なシール性が得られる。第3
の発明は、環状部及び直線状部を備えたシール板を蓄熱
コアの両面に配置しており、蓄熱コアの両面外周の全部
に環状部が存在するため押し付け力が均一に作用し、摺
動面での密着性が良好となって良好なシール性が得られ
る。第4の発明は、シール板の直線状部を構成する材質
の熱膨張係数を適正に選定することにより温度変化に伴
う反りが低減される。
According to the first aspect of the invention, since the linear portions of the seal plate are cut and are opposed to each other with a small space therebetween, warping or twisting of the linear portions due to thermal expansion or lateral pressure is unlikely to occur. Further, since the concave portion at the edge of the linear portion is pressed against the auxiliary seal plate by the pressing force from the side and the gap generated by cutting is closed, good sealing property is obtained. In the second invention, the straight portion of the seal plate is cut, or the gap between the annular portion and the straight portion is cut, so that, like the first invention, warpage and twist are unlikely to occur, and the cut portion is also cut. Since the seal spring is pressed against, a good sealing property can be obtained. Third
In the invention, the seal plates having the annular portion and the linear portion are arranged on both sides of the heat storage core, and since the annular portion is present on the entire outer circumference of both sides of the heat storage core, the pressing force acts evenly, and sliding Adhesion on the surface becomes good and good sealing property is obtained. According to the fourth aspect of the present invention, the warpage due to temperature change is reduced by appropriately selecting the thermal expansion coefficient of the material forming the linear portion of the seal plate.

【0008】[0008]

【実施例1】次に図示の実施例について説明する。図1
及び図2は第1の発明の一実施例であり、シール板1は
環状部2と直線状部3で構成され、直線状部3の中央で
切断して端縁3a,3aを小間隔G1を隔てて対向させ
てある。端縁3a,3aには凹部4,4をそれぞれ形成
して長方形の空所を設け、これに対応した形状の補助シ
ール板5を凹部4,4内に配置してピン6によってリテ
ーナ7に固定してある。なお、補助シール板5とピン6
の間は隙間嵌めになっており、補助シール板5は高さ方
向には移動可能となっている。また、端縁3a,3a間
の小間隔G1は直線状部3が膨張して運転中にほとんど
0となるような寸法に選定され、また凹部4と補助シー
ル板5は側縁4a,5aが嵌め合いとしてあり、低温時
はこの側縁でシールが行われる。8は蓄熱コアであり、
シール板1とリテーナ7との間にはダイアフラムシール
9を設け、その内部に高圧の空気を送給してシール板1
が蓄熱コア8に摺接するようにしてある。
First Embodiment Next, the illustrated embodiment will be described. Figure 1
2 shows one embodiment of the first invention, in which the seal plate 1 is composed of an annular portion 2 and a linear portion 3 and is cut at the center of the linear portion 3 so that the end edges 3a, 3a are separated by a small gap G. They are facing each other with 1 in between. Recesses 4 and 4 are formed in the end edges 3a and 3a to form rectangular cavities, and an auxiliary seal plate 5 having a shape corresponding to the recesses is arranged in the recesses 4 and 4 and fixed to the retainer 7 by a pin 6. I am doing it. The auxiliary seal plate 5 and the pin 6
A space is fitted between them, and the auxiliary seal plate 5 is movable in the height direction. Further, the small gap G 1 between the end edges 3a, 3a is selected so that the linear portion 3 expands and becomes almost 0 during operation, and the recess 4 and the auxiliary seal plate 5 have side edges 4a, 5a. Is a fitting, and seals at this side edge when the temperature is low. 8 is a heat storage core,
A diaphragm seal 9 is provided between the seal plate 1 and the retainer 7, and high-pressure air is supplied into the diaphragm seal 9 to seal the seal plate 1.
Are in sliding contact with the heat storage core 8.

【0009】この実施例は上述のような構成であり、運
転中の温態時には小間隔G1によって直線状部3の膨張
が吸収されるので、熱膨張に起因する直線状部3の反り
やねじれによるシール漏れは防止される。また直線状部
3の膨張により小間隔G1の隙間がなくなり、更に直線
状部3が左右の圧力差により横から押された時に、図2
のように凹部4の高圧側の側縁4aが補助シール板5の
側縁5aに押し付けられてここがシール部となるので、
熱膨張で凹部4の側縁4aと補助シール板5の側縁5a
の嵌め合い寸法が拡大されても、直線状部3を切断した
ことによって高圧側と低圧側の間に生じた隙間を通じて
のシール漏れは十分に防止される。また、補助シール板
5は固定されていてこれによって直線状部3が支えられ
るので、直線状部3が横に押されて変形することによっ
て起きるねじれも発生せず、これによるシール漏れも防
止されるのである。
This embodiment is constructed as described above, and the expansion of the linear portion 3 is absorbed by the small gap G 1 during the warm state during operation, so that the warp of the linear portion 3 due to the thermal expansion or Seal leakage due to twisting is prevented. Further, when the linear portion 3 expands, the small gap G 1 disappears, and when the linear portion 3 is pushed from the side by the pressure difference between the left and right sides, as shown in FIG.
Since the side edge 4a on the high-pressure side of the recess 4 is pressed against the side edge 5a of the auxiliary seal plate 5 as described above, and becomes the seal portion,
Due to thermal expansion, the side edge 4a of the recess 4 and the side edge 5a of the auxiliary seal plate 5
Even if the fitting dimension of is increased, the seal leakage is sufficiently prevented through the gap created between the high pressure side and the low pressure side by cutting the linear portion 3. Further, since the auxiliary seal plate 5 is fixed and the linear portion 3 is supported thereby, twisting caused by lateral deformation of the linear portion 3 does not occur, and seal leakage due to this is prevented. It is.

【0010】[0010]

【実施例2】図3乃至図5は第2の発明の実施例であ
り、図3は第1の実施例を示す。この実施例は図1の場
合と同様に直線状部3の中央で切断して端縁3a,3a
を対向させ、端縁3a,3aの凹部4,4内に補助シー
ル板5を配置してあるが、この補助シール板5は固定さ
れていない。そして端縁3a,3a間に板ばねをジグザ
グ状に折り曲げた形状のシールばね11を設けてあり、
各折り返し部11aの外面が端縁3aに当接するような
寸法としてある。従って、左右の圧力差により直線状部
3が横から押された時には、シールばね11にも圧力が
加わって(c)図のように折り返し部11aが直線状部3
の端縁3aに強く押し付けられ、ここがシール部となっ
て直線状部3を切断して生じた隙間によるシール漏れが
防止されるのである。
Embodiment 2 FIGS. 3 to 5 show an embodiment of the second invention, and FIG. 3 shows the first embodiment. In this embodiment, as in the case of FIG. 1, the edges 3a, 3a are cut by cutting at the center of the linear portion 3.
Are opposed to each other and the auxiliary seal plates 5 are arranged in the recesses 4 and 4 of the end edges 3a, 3a, but the auxiliary seal plates 5 are not fixed. A seal spring 11 having a zigzag bent leaf spring is provided between the end edges 3a.
The dimensions are such that the outer surface of each folded-back portion 11a contacts the edge 3a. Therefore, when the linear portion 3 is pushed from the side due to the pressure difference between the left and right sides, the pressure is also applied to the seal spring 11 so that the folded portion 11a has the linear portion 3a as shown in FIG.
It is strongly pressed against the end edge 3a of the above, and this serves as a seal portion, so that seal leakage due to a gap generated by cutting the linear portion 3 is prevented.

【0011】図4は別の実施例であり、直線状部3の端
縁3aに小凹部3bを形成し、この小凹部3bに挿入さ
れる円柱状の頭部11bを両端に備えた板ばねをシール
ばね11として用いている。従って、左右の圧力差によ
り直線状部3が横から押された時には、シールばね11
にも圧力が加わって(b)図のように頭部11bが小凹部
3bの内縁に強く押し付けられ、ここがシール部11c
となって直線状部3を切断したことによる隙間を通じて
のシール漏れが防止されるのである。
FIG. 4 shows another embodiment, in which a small recess 3b is formed on the end edge 3a of the linear portion 3 and a cylindrical head 11b inserted into this small recess 3b is provided at both ends. Is used as the seal spring 11. Therefore, when the linear portion 3 is pushed from the side due to the pressure difference between the left and right sides, the seal spring 11
Also, pressure is applied to the head 11b, and the head 11b is strongly pressed against the inner edge of the small recess 3b as shown in FIG.
Thus, the seal leakage through the gap due to the cutting of the linear portion 3 is prevented.

【0012】図5は図13の(b)のように環状部2と直
線状部3を別体とした別体型のシール板1に図3と同様
な形状のシールばね11を用いた実施例である。すなわ
ち、環状部2と直線状部3の対向する端縁間にジグザグ
状のシールばね11を配置してあり、外周からの圧力に
よってシールばね11が加圧されると折り返し部11a
が環状部2と直線状部3の対向する端縁2a及び3cに
強く押し付けられ、シールが行われるのである。以上の
ように、第2の発明の各実施例ではシールばね11が固
定されていないためにシール板1が熱変形した場合でも
追随性がよく、良好なシール性が保たれるのである。
FIG. 5 shows an embodiment in which a seal spring 1 having the same shape as that of FIG. 3 is used in a separate type seal plate 1 in which an annular portion 2 and a linear portion 3 are separated as shown in FIG. 13 (b). Is. That is, a zigzag-shaped seal spring 11 is arranged between the opposing edges of the annular portion 2 and the linear portion 3, and when the seal spring 11 is pressed by the pressure from the outer circumference, the folded portion 11a.
Is strongly pressed against the opposing edges 2a and 3c of the annular portion 2 and the linear portion 3 to perform sealing. As described above, in each of the embodiments of the second invention, since the seal spring 11 is not fixed, the seal plate 1 has good followability even when it is thermally deformed, and good sealability is maintained.

【0013】なお、環状部2と直線状部3を別体とした
別体型のシール板1の場合には、熱変形によって環状部
2と直線状部3の接続部に段差が生じ、これがシール漏
れの原因になるので、これを防ぐために両部材の摺動面
の高さを同一に保つ必要があり、そのための設定作業が
面倒でかなりの工数を要する結果となっている。図6は
比較的容易に両部材の摺動面の高さを同一に保つことの
できる構造の実施例であり、環状部2の連結部13の上
に乗る位置まで直線状部3を伸ばし、連結部13に調整
シム14を取り付けて高さを調整した後、その上に直線
状部3を乗せるようにしている。15は各部材2,3の
上面にセラミックスを溶射して形成された摺動面、16
はリテーナ7が固定されているハウジングである。この
ような構成であれば、仮に直線状部3に反りが生じても
連結部13の上に乗っているだけのため直線状部3が環
状部2に対して持ち上がったり沈み込んだりすることは
なく、各部材2,3の摺動面15の高さは常に同一とな
るので、設定作業が容易となるのである。
In the case of the separate type seal plate 1 in which the annular portion 2 and the linear portion 3 are separate bodies, a step is generated at the connecting portion between the annular portion 2 and the linear portion 3 due to thermal deformation, and this causes a seal. Since this causes leakage, it is necessary to keep the heights of the sliding surfaces of both members the same in order to prevent this, and the setting work for that purpose is troublesome and requires a considerable number of man-hours. FIG. 6 shows an embodiment of a structure in which the heights of the sliding surfaces of both members can be maintained relatively easily, and the linear portion 3 is extended to a position where the linear portion 3 rides on the connecting portion 13 of the annular portion 2. After the adjustment shim 14 is attached to the connecting portion 13 to adjust the height, the linear portion 3 is placed on it. Reference numeral 15 is a sliding surface formed by spraying ceramics on the upper surface of each member 2, 3
Is a housing to which the retainer 7 is fixed. With such a configuration, even if the linear portion 3 warps, the linear portion 3 does not lift or sink with respect to the annular portion 2 because it is only on the connecting portion 13. Since the heights of the sliding surfaces 15 of the members 2 and 3 are always the same, the setting work is facilitated.

【0014】[0014]

【実施例3】図7は第3の発明の一実施例であり、図8
はこれに対応した従来例を示したものである。すなわ
ち、回転蓄熱式熱交換装置がガスタービンエンジンに用
いられる場合には、高温の排気ガスの熱が低温の空気に
熱交換で与えられるので低温側は排気ガスに対してのみ
シールすればよく、従来は高温側には図13の(a)に示
すようなシール板21を使用し、低温側には図8の(b)
に示すようなD型のシール板21aを使用している。こ
のため、蓄熱コア8は空気流路の低温側がシール板で押
さえられずに空気流路の高温側が浮き気味となり、空気
流路の高温側のシール性が低下して空気漏れの一因とな
っていた。これに対してこの実施例では、図7の(b)に
示すように図13の(a)と同様な完全な環状部2を備え
たシール板1を用い、これを図7の(a)に示すように蓄
熱コア8の両面に配置するようにしている。従って、蓄
熱コア8は両面から均等に押さえられてシール板1が片
寄りなく摺接するようになり、シール性の低下が防止さ
れて上記のような問題点が解消されるのである。
[Third Embodiment] FIG. 7 shows an embodiment of the third invention.
Shows a conventional example corresponding to this. That is, when the rotary heat storage type heat exchange device is used in a gas turbine engine, the heat of the high temperature exhaust gas is given to the low temperature air by heat exchange, so the low temperature side may be sealed only against the exhaust gas, Conventionally, the seal plate 21 as shown in FIG. 13 (a) is used on the high temperature side, and the low temperature side is shown in FIG. 8 (b).
The D-type seal plate 21a as shown in FIG. Therefore, in the heat storage core 8, the low temperature side of the air flow path is not pressed by the seal plate and the high temperature side of the air flow path tends to float, and the sealing property on the high temperature side of the air flow path deteriorates, contributing to air leakage. Was there. On the other hand, in this embodiment, as shown in FIG. 7 (b), a seal plate 1 having a complete annular portion 2 similar to that of FIG. 13 (a) is used, which is shown in FIG. 7 (a). The heat storage cores 8 are arranged on both sides as shown in FIG. Therefore, the heat storage core 8 is evenly pressed from both sides so that the seal plate 1 is brought into sliding contact with the one side without any deviation, the deterioration of the sealing property is prevented, and the above problems are solved.

【0015】[0015]

【実施例4】ところで、シール板は片面が高温の蓄熱コ
アに接し、他面は比較的低温のハウジングやリテーナ等
に接しているため、図9に示すように運転中は蓄熱コア
側とハウジング側(以下、便宜上蓄熱コア側を上面、ハ
ウジング側を下面とする)とでかなりの温度差Tがあ
り、通常は上面の膨張量が大きくなって直線状部3の反
りは(b)図のように上向きに凸となる。第4の発明はこ
の点に着目したもので、この実施例では図10のように
シール板1の直線状部3を熱膨張係数の異なる2種類の
板材18,19を積層して形成している。なお、直線状
部3は細長い形状であるから熱膨張係数は長手方向の線
膨張係数とみなすことができる。ここで、上面の板材1
8の熱膨張係数<下面の板材19の熱膨張係数 となる
ように材料を選定するのであり、これによって温度変化
に伴う反りが発生しにくくなり、適正な熱膨張係数を持
つ材料を選定すれば反りを大幅に低減することが可能と
なる。
[Embodiment 4] By the way, one side of the seal plate is in contact with the high temperature heat storage core and the other side is in contact with the relatively low temperature housing or retainer. Therefore, as shown in FIG. There is a considerable temperature difference T with the side (hereinafter, the heat storage core side is the upper surface and the housing side is the lower surface for convenience), and the expansion amount of the upper surface is usually large and the warp of the linear portion 3 is as shown in FIG. So that it becomes convex upward. The fourth invention focuses on this point, and in this embodiment, as shown in FIG. 10, the linear portion 3 of the seal plate 1 is formed by laminating two kinds of plate materials 18 and 19 having different thermal expansion coefficients. There is. Since the linear portion 3 has an elongated shape, the coefficient of thermal expansion can be regarded as the coefficient of linear expansion in the longitudinal direction. Here, the top plate 1
The material is selected so that the coefficient of thermal expansion of 8 <the coefficient of thermal expansion of the plate material 19 on the lower surface, which prevents warpage due to temperature change and makes it possible to select a material having an appropriate coefficient of thermal expansion. The warp can be significantly reduced.

【0016】空気漏れ量は図11に示すように直線状部
3の変形量の増加に伴って急激に増大するので、変形量
を小さくすることにより空気漏れは大幅に低減されてタ
ービンエンジンの効率的な運転が可能となる。図12は
これを例示したものであり、(a)はタービン入口温度を
一定にした場合の空気漏れ量と機関出力との関係を、
(b)は機関出力を一定にした場合の空気漏れ量とタービ
ン入口温度との関係をそれぞれ示している。この図から
分かるように、タービン入口温度一定の場合には空気漏
れ量の多い従来例に対して実施例では機関出力を大きく
することができるのであり、また機関出力一定の場合に
は実施例ではタービン入口温度を従来例よりも下げるこ
とができる。すなわち、出力を上げてタービンエンジン
を効率的に運転し、あるいは燃焼温度を下げてタービン
寿命を向上することが可能となるのである。
As shown in FIG. 11, the amount of air leakage sharply increases as the amount of deformation of the linear portion 3 increases. Therefore, by reducing the amount of deformation, the amount of air leakage is greatly reduced and the efficiency of the turbine engine is reduced. Driving becomes possible. FIG. 12 exemplifies this, and (a) shows the relationship between the amount of air leakage and the engine output when the turbine inlet temperature is constant,
(b) shows the relationship between the amount of air leakage and the turbine inlet temperature when the engine output is constant. As can be seen from this figure, when the turbine inlet temperature is constant, the engine output can be increased in the embodiment as compared to the conventional example in which the amount of air leakage is large, and when the engine output is constant, the engine output is increased in the embodiment. The turbine inlet temperature can be lowered as compared with the conventional example. That is, it is possible to increase the output and operate the turbine engine efficiently, or decrease the combustion temperature to improve the life of the turbine.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、この発
明は、回転蓄熱式熱交換装置のシール板の反りやねじれ
などを極力少なくし、またシール構造を改善してシール
性を向上したものである。特に第1の発明では、シール
板の直線状部を切断して小間隔を隔てて対向させると共
に両端部に形成した凹部内にハウジングに固定された補
助シール板を配置するようにしており、熱膨張や横から
の押圧力によってシール性が損なわれることが少なく、
良好なシール性が確保される。
As is apparent from the above description, according to the present invention, the sealing plate of the rotary heat storage type heat exchange device is prevented from warping or twisting as much as possible, and the sealing structure is improved to improve the sealing performance. Is. In particular, in the first invention, the linear portions of the seal plate are cut to face each other with a small gap therebetween, and the auxiliary seal plates fixed to the housing are arranged in the recesses formed at both ends. Less likely to impair sealing performance due to expansion and pressing force from the side,
Good sealability is secured.

【0018】また第2の発明は、シール板の直線状部を
切断し、あるいは環状部と直線状部との間を切断して両
端縁を対向させ、対向する端縁間に配置されて両端縁に
それぞれ圧接されるシールばねを設けたものであり、熱
膨張や横からの押圧力によってシール性が損なわれるこ
とが少なく、またシール板の熱変形に対する追随性がよ
く、良好なシール性が確保される。また第3の発明は、
環状部及び直線状部を備えたシール板を蓄熱コアの両面
に配置したものであり、蓄熱コアの両面に片寄りなくシ
ール板が摺接してシール性が向上される。更に第4の発
明は、シール板の直線状部を熱膨張係数の異なる素材か
らなる少なくとも2種類の板材を積層して形成したもの
であり、反りを少なくして空気漏れを大幅に低減し、タ
ービンエンジンの効率的な運転が可能となるのである。
A second aspect of the present invention is to cut the linear portion of the seal plate, or cut between the annular portion and the linear portion so that both end edges are opposed to each other, and the seal plate is disposed between the opposed end edges. Sealing springs that are pressed against each other are provided at the edges, so that the sealing performance is less likely to be impaired by thermal expansion and lateral pressing force, and the sealing plate has good followability against thermal deformation and good sealing performance. Reserved. The third invention is
The seal plates having the annular portion and the linear portion are arranged on both sides of the heat storage core, and the seal plates are brought into sliding contact with both sides of the heat storage core without any deviation to improve the sealing performance. Furthermore, a fourth aspect of the present invention is that the linear portion of the seal plate is formed by laminating at least two types of plate materials made of materials having different thermal expansion coefficients, and the warpage is reduced to greatly reduce air leakage, It enables efficient operation of the turbine engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の一実施例におけるシール板の平面
図、要部の平面図及び断面図である。
1A and 1B are a plan view, a plan view and a cross-sectional view of a main part of a sealing plate according to an embodiment of the first invention.

【図2】同実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the embodiment.

【図3】第2の発明の一実施例におけるシール板の平面
図、要部の平面図及び動作説明図である。
3A and 3B are a plan view of a seal plate, a plan view of a main portion and an operation explanatory view according to an embodiment of the second invention.

【図4】他の実施例の要部の平面図及び動作説明図であ
る。
4A and 4B are a plan view and an operation explanatory view of a main part of another embodiment.

【図5】別の実施例の要部の平面図である。FIG. 5 is a plan view of a main part of another embodiment.

【図6】更に他の実施例の要部の平面図及び側面図であ
る。
6A and 6B are a plan view and a side view of a main part of still another embodiment.

【図7】第3の発明の一実施例の概略側断面図及びシー
ル板の平面図である。
FIG. 7 is a schematic side sectional view and a plan view of a seal plate according to an embodiment of the third invention.

【図8】第3の発明に対応した従来例の概略側断面図及
びシール板の平面図である。
FIG. 8 is a schematic side sectional view and a plan view of a seal plate of a conventional example corresponding to the third invention.

【図9】シール板の温度と反りの状態を示す図である。FIG. 9 is a diagram showing the temperature and warpage of the seal plate.

【図10】第4の発明の一実施例におけるシール板の要
部の側面図である。
FIG. 10 is a side view of a main part of a sealing plate according to an embodiment of the fourth invention.

【図11】シール板の変形量と空気漏れ量との関係を示
す図である。
FIG. 11 is a diagram showing a relationship between a deformation amount of a seal plate and an air leakage amount.

【図12】空気漏れ量と機関出力あるいはタービン入口
温度との関係を示す図である。
FIG. 12 is a diagram showing a relationship between an air leakage amount and an engine output or a turbine inlet temperature.

【図13】従来例のシール板の平面図である。FIG. 13 is a plan view of a conventional seal plate.

【符号の説明】 1 シール板 2 環状部 3 直線状部 3a 端縁 4 凹部 5 補助シール板 7 リテーナ(支持部材) 8 蓄熱コア 11 シールばね 11a 折り返し部 11b 頭部 18,19 板材 G1 小間隔[Explanation of reference symbols] 1 seal plate 2 annular portion 3 linear portion 3a edge 4 recessed portion 5 auxiliary seal plate 7 retainer (support member) 8 heat storage core 11 seal spring 11a folded portion 11b head portion 18, 19 plate material G 1 small interval

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 近接して設けられる高温ガス流路と低温
ガス流路の両方にまたがるように円盤状の蓄熱コアを配
置し、この蓄熱コアを回転駆動することにより蓄熱コア
を介して低温ガスを加熱するように構成すると共に、蓄
熱コアの外周部に対応して設けられる環状部及び高温ガ
ス流路と低温ガス流路の境界部に対応して設けられる直
線状部を備えたシール板を蓄熱コアと蓄熱コアの支持部
材との間に設けた回転蓄熱式熱交換装置において、 上記シール板の直線状部を中間で切断して両端縁を小間
隔を隔てて対向させると共に各端縁に凹部を形成し、こ
の凹部に対応した形状の補助シール板を凹部内に配置し
て上記支持部材に固定したことを特徴とする回転蓄熱式
熱交換装置。
1. A disk-shaped heat storage core is arranged so as to straddle both a high temperature gas flow path and a low temperature gas flow path provided in proximity to each other, and the low temperature gas is passed through the heat storage core by rotationally driving the heat storage core. A sealing plate having an annular portion provided corresponding to the outer peripheral portion of the heat storage core and a linear portion provided corresponding to a boundary portion between the high temperature gas flow path and the low temperature gas flow path. In a rotary heat storage type heat exchange device provided between a heat storage core and a support member for the heat storage core, a straight portion of the seal plate is cut in the middle so that both end edges are opposed to each other with a small interval and at each end edge. A rotary heat storage type heat exchange device, characterized in that a concave portion is formed, and an auxiliary seal plate having a shape corresponding to the concave portion is arranged in the concave portion and fixed to the supporting member.
【請求項2】 近接して設けられる高温ガス流路と低温
ガス流路の両方にまたがるように円盤状の蓄熱コアを配
置し、この蓄熱コアを回転駆動することにより蓄熱コア
を介して低温ガスを加熱するように構成すると共に、蓄
熱コアの外周部に対応して設けられる環状部及び高温ガ
ス流路と低温ガス流路の境界部に対応して設けられる直
線状部を備えたシール板を蓄熱コアと蓄熱コアの支持部
材との間に設けた回転蓄熱式熱交換装置において、 上記シール板の直線状部を中間で切断し、あるいは環状
部と直線状部との間を切断して両端縁を対向させ、対向
する端縁間に配置されて両端縁にそれぞれ圧接されるシ
ールばねを設けたことを特徴とする回転蓄熱式熱交換装
置。
2. A disc-shaped heat storage core is arranged so as to straddle both a high temperature gas flow path and a low temperature gas flow path which are provided in proximity to each other, and the low temperature gas is passed through the heat storage core by rotationally driving the heat storage core. A sealing plate having an annular portion provided corresponding to the outer peripheral portion of the heat storage core and a linear portion provided corresponding to a boundary portion between the high temperature gas flow path and the low temperature gas flow path. In the rotary heat storage type heat exchange device provided between the heat storage core and the support member for the heat storage core, the linear portion of the seal plate is cut in the middle, or the annular portion and the linear portion are cut to both ends. A rotary heat storage type heat exchange device, characterized in that a seal spring is provided which has edges opposed to each other and which is disposed between the opposed edges and is brought into pressure contact with both edges.
【請求項3】 近接して設けられる高温ガス流路と低温
ガス流路の両方にまたがるように円盤状の蓄熱コアを配
置し、この蓄熱コアを回転駆動することにより蓄熱コア
を介して低温ガスを加熱するように構成すると共に、蓄
熱コアの外周部に対応して設けられる環状部及び高温ガ
ス流路と低温ガス流路の境界部に対応して設けられる直
線状部を備えたシール板を蓄熱コアと蓄熱コアの支持部
材との間に設けた回転蓄熱式熱交換装置において、 上記環状部及び直線状部を備えたシール板を蓄熱コアの
両面に配置したことを特徴とする回転蓄熱式熱交換装
置。
3. A disc-shaped heat storage core is arranged so as to straddle both a high temperature gas flow path and a low temperature gas flow path which are provided close to each other, and the low temperature gas is passed through the heat storage core by rotationally driving the heat storage core. A sealing plate having an annular portion provided corresponding to the outer peripheral portion of the heat storage core and a linear portion provided corresponding to a boundary portion between the high temperature gas flow path and the low temperature gas flow path. In a rotary heat storage type heat exchange device provided between a heat storage core and a support member for the heat storage core, a rotary heat storage system characterized in that seal plates having the annular portion and the linear portion are arranged on both sides of the heat storage core. Heat exchange equipment.
【請求項4】 近接して設けられる高温ガス流路と低温
ガス流路の両方にまたがるように円盤状の蓄熱コアを配
置し、この蓄熱コアを回転駆動することにより蓄熱コア
を介して低温ガスを加熱するように構成すると共に、蓄
熱コアの外周部に対応して設けられる環状部及び高温ガ
ス流路と低温ガス流路の境界部に対応して設けられる直
線状部を備えたシール板を蓄熱コアと蓄熱コアの支持部
材との間に設けた回転蓄熱式熱交換装置において、 上記シール板の直線状部を熱膨張係数の異なる素材から
なる少なくとも2種類の板材を積層して形成したことを
特徴とする回転蓄熱式熱交換装置。
4. A disc-shaped heat storage core is arranged so as to straddle both a high-temperature gas passage and a low-temperature gas passage that are provided in proximity to each other, and the low-temperature gas is passed through the heat-storage core by rotationally driving the heat storage core. A sealing plate having an annular portion provided corresponding to the outer peripheral portion of the heat storage core and a linear portion provided corresponding to a boundary portion between the high temperature gas flow path and the low temperature gas flow path. In the rotary heat storage type heat exchange device provided between the heat storage core and the support member of the heat storage core, the linear portion of the seal plate is formed by laminating at least two types of plate materials made of materials having different thermal expansion coefficients. A heat storage type heat exchange device characterized by.
JP27373992A 1992-09-16 1992-09-16 Rotary heat storage type heat exchanger Pending JPH06101981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27373992A JPH06101981A (en) 1992-09-16 1992-09-16 Rotary heat storage type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27373992A JPH06101981A (en) 1992-09-16 1992-09-16 Rotary heat storage type heat exchanger

Publications (1)

Publication Number Publication Date
JPH06101981A true JPH06101981A (en) 1994-04-12

Family

ID=17531898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27373992A Pending JPH06101981A (en) 1992-09-16 1992-09-16 Rotary heat storage type heat exchanger

Country Status (1)

Country Link
JP (1) JPH06101981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065690A (en) * 2001-08-24 2003-03-05 Denso Corp Rotary heat storage type heat exchanger and reformer employing the same
JP2006281438A (en) * 2005-03-31 2006-10-19 Xerox Corp Actuator system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065690A (en) * 2001-08-24 2003-03-05 Denso Corp Rotary heat storage type heat exchanger and reformer employing the same
JP4569059B2 (en) * 2001-08-24 2010-10-27 株式会社デンソー Rotary heat storage type heat exchanger and reformer using the rotary heat storage type heat exchanger
JP2006281438A (en) * 2005-03-31 2006-10-19 Xerox Corp Actuator system and method

Similar Documents

Publication Publication Date Title
US7261515B2 (en) Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine
JP4156526B2 (en) Metal gasket
US8210799B1 (en) Bi-metallic strip seal for a turbine shroud
US20160215643A1 (en) Shim seal assemblies and assembly methods for stationary components of rotary machines
EP1665412B1 (en) Compliant manifold gasket
WO2015095523A1 (en) Heat exchanger for cooling charge air
JPS6161038B2 (en)
JPH06101981A (en) Rotary heat storage type heat exchanger
US5472800A (en) High-temperature fuel cell with external manifolds
JP2001182615A (en) Sealing strucure in engine
JP4848687B2 (en) Fuel cell stack structure
JP2011511217A (en) Flat seal material
JP2007503090A (en) Compliant parts for wet sealing
JP2003343744A (en) Selector valve for high temperature fluid
JP2787041B2 (en) Metal laminated gasket
JP4059879B2 (en) Metal gasket
JP4352504B2 (en) Plate-fin heat exchanger
JPH036438B2 (en)
JP3986520B2 (en) Shaft seal mechanism
JP4215885B2 (en) Metal gasket
JP2006112491A (en) Shaft sealing mechanism
JP2556886Y2 (en) Sealing device for rotary heat storage type heat exchanger
JPH085274A (en) Sealing member for rotary heat storage type heat exchanger
JPH0370129B2 (en)
JPS6330073Y2 (en)