JP2006112491A - Shaft sealing mechanism - Google Patents

Shaft sealing mechanism Download PDF

Info

Publication number
JP2006112491A
JP2006112491A JP2004299243A JP2004299243A JP2006112491A JP 2006112491 A JP2006112491 A JP 2006112491A JP 2004299243 A JP2004299243 A JP 2004299243A JP 2004299243 A JP2004299243 A JP 2004299243A JP 2006112491 A JP2006112491 A JP 2006112491A
Authority
JP
Japan
Prior art keywords
pressure side
annular
thin plate
rotating shaft
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004299243A
Other languages
Japanese (ja)
Other versions
JP3917997B2 (en
Inventor
Hidekazu Uehara
秀和 上原
Tanehiro Shinohara
種宏 篠原
Takashi Nakano
隆 中野
Shin Nishimoto
西本  慎
Hirokazu Shirai
廣和 白井
Toshio Asada
俊夫 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004299243A priority Critical patent/JP3917997B2/en
Publication of JP2006112491A publication Critical patent/JP2006112491A/en
Application granted granted Critical
Publication of JP3917997B2 publication Critical patent/JP3917997B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft sealing mechanism adopting a leaf seal capable of suppressing leak amount of working fluid even when relative eccentricity of a rotational shaft is excessively generated. <P>SOLUTION: A high-pressure side side plate 24 that is a component of the leaf seal 20 is constituted by stacking a second annular plate 32 and a first annular plate 31 in sequence toward each thin plate 21 of a thin plate group. The inner diameter of the first annular plate 31 is larger than that of the second annular plate 32, and the first annular plate 31 is brought into contact with one side that is the high-pressure side of the each thin plate 21. In an inner peripheral edge part of the second annular plate 32, a projection 38 comes into contact with the one side that is the high-pressure side of the each thin plate 21 is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガスタービン、蒸気タービン、圧縮機、水車、冷凍機、ポンプ等の大型流体機械の回転軸に対しての軸シール機構に関し、特に、回転軸の周面とこの回転軸に同軸状で静止した静止部材の内周面との隙間においての高圧側から低圧側への作動流体の漏れを抑える軸シール機構に関する。   The present invention relates to a shaft seal mechanism for a rotating shaft of a large fluid machine such as a gas turbine, a steam turbine, a compressor, a water turbine, a refrigerator, a pump, and the like, and in particular, is coaxial with the peripheral surface of the rotating shaft and the rotating shaft. The present invention relates to a shaft seal mechanism that suppresses leakage of working fluid from a high pressure side to a low pressure side in a gap with an inner peripheral surface of a stationary member that is stationary.

一般に、ガスタービンや蒸気タービン等の大型流体機械においては、圧縮空気や燃焼ガスや蒸気等の作動流体(以下、単に「ガス」と記すことがある)を本質的に流動させる主流路以外に、回転軸の周面とこの回転軸に同軸状で静止した静止部材(例えば静翼の内周端を保持する環状部材)の内周面との間に環状の隙間が形成されるのは避けられない。その隙間に対して何ら工夫を施さなければ、その隙間を通じてガスが高圧側から低圧側へ向けて不用意に漏れ、結果として流体機械の効率が低下してしまう。従って、その隙間を通じたガスの漏れを最小限に抑えることは極めて重要であり、これを実現すべく、その隙間に軸シール機構が適用される。   In general, in a large fluid machine such as a gas turbine or a steam turbine, in addition to a main flow channel that essentially flows a working fluid such as compressed air, combustion gas, or steam (hereinafter sometimes simply referred to as “gas”), It is unavoidable that an annular gap is formed between the peripheral surface of the rotating shaft and the inner peripheral surface of a stationary member that is coaxial and stationary on the rotating shaft (for example, an annular member that holds the inner peripheral end of the stationary blade). Absent. If no measures are taken with respect to the gap, gas leaks inadvertently from the high-pressure side to the low-pressure side through the gap, resulting in a decrease in the efficiency of the fluid machine. Therefore, it is extremely important to minimize gas leakage through the gap, and in order to realize this, a shaft seal mechanism is applied to the gap.

軸シール機構としては、従来一般には、静止部材の内周面から複数のフィンが突出して成る非接触型のいわゆるラビリンスシールが幅広く用いられる。しかし、ラビリンスシールでは、回転過渡期の軸振動や熱過渡的な熱変形時にもフィン先端が回転軸の周面に接触しないように構成する必要があるため、回転軸の周面とフィン先端との隙間をある程度確保しなければならず、その結果、ガスの漏れを大きく抑えることができないという問題がある。   As the shaft seal mechanism, a non-contact type so-called labyrinth seal in which a plurality of fins protrude from the inner peripheral surface of a stationary member has been widely used. However, the labyrinth seal must be configured so that the tip of the fin does not come into contact with the peripheral surface of the rotating shaft even during axial vibration or thermal transient thermal deformation during the rotational transition period. As a result, there is a problem that gas leakage cannot be greatly suppressed.

一方近年では、ガスの漏れ量を格段に低減できる軸シール機構として、回転軸の軸方向に一定幅を有する平板状の薄板を回転軸の周方向に多重に配置した構造となるいわゆるリーフシールがある(例えば特許文献1参照)。以下、このリーフシールの詳細構成について、図10〜図17を参照しながら説明していく。なお、ここではリーフシールが適用される大型流体機械として、その代表格であるガスタービンを一例に挙げて説明する。   On the other hand, in recent years, as a shaft seal mechanism that can significantly reduce the amount of gas leakage, a so-called leaf seal having a structure in which flat thin plates having a certain width in the axial direction of the rotating shaft are arranged in the circumferential direction of the rotating shaft is provided. Yes (see, for example, Patent Document 1). Hereinafter, the detailed structure of the leaf seal will be described with reference to FIGS. Here, as a large-sized fluid machine to which a leaf seal is applied, a typical gas turbine will be described as an example.

図10に示すガスタービンGtは、多量の空気を内部に取り込んで圧縮する圧縮機1と、圧縮機1にて圧縮された空気に燃料を混合して燃焼させる燃焼器2と、燃焼器2で発生した高温高圧の燃焼ガスが内部に導入されこの燃焼ガスの熱エネルギーを回転エネルギーに変換するタービン3と、タービン3の回転エネルギーを直接受けてその一部を圧縮機1の動力として伝達する回転軸4と、を有している。   A gas turbine Gt shown in FIG. 10 includes a compressor 1 that takes in a large amount of air and compresses it, a combustor 2 that mixes fuel with the air compressed by the compressor 1 and burns, and a combustor 2. The generated high-temperature and high-pressure combustion gas is introduced into the turbine 3 that converts the thermal energy of the combustion gas into rotational energy, and the rotation that directly receives the rotational energy of the turbine 3 and transmits a part of it as power for the compressor 1. And a shaft 4.

タービン3では、回転軸4に軸方向で複数段設けられた複数の動翼10が、吹き付けられた燃焼ガスの圧力を受けることで回転軸4と共に回転する。こうして、燃焼ガスの熱エネルギーを回転軸4の回転という機械的な回転エネルギーに変換して動力が発生する。回転軸4に与えられた回転エネルギーは軸端から取り出されて発電に利用される。また、タービン3には、回転軸4側の動翼10の他に、タービン3のケーシング9側に複数の静翼11が設けられていて、これら動翼10と静翼11とが、回転軸4の軸方向に交互に配置される。そして、回転軸4と静翼11(実際には、静翼11の内周端を保持する環状の静止部材)との間には、その隙間を通じて高圧側から低圧側へ漏れる燃焼ガスの漏れ量を低減するための軸シール機構として、リーフシール20が設けられる。   In the turbine 3, a plurality of rotor blades 10 provided in a plurality of stages in the axial direction on the rotating shaft 4 rotate together with the rotating shaft 4 by receiving the pressure of the sprayed combustion gas. Thus, power is generated by converting the thermal energy of the combustion gas into mechanical rotational energy called rotation of the rotating shaft 4. The rotational energy given to the rotating shaft 4 is taken out from the shaft end and used for power generation. In addition to the moving blade 10 on the rotating shaft 4 side, the turbine 3 is provided with a plurality of stationary blades 11 on the casing 9 side of the turbine 3. The moving blade 10 and the stationary blade 11 are connected to the rotating shaft. 4 are arranged alternately in the axial direction. The amount of combustion gas that leaks from the high pressure side to the low pressure side through the gap between the rotating shaft 4 and the stationary blade 11 (actually, an annular stationary member that holds the inner peripheral end of the stationary blade 11). A leaf seal 20 is provided as a shaft seal mechanism for reducing the above.

また、圧縮機1は回転軸4にてタービン3と同軸につながれており、タービン3での回転軸4の回転を利用して、外気を吸引するとともに圧縮してこの圧縮空気を燃焼機2に供給する。圧縮機1でもタービン3と同様に、回転軸4に複数の動翼6と、圧縮機1のケーシング5側に複数の静翼7とが設けられており、動翼6と静翼7とが回転軸4の軸方向に交互に配置される。そして、回転軸4と静翼7(ここでも実際には、静翼7の内周端を保持する環状の静止部材)との間には、その隙間を通じて高圧側から低圧側に漏れる圧縮空気の漏れ量を低減するための軸シール機構として、リーフシール20が設けられる。   The compressor 1 is coaxially connected to the turbine 3 at the rotating shaft 4, and uses the rotation of the rotating shaft 4 in the turbine 3 to suck and compress outside air into the combustor 2. Supply. In the compressor 1, similarly to the turbine 3, a plurality of moving blades 6 are provided on the rotating shaft 4, and a plurality of stationary blades 7 are provided on the casing 5 side of the compressor 1. The rotating shafts 4 are alternately arranged in the axial direction. The compressed air leaking from the high pressure side to the low pressure side through the gap between the rotating shaft 4 and the stationary blade 7 (here, actually, an annular stationary member that holds the inner peripheral end of the stationary blade 7). A leaf seal 20 is provided as a shaft seal mechanism for reducing the amount of leakage.

更に、圧縮機1のケーシング5が回転軸4を支持する軸受け部8や、タービン3のケーシング9が回転軸4を支持する軸受け部12においても、その隙間を通じて高圧側から低圧側に圧縮空気や燃焼ガスが漏れるのを防止するための軸シール機構として、リーフシール20が設けられる。   Further, in the bearing portion 8 where the casing 5 of the compressor 1 supports the rotating shaft 4 and the bearing portion 12 where the casing 9 of the turbine 3 supports the rotating shaft 4, compressed air or A leaf seal 20 is provided as a shaft seal mechanism for preventing combustion gas from leaking.

続いて図11及び図12に示すように、リーフシール20は、静翼7,11及び軸受け部8,12(図10参照)に相当する静止部材であるステータ60に挿入されて、回転軸4の周面とステータ60の内周面との隙間の環状空間におけるガスの漏れを防ぐための軸シール機構として設置される。このリーフシール20は、回転軸4の周方向に互いに微小隙間を隔てて多重に積み重ねられた複数の薄板21より成る環状の薄板群と(図13(a)参照)、この薄板群を薄板21の外周基端側において軸方向での両側から挟持する各々コの字型のリテーナ22,23と、薄板群における高圧側(ガス圧が高い側)に位置する一側と一方のリテーナ22とで挟み込まれて薄板群のその一側に接触する分割環状の高圧側側板24と、薄板群における低圧側(ガス圧が低い側)に位置する他側と他方のリテーナ23とで挟み込まれて薄板群のその他側に接触する分割環状の低圧側側板25と、リテーナ22,23同士を薄板21の外周側で接続する接続部材26と、リテーナ22,23で狭持された各薄板21のがたつきを抑制するスペーサ27と、リテーナ22,23で狭持された薄板群が回転軸4に対して一定位置となるように付勢力を与える板バネ28と、を備える。   Subsequently, as shown in FIGS. 11 and 12, the leaf seal 20 is inserted into the stator 60 which is a stationary member corresponding to the stationary blades 7 and 11 and the bearing portions 8 and 12 (see FIG. 10). Is installed as a shaft seal mechanism for preventing gas leakage in the annular space in the gap between the peripheral surface of the stator 60 and the inner peripheral surface of the stator 60. The leaf seal 20 includes an annular thin plate group composed of a plurality of thin plates 21 stacked in a circumferential direction of the rotating shaft 4 with a minute gap therebetween (see FIG. 13A), and the thin plate group is formed into a thin plate 21. Each of the U-shaped retainers 22 and 23 sandwiched from both sides in the axial direction on the outer peripheral proximal end side, and one side and one retainer 22 located on the high pressure side (the gas pressure side) in the thin plate group The thin plate group is sandwiched between the divided annular high-pressure side plate 24 that is sandwiched and contacts one side of the thin plate group, the other side located on the low-pressure side (the low gas pressure side) of the thin plate group, and the other retainer 23. Of the divided annular low-pressure side plate 25 in contact with the other side, the connecting member 26 that connects the retainers 22 and 23 on the outer peripheral side of the thin plate 21, and rattling of the thin plates 21 held by the retainers 22 and 23. Spacer 27 to suppress Comprises a leaf spring 28 which sheet group that is grasped by the retainer 22, 23 provide a biasing force to be constant position with respect to the rotation axis 4, a.

薄板群の構成要素である各薄板21は、図12に示すように、外周側基端における回転軸4の軸方向での幅が内周端側の幅に比べて広い略T字型の薄い鋼板によって構成され、その両側には、その幅の段差部分において切欠き部21a,21bが設けられる。ここで、各薄板21は、圧延成形された厚さ0.1mm程度の鋼板(例えばステンレス、インコネル、ハステロイ等の金属鋼板)を素材とし、これをプレス等によって型抜きすることで先ずは一定厚さの所定形状(T字型)に成形される。そして、図14に示すように、この薄板21の外周側基端部をそのまま残しつつ内周端側の片面のみ(図14の網掛け部分21dに相当)をエッチングして取り除くことで、その厚みに段差が形成される。但し、こうしたT字型の輪郭形成と段差形成とをエッチングによって同時に成形することも可能である。   As shown in FIG. 12, each thin plate 21 that is a constituent element of the thin plate group is a thin, approximately T-shaped, with the width in the axial direction of the rotating shaft 4 at the outer peripheral base end being wider than the width at the inner peripheral end side. It is made of a steel plate, and on both sides thereof, notches 21a and 21b are provided at the stepped portions of the width. Here, each thin plate 21 is made of a rolled steel plate having a thickness of about 0.1 mm (for example, a metal steel plate made of stainless steel, Inconel, Hastelloy, etc.), and is first die-cut with a press or the like to obtain a constant thickness. It is molded into a predetermined shape (T-shape). Then, as shown in FIG. 14, the thickness of the thin plate 21 is removed by etching and removing only one surface on the inner peripheral end side (corresponding to the shaded portion 21d in FIG. 14) while leaving the outer peripheral base end portion as it is. A step is formed. However, it is also possible to simultaneously form such T-shaped contour formation and step formation by etching.

このような薄板21を回転軸4の軸方向に同一の幅となるように重ねるとともに、図13(b)に示すように、その外周基端及び外周基端側となる幅広部分の側面に溶接Wdを施して固定し、これにより薄板群が形成される。また、各薄板21はエッチングされた内周端側の板厚tで決まる所定の剛性を回転軸4の周方向に持つように設計されるとともに、回転軸4の回転方向に対して回転軸4の周面となす角θが鋭角となるようにリテーナ22,23で保持される。なお、薄板群においては、各薄板21のエッチングにて取り除かれる部分21dの深さcが、薄板21同士の微小隙間となる。   Such thin plates 21 are stacked so as to have the same width in the axial direction of the rotary shaft 4 and, as shown in FIG. 13B, welded to the side surfaces of the outer peripheral base end and the wide portion on the outer peripheral base end side. Wd is applied and fixed, whereby a thin plate group is formed. In addition, each thin plate 21 is designed to have a predetermined rigidity in the circumferential direction of the rotating shaft 4 determined by the etched thickness t on the inner peripheral end side, and the rotating shaft 4 with respect to the rotating direction of the rotating shaft 4. Is held by retainers 22 and 23 so that the angle θ formed with the peripheral surface of the above becomes an acute angle. In the thin plate group, the depth c of the portion 21d removed by etching of each thin plate 21 is a minute gap between the thin plates 21.

高圧側側板24及び低圧側側板25には、それぞれの外周縁部において、回転軸4の軸方向に突出する突起24a,25aが設けられており、この突起24a,25aは、薄板群の切欠き部21a,21bにそれぞれ嵌め込まれる。また、高圧側に位置するリテーナ22は、薄板群における外周基端側の高圧側である一側に対向する面に凹溝22aを備え、他方の低圧側に位置するリテーナ23は、薄板群における外周基端側の低圧側である他側に対向する面に凹溝23aを備える。そして、切欠き部21a,21bに高圧側側板24及び低圧側側板25それぞれの突起24a,25aが嵌め込まれた薄板群は、その外周基端側の高圧側である一側がリテーナ22の凹溝22aに嵌め込まれるとともに、その外周基端側の低圧側である他側がリテーナ23の凹溝23aに嵌め込まれる。   The high-pressure side plate 24 and the low-pressure side plate 25 are provided with protrusions 24a and 25a that protrude in the axial direction of the rotary shaft 4 at the outer peripheral edge portions, and these protrusions 24a and 25a are notches of the thin plate group. The parts 21a and 21b are respectively fitted. Further, the retainer 22 located on the high pressure side has a concave groove 22a on the surface facing the one side which is the high pressure side on the outer peripheral base end side in the thin plate group, and the retainer 23 located on the other low pressure side is in the thin plate group. A groove 23a is provided on the surface facing the other side which is the low pressure side on the outer peripheral base end side. In the thin plate group in which the protrusions 24a and 25a of the high-pressure side plate 24 and the low-pressure side plate 25 are fitted into the notches 21a and 21b, one side which is the high-pressure side on the outer peripheral base end side is the concave groove 22a of the retainer 22. And the other side, which is the low-pressure side of the outer peripheral base end side, is fitted into the recessed groove 23 a of the retainer 23.

ここで、高圧側側板24は、その内径が回転軸の径よりも若干量大きく、低圧側側板25は、その内径が高圧側側板24の内径よりも所定量大きくなっている。従って、薄板群における各薄板21の内周端部は、高圧側である一側よりも低圧側である他側の方が軸方向での表出域がはるかに大きくなる。   Here, the inner diameter of the high-pressure side plate 24 is slightly larger than the diameter of the rotating shaft, and the inner diameter of the low-pressure side plate 25 is larger than the inner diameter of the high-pressure side plate 24 by a predetermined amount. Accordingly, the inner peripheral end portion of each thin plate 21 in the thin plate group has a much larger exposed area in the axial direction on the other side, which is the low pressure side, than one side, which is the high pressure side.

薄板群の外周基端側が嵌め込まれたリテーナ22,23の間には、接続部材26が挿入されるとともに、この接続部材26がリテーナ22,23と溶接されることで、リテーナ22,23が固定される。薄板群の外周基端とリテーナ22,23との間には、両者の隙間を埋めるスペーサ27が挿入される。更に、スペーサ27が挿入されたリテーナ22,23の外周側には凹溝22b,23bが設けられていて、この凹溝22b,23bによって形成される1つの凹溝に板バネ28が嵌め込まれ、これにより板バネ28がリテーナ22,23の外周側に固定される。   A connecting member 26 is inserted between the retainers 22 and 23 in which the outer peripheral proximal end side of the thin plate group is fitted, and the connecting members 26 are welded to the retainers 22 and 23 so that the retainers 22 and 23 are fixed. Is done. A spacer 27 is inserted between the outer peripheral proximal end of the thin plate group and the retainers 22 and 23 to fill the gap between them. Furthermore, concave grooves 22b and 23b are provided on the outer peripheral sides of the retainers 22 and 23 into which the spacers 27 are inserted, and a leaf spring 28 is fitted into one concave groove formed by the concave grooves 22b and 23b. As a result, the leaf spring 28 is fixed to the outer peripheral side of the retainers 22 and 23.

このような構成のリーフシール20は、図12に示すように、分割環状の取付け用ピース62と一体で、ステータ60側の内周壁面に周方向に沿って形成された環状の取付け用凹溝61に、リテーナ22,23側から周方向に沿って嵌め込まれる。ここで、凹溝61は、回転軸4の軸方向において、底となる外周側の幅が内周側の幅よりも広くなるように、薄板群の高圧側である一側と対向する側面に段差が設けられた形状とし、この段差の外周側の面61aが、リーフシール20のリテーナ22の内周面と摺接する摺接面となる。更に、凹溝61の底である外周面61bが、リーフシール20の外周側に設けられる板バネ28と摺接する摺接面となる。また、凹溝61の内周側の幅は、回転軸4の軸方向の幅において、リーフシール20の幅よりも十分に広くなるように形成される。   As shown in FIG. 12, the leaf seal 20 having such a structure is an annular mounting groove formed integrally with a split annular mounting piece 62 and formed on the inner peripheral wall surface on the stator 60 side in the circumferential direction. 61, the retainers 22 and 23 are fitted along the circumferential direction. Here, the concave groove 61 is formed on the side surface facing the one side which is the high pressure side of the thin plate group so that the width on the outer peripheral side serving as the bottom is wider than the width on the inner peripheral side in the axial direction of the rotation shaft 4. The shape is provided with a step, and the surface 61 a on the outer peripheral side of the step is a sliding contact surface that is in sliding contact with the inner peripheral surface of the retainer 22 of the leaf seal 20. Further, the outer peripheral surface 61 b that is the bottom of the concave groove 61 is a sliding contact surface that comes into sliding contact with the leaf spring 28 provided on the outer peripheral side of the leaf seal 20. Further, the inner circumferential side width of the concave groove 61 is formed to be sufficiently wider than the width of the leaf seal 20 in the axial width of the rotating shaft 4.

一方、取付け用ピース62は、回転軸4の軸方向において、図12に示すように、外周側の幅が内周側の幅よりも狭くなるように、薄板群の低圧側である他側と対向する側面に段差が設けられた形状とし、この段差の外周側の面62aが、リーフシール20のリテーナ23の内周面と摺接する摺接面となる。更に、この取付け用ピース62は、回転軸4の軸方向での幅の広い内周側の部分において、薄板群の低圧側である他側と対向する側面62bが、低圧側側板25と当接する受圧面となる。なお、この取付け用ピース62の内周面の一部を突出させた形状とすることで、ラビリンスシール62dを具備する。つまり、リーフシール20の下流側に取付け用ピース62が設置され、これにより、リーフシール20よりも下流において、ガスの漏れ量を更に低減させるラビリンスシール62dが設置されることとなる。   On the other hand, as shown in FIG. 12, in the axial direction of the rotating shaft 4, the mounting piece 62 is connected to the other side, which is the low pressure side of the thin plate group, so that the width on the outer peripheral side is narrower than the width on the inner peripheral side. A step is provided on the opposite side surface, and the outer surface 62a of the step is a sliding contact surface that is in sliding contact with the inner peripheral surface of the retainer 23 of the leaf seal 20. Further, in the mounting piece 62, the side surface 62 b facing the other side which is the low pressure side of the thin plate group is in contact with the low pressure side plate 25 in the wide inner peripheral side portion in the axial direction of the rotating shaft 4. It becomes the pressure receiving surface. Note that a labyrinth seal 62d is provided by projecting a part of the inner peripheral surface of the mounting piece 62. That is, the mounting piece 62 is installed on the downstream side of the leaf seal 20, and thereby, the labyrinth seal 62 d for further reducing the amount of gas leakage is installed downstream of the leaf seal 20.

このように、リーフシール20は、取付け用ピース62と共に、ステータ60の凹溝61に対しその外周基端側で保持されることとなる。つまり、リテーナ22,23それぞれの内周面が、凹溝61の摺接面61a及び取付け用ピース62の摺接面62aと摺接するとともに、リテーナ22,23の外周側に固定された板バネ28が凹溝61の摺接面61bと摺接することで、リーフシール20がステータ60に対して嵌め込まれた状態で維持される。ちなみに、取付け用ピース62を用いてリーフシール20がステータ60の凹溝61に嵌め込まれるため、その組み付け作業を容易に行うことができる。   As described above, the leaf seal 20 is held together with the mounting piece 62 on the outer peripheral proximal end side with respect to the concave groove 61 of the stator 60. That is, the inner peripheral surfaces of the retainers 22 and 23 are in sliding contact with the sliding contact surface 61a of the recessed groove 61 and the sliding contact surface 62a of the mounting piece 62, and are fixed to the outer peripheral side of the retainers 22 and 23. Is in sliding contact with the sliding contact surface 61 b of the concave groove 61, so that the leaf seal 20 is maintained in a state of being fitted to the stator 60. Incidentally, since the leaf seal 20 is fitted into the concave groove 61 of the stator 60 using the mounting piece 62, the assembling work can be easily performed.

このとき、リーフシール20は、凹溝61内に対して、回転軸4の軸方向に若干の相対移動が可能である。そのため、高圧側領域から低圧側領域に向かってガスが流れるとき、そのガス圧がリーフシール20の各薄板21に作用するため、リーフシール20が低圧側領域に向かって移動し、後述するように、低圧側側板25が取付け用ピース62の受圧面62bと当接するようになる。   At this time, the leaf seal 20 can move slightly in the axial direction of the rotary shaft 4 with respect to the inside of the concave groove 61. Therefore, when gas flows from the high pressure side region toward the low pressure side region, the gas pressure acts on each thin plate 21 of the leaf seal 20, so that the leaf seal 20 moves toward the low pressure side region, as will be described later. The low-pressure side plate 25 comes into contact with the pressure receiving surface 62 b of the mounting piece 62.

引き続き、このように構成されるリーフシール20の作用について説明する。図15(a)に示すように、高圧側領域から低圧側領域に向かうガス圧が各薄板21に加わった場合に、各薄板21に対して、内周端側で且つ最も高圧側領域に位置する角部r1で最もガス圧が高く、対角の角部r2に向かって徐々にガス圧が弱まるガス圧分布70aが形成される。なお、図12では各薄板21をT字型形状としているが、図11や図15では、便宜上、撓みを生じる長方形部分のみを図示している。   Next, the operation of the leaf seal 20 configured as described above will be described. As shown in FIG. 15A, when a gas pressure from the high pressure side region toward the low pressure side region is applied to each thin plate 21, it is located on the inner peripheral end side and the highest pressure side region with respect to each thin plate 21. A gas pressure distribution 70a is formed in which the gas pressure is highest at the corner r1 and the gas pressure gradually decreases toward the diagonal corner r2. In FIG. 12, each thin plate 21 has a T-shape. However, in FIG. 11 and FIG. 15, only a rectangular portion that causes bending is illustrated for convenience.

また、図15(b)に示す回転軸4の周方向に沿った断面図のように、各薄板21の回転軸4に面した面を下面21qとするとともに、その裏側を上面21pとする。そして、各薄板21に対して高圧側領域から低圧側領域に向かうガス圧が加わって、図15(a)のようなガス圧分布70aが形成されるとき、各薄板21の断面に沿った任意位置における上面21pに加わるガス圧よりも下面21qに加わるガス圧の方が高くなるように、ガス圧が調整される。   Further, as shown in a cross-sectional view along the circumferential direction of the rotating shaft 4 shown in FIG. 15B, the surface of each thin plate 21 facing the rotating shaft 4 is a lower surface 21q, and the back side is an upper surface 21p. And when the gas pressure which goes to a low pressure side area | region from a high voltage | pressure side area | region is added with respect to each thin plate 21, and the gas pressure distribution 70a as shown to Fig.15 (a) is formed, arbitrary along the cross section of each thin plate 21 The gas pressure is adjusted so that the gas pressure applied to the lower surface 21q is higher than the gas pressure applied to the upper surface 21p at the position.

このとき、高圧側領域から低圧側領域に向かって流れるガスgは、高圧側側板24と回転軸4の周面との間から流入する。そして、ガスgは、図15(a)のように、回転軸4の周面と薄板21の内周端との間を流れるとともに、互いに隣接する各薄板21の上面21p及び下面21qとの隙間に沿って、角部r1から角部r2の方向へ放射状に流れる。このようにガスgが流れることで、各薄板21の外周基端に向かって低圧の領域が広がる。そのため、図15(b)に示すように、各薄板21の上面21p及び下面21qに垂直に加わるガス圧分布70b,70cは、各薄板21の内周端部分に近いほど大きくなるとともに各薄板21の外周基端に向かうほど小さくなる三角分布形状となる。   At this time, the gas g flowing from the high pressure side region toward the low pressure side region flows from between the high pressure side plate 24 and the peripheral surface of the rotating shaft 4. As shown in FIG. 15A, the gas g flows between the peripheral surface of the rotating shaft 4 and the inner peripheral end of the thin plate 21, and the gap between the upper surface 21 p and the lower surface 21 q of each adjacent thin plate 21. , And flows radially from the corner r1 to the corner r2. As the gas g flows in this manner, a low-pressure region expands toward the outer peripheral base end of each thin plate 21. Therefore, as shown in FIG. 15B, the gas pressure distributions 70b and 70c applied perpendicularly to the upper surface 21p and the lower surface 21q of each thin plate 21 become larger and closer to the inner peripheral end portion of each thin plate 21 and each thin plate 21. It becomes a triangular distribution shape that becomes smaller as it goes toward the outer periphery base end.

この上面21p及び下面21qそれぞれにおけるガス圧力分布70b,70cは、略等しい形状となるが、回転軸4の周面に対する角度θが鋭角となるように各薄板21が配置されているので、これら上面21p及び下面21qにおける各ガス圧分布70b,70cの相対位置が薄板21に対してずれる。これにより、薄板21の外周基端側から内周端側に向かう任意の点Pにおける上面21p及び下面21qのガス圧に差が生じる。こうして、各薄板21において、下面21qに加わるガス圧が上面21pに加わるガス圧よりも高くなることから、回転軸4の周面と薄板21の内周端との間を流れるガスのガス圧が、各薄板21の内周端を回転軸4より浮かせる方向に発生する。   The gas pressure distributions 70b and 70c on the upper surface 21p and the lower surface 21q have substantially the same shape, but the thin plates 21 are arranged so that the angle θ with respect to the peripheral surface of the rotating shaft 4 is an acute angle. The relative positions of the gas pressure distributions 70b and 70c on 21p and the lower surface 21q are shifted from the thin plate 21. Thereby, a difference arises in the gas pressure of the upper surface 21p and the lower surface 21q in the arbitrary points P which go to the inner peripheral end side from the outer peripheral base end side of the thin plate 21. Thus, in each thin plate 21, the gas pressure applied to the lower surface 21q is higher than the gas pressure applied to the upper surface 21p, so that the gas pressure of the gas flowing between the peripheral surface of the rotating shaft 4 and the inner peripheral end of the thin plate 21 is reduced. The inner peripheral edge of each thin plate 21 is generated in the direction of floating from the rotary shaft 4.

このように、各薄板21の上面21p及び下面21q間に圧力差を生じさせることで、各薄板21の内周端が回転軸4の周面より浮くように変形する。つまり、回転軸4の回転停止時には薄板21の内周端は所定の予圧で回転軸4の周面に接触しているが(図13(a)参照)、回転軸4の回転時には回転軸4が回転することで生じる動圧効果によって薄板21の内周端が浮上するため、薄板21と回転軸4の周面が非接触状態となる(図13(c)参照)。こうして、リーフシール20は、回転軸4の周囲の空間を高圧側領域と低圧側領域とに分け、回転軸4の外周をシールする。   In this way, by generating a pressure difference between the upper surface 21p and the lower surface 21q of each thin plate 21, the inner peripheral end of each thin plate 21 is deformed so as to float above the peripheral surface of the rotating shaft 4. That is, when the rotation of the rotating shaft 4 is stopped, the inner peripheral end of the thin plate 21 is in contact with the peripheral surface of the rotating shaft 4 with a predetermined preload (see FIG. 13A). Since the inner peripheral end of the thin plate 21 is lifted by the dynamic pressure effect generated by the rotation, the thin plate 21 and the peripheral surface of the rotary shaft 4 are in a non-contact state (see FIG. 13C). Thus, the leaf seal 20 divides the space around the rotary shaft 4 into a high pressure side region and a low pressure side region, and seals the outer periphery of the rotary shaft 4.

その際、このようにガスgが高圧側領域から低圧側領域に向かって流れるため、薄板群に対して、図16(a)に示すように、高圧側領域から低圧側領域に向かって流体力Fが作用する。この流体力Fを薄板群が受けることで、リーフシール20が高圧側領域から低圧側領域に向かって移動する。そして、図16(b)に示すように、低圧側側板25が取付け用ピース62の受圧面62bに当接することで、リーフシール20の位置が規制され、このとき、薄板群における低圧側である他側と取付け用ピース62の受圧面62bとの距離が、低圧側側板25の厚さと等しくなる。   At this time, since the gas g flows from the high pressure side region to the low pressure side region in this way, the fluid force is applied to the thin plate group from the high pressure side region to the low pressure side region as shown in FIG. F acts. When the thin plate group receives the fluid force F, the leaf seal 20 moves from the high pressure side region toward the low pressure side region. Then, as shown in FIG. 16B, the position of the leaf seal 20 is regulated by the low-pressure side plate 25 coming into contact with the pressure-receiving surface 62b of the mounting piece 62. At this time, the low-pressure side plate 25 is on the low-pressure side in the thin plate group. The distance between the other side and the pressure receiving surface 62 b of the mounting piece 62 is equal to the thickness of the low pressure side plate 25.

これは、低圧側側板25の内径が薄板群の内径よりも大きいため、薄板群における各薄板21の内周端側において、低圧側側板25と当接しない表出域が存在することになるからであり、その結果として、薄板群における各薄板21の内周端側において、低圧側である他側と取付け用ピース62の受圧面62bとの間に、低圧側側板25の厚さと等しい隙間を確保できるわけである。一方、高圧側側板24の内径が低圧側側板25の内径よりも小さいことから、結果として、薄板群における各薄板21の内周端側において、高圧側での表出域が低圧側での表出域よりも小さくなる。   This is because, since the inner diameter of the low-pressure side plate 25 is larger than the inner diameter of the thin plate group, there is an exposed area that does not contact the low-pressure side plate 25 on the inner peripheral end side of each thin plate 21 in the thin plate group. As a result, on the inner peripheral end side of each thin plate 21 in the thin plate group, a gap equal to the thickness of the low pressure side plate 25 is provided between the other side which is the low pressure side and the pressure receiving surface 62b of the mounting piece 62. It can be secured. On the other hand, since the inner diameter of the high-pressure side plate 24 is smaller than the inner diameter of the low-pressure side plate 25, as a result, on the inner peripheral end side of each thin plate 21 in the thin plate group, the exposed area on the high pressure side is the surface on the low pressure side. It becomes smaller than the departure area.

従って、図15(a)のように、高圧側側板24の内周面と回転軸4の周面との隙間を通じて各薄板21(薄板群)へ流入したガスgは、各薄板21の上面21p及び下面21qに沿って対角に向かって広く流れるとともに、薄板21の外周基端側に低圧の領域が広がって、各薄板21の内周端を回転軸4の周面から浮上させ、低圧側側板25の内周面と回転軸4の周面との隙間を通じて流出する。このように、高圧側側板24及び低圧側側板25は、各薄板21の内周端を有効に浮上させるべく、各薄板21へのガスの流入量やガス圧を調整するというリーフシール20にとって重要な機能を果たす。   Accordingly, as shown in FIG. 15A, the gas g flowing into each thin plate 21 (thin plate group) through the gap between the inner peripheral surface of the high-pressure side plate 24 and the peripheral surface of the rotary shaft 4 is the upper surface 21p of each thin plate 21. And the lower plate 21q flows widely in a diagonal direction, and a low pressure region spreads on the outer peripheral proximal end side of the thin plate 21, so that the inner peripheral end of each thin plate 21 floats from the peripheral surface of the rotating shaft 4, It flows out through the gap between the inner peripheral surface of the side plate 25 and the peripheral surface of the rotating shaft 4. Thus, the high-pressure side plate 24 and the low-pressure side plate 25 are important for the leaf seal 20 that adjusts the amount of gas flowing into each thin plate 21 and the gas pressure in order to effectively float the inner peripheral end of each thin plate 21. Fulfills the functions.

なお、上記のリーフシール20では、各薄板21をT字型形状としているが、単なる長方形状としても構わない。また、薄板群とリテーナ22,23との間にスペーサ27がないものとしても構わないし、リテーナ22,23と接続部材26とがボルトで固定されるものとしても構わないし、板バネ28がないものとしても構わない。   In the leaf seal 20 described above, each thin plate 21 has a T-shape, but may have a simple rectangular shape. Further, there may be no spacer 27 between the thin plate group and the retainers 22 and 23, or the retainers 22 and 23 and the connecting member 26 may be fixed with bolts, and there is no leaf spring 28. It does not matter.

また、リーフシール20を大型流体機械に組み付ける場合、環状の状態のまま回転軸4に軸方向に沿って挿入して取り付けることは困難であることから、回転軸4の周面に沿って環状に構成されるリーフシール20は、実際には、図17に示すように、その周方向に4〜8分割された複数の分割体より構成される。このとき、分割体個々の端面が回転軸4の回転方向に対して回転軸4の周面となす角度は、各薄板21が回転軸4の周面となす角度と等しい角度となる。
特開2002−13647号公報
Further, when the leaf seal 20 is assembled to a large fluid machine, it is difficult to insert the leaf seal 20 into the rotary shaft 4 along the axial direction in an annular state, so that the leaf seal 20 is annular along the peripheral surface of the rotary shaft 4. As shown in FIG. 17, the configured leaf seal 20 is actually composed of a plurality of divided bodies that are divided into four to eight in the circumferential direction. At this time, the angle formed by each end face of each divided body with the circumferential surface of the rotating shaft 4 with respect to the rotation direction of the rotating shaft 4 is equal to the angle formed by each thin plate 21 with the circumferential surface of the rotating shaft 4.
JP 2002-13647 A

ところで、上記したリーフシール20では、ここへのガスの流入量を各薄板21の内周端を浮上させることが可能な程度に抑えるべく、高圧側側板24の内径は、回転軸4の径よりも若干量大きい程度になっている。一方、流体機械の運転条件によっては回転軸4に軸振動が生じることがあり、特に大型流体機械の場合はその軸振動に伴う回転軸4のステータ60(リーフシール20)に対する偏芯が著しい。また、高温の作動流体を取り扱う大型流体機械(例えばガスタービンや蒸気タービン)では、熱影響によって機械のケーシング全体が鉛直方向へ湾曲し、これにより、回転軸4に対してステータ60(リーフシール20)全体が鉛直方向上方へ偏芯することがある。   By the way, in the above-described leaf seal 20, the inner diameter of the high-pressure side plate 24 is larger than the diameter of the rotating shaft 4 in order to suppress the amount of gas flowing therein to the extent that the inner peripheral end of each thin plate 21 can be levitated. The amount is slightly larger. On the other hand, shaft vibration may occur in the rotating shaft 4 depending on the operating conditions of the fluid machine. In particular, in the case of a large fluid machine, the eccentricity of the rotating shaft 4 with respect to the stator 60 (leaf seal 20) accompanying the shaft vibration is significant. Further, in a large fluid machine (for example, a gas turbine or a steam turbine) that handles a high-temperature working fluid, the entire casing of the machine is bent in the vertical direction due to a thermal effect, and thereby the stator 60 (leaf seal 20) with respect to the rotating shaft 4. ) The whole may be decentered vertically upward.

そのため、回転軸4の相対的な偏芯量が過大になった場合、回転軸4の周面と高圧側側板24の内周とが不用意に接触し、高圧側側板24そのものが変形したり割れたりして破損してしまうおそれがある。高圧側側板24の破損が生じると、薄板群へガスが過剰に流入することから、各薄板21の浮上作用が失われ、その結果、各薄板21の内周端と回転軸4の周面とが常時接触状態におかれて磨耗してしまい、ガスの漏れが増大する状況を招く。   Therefore, when the relative eccentric amount of the rotating shaft 4 becomes excessive, the peripheral surface of the rotating shaft 4 and the inner periphery of the high-pressure side plate 24 are inadvertently contacted, and the high-pressure side plate 24 itself is deformed. There is a risk of breakage. When the high-pressure side plate 24 is damaged, the gas flows excessively into the thin plate group, so that the floating action of each thin plate 21 is lost. As a result, the inner peripheral end of each thin plate 21 and the peripheral surface of the rotating shaft 4 Will be worn in a constant contact state, leading to a situation where gas leakage increases.

そこで本発明は、上記の問題に鑑みてなされたものであり、回転軸の相対的な偏芯が過大に生じても、ガスの漏れ量を抑えることができるリーフシールを採用した軸シール機構を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above problems, and a shaft seal mechanism that employs a leaf seal that can suppress the amount of gas leakage even if the relative eccentricity of the rotating shaft occurs excessively. It is intended to provide.

上記目的を達成するため、本発明による軸シール機構は、回転軸の周面とこの回転軸に同軸状で静止した静止部材の内周面との隙間においての高圧側から低圧側への作動流体の漏れを抑える軸シール機構であって、前記回転軸の軸方向に一定幅を有し、各々が前記回転軸の周方向へ互いに微小隙間を隔てながら前記回転軸の周面に対して鋭角に積み重ねられつつ、各々の内周端が回転停止時の前記回転軸の周面に接触する可撓性のある多数の薄板より成る環状の薄板群と、この薄板群における軸方向での両側のうちの高圧側に位置する一側に当接し、前記回転軸の径よりも所定量大きい内径を有する環状の高圧側側板と、前記薄板群における軸方向での両側のうちの低圧側に位置する他側に当接し、前記高圧側側板の内径よりも所定量大きい内径を有する環状の低圧側側板と、前記薄板群、前記高圧側側板、及び前記低圧側側板をこれらの外周部で一体に保持する環状の保持部材と、より成る軸シール部材を、前記静止部材に対して取り付けた軸シール機構において、以下の点を特徴とする。   In order to achieve the above object, the shaft seal mechanism according to the present invention provides a working fluid from a high pressure side to a low pressure side in a gap between a peripheral surface of a rotating shaft and an inner peripheral surface of a stationary member that is coaxial and stationary on the rotating shaft. A shaft seal mechanism that suppresses leakage of the rotary shaft, and has a certain width in the axial direction of the rotary shaft, and each of them has an acute angle with respect to the peripheral surface of the rotary shaft with a small gap therebetween in the circumferential direction of the rotary shaft. An annular thin plate group consisting of a plurality of flexible thin plates whose inner peripheral ends are in contact with the peripheral surface of the rotating shaft when rotation is stopped, and both sides of the thin plate group in the axial direction. An annular high-pressure side plate that has an inner diameter that is a predetermined amount larger than the diameter of the rotary shaft, and that is located on the low-pressure side of both sides in the axial direction of the thin plate group. A predetermined amount larger than the inner diameter of the high-pressure side plate. A shaft seal member comprising: an annular low-pressure side plate having a diameter; an annular holding member that integrally holds the thin plate group, the high-pressure side plate, and the low-pressure side plate at their outer peripheral portions; The shaft seal mechanism attached to the above is characterized by the following points.

第1の特徴点としては、前記高圧側側板は前記薄板群に近いほど各々の内径が大きい複数の環状板が積み重ねられて成り、これらの各環状板のうちで前記薄板群に最も近い環状板以外の環状板は、その内周縁部から前記薄板群へ向けて突出して前記薄板群の前記一側に当接する突条を有する。このようにすれば、回転軸の相対的な偏芯が過大に生じた場合、回転軸の周面に対する高圧側側板の内周の接触は、事実上、薄板群から離れている環状板すなわち高圧側に位置する環状板でなされるため、高圧側側板の破損はその高圧側の環状板に止められる。従って、高圧側の環状板が損傷してその機能を失ったとしても、低圧側の環状板すなわち薄板群に近い環状板によって高圧側側板の機能を補えることになり、ガスの漏れ量を抑えることが可能になる。   As a first feature point, the high-pressure side plate is formed by stacking a plurality of annular plates each having a larger inner diameter as the plate is closer to the thin plate group, and among these annular plates, the annular plate closest to the thin plate group. The other annular plate has a protrusion that protrudes from the inner peripheral edge thereof toward the thin plate group and contacts the one side of the thin plate group. In this way, when the relative eccentricity of the rotating shaft occurs excessively, the contact of the inner periphery of the high-pressure side plate with the peripheral surface of the rotating shaft is effectively an annular plate that is separated from the thin plate group, that is, the high-pressure plate. Since it is made of an annular plate located on the side, damage to the high-pressure side plate is stopped by the high-pressure side annular plate. Therefore, even if the high-pressure side annular plate is damaged and loses its function, the low-pressure side annular plate, that is, the annular plate close to the thin plate group, can supplement the function of the high-pressure side plate and suppress the amount of gas leakage. Is possible.

ここで、突条が環状板と別体に成形されたものであって、両者が溶接等で組み付けられて成る場合は、部品点数の増加や組立作業効率の悪化を伴うため、これを防止する観点から、前記突条とこれを有する前記環状板とが一体成形品であることが好ましい。   Here, when the ridge is formed separately from the annular plate and both are assembled by welding or the like, this is accompanied by an increase in the number of parts and a deterioration in the assembly work efficiency. From the viewpoint, it is preferable that the protrusion and the annular plate having the protrusion are integrally formed products.

第2の特徴点としては、前記高圧側側板における鉛直方向での下半分の内周が鉛直方向下方へ偏芯されている。このようにすれば、回転軸に対して軸シール部材を含む静止部材全体が鉛直方向上方へ偏芯することにより、回転軸の相対的な偏芯が過大に生じた場合であっても、互いに接近する状況下にある高圧側側板の下半分の内周と回転軸の周面とが接触することはない。従って、高圧側側板の破損を回避できるため、高圧側側板の機能を維持できることになり、ガスの漏れ量を抑えることが可能になる。   As a second feature point, the inner circumference of the lower half in the vertical direction of the high-pressure side plate is eccentric downward in the vertical direction. In this way, even when the relative eccentricity of the rotating shaft occurs excessively due to the entire stationary member including the shaft seal member being eccentric in the vertical direction with respect to the rotating shaft, The inner periphery of the lower half of the high-pressure side plate under the approaching condition does not contact the peripheral surface of the rotating shaft. Therefore, since the breakage of the high-pressure side plate can be avoided, the function of the high-pressure side plate can be maintained, and the amount of gas leakage can be suppressed.

本発明の軸シール機構によれば、回転軸の相対的な偏芯が過大に生じても、高圧側側板としての機能を維持できることから、その結果として、ガスの漏れ量を抑えることができる。   According to the shaft seal mechanism of the present invention, the function as the high-pressure side plate can be maintained even if relative eccentricity of the rotating shaft occurs excessively, and as a result, the amount of gas leakage can be suppressed.

以下に、本発明の実施形態であるリーフシールを採用した軸シール機構について、図面を参照しながら詳述する。先ず、本発明の第1実施形態について説明する。図1は第1実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図、図2はそのリーフシールの構成要素である高圧側側板の斜視図である。なお、図中で図10〜図17と同じ名称で同じ機能を果たす部分には同一の符号を付し、重複する説明は適宜省略するとともに、本発明の特徴点である高圧側側板について特筆する。後述する第2〜第5実施形態においても同様とする。   Hereinafter, a shaft seal mechanism employing a leaf seal as an embodiment of the present invention will be described in detail with reference to the drawings. First, a first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view taken along the axial direction of a rotary shaft showing the main part of a large-sized fluid machine having a leaf seal of the first embodiment, and FIG. 2 is a perspective view of a high-pressure side plate that is a component of the leaf seal. . In the figure, parts having the same names and functions as in FIGS. 10 to 17 are denoted by the same reference numerals, and repeated description is omitted as appropriate, and the high-pressure side plate, which is a feature of the present invention, is noted. . The same applies to the second to fifth embodiments described later.

図1及び図2に示すように、高圧側側板24は、2枚の環状板31、32が回転軸4の軸方向へ積み重ねられて成る。環状板31(以下、説明の便宜上「第1の環状板」と記すことがある)は薄板群に近い側に配置されるものであって、薄板群における各薄板21の高圧側である一側に当接する。環状板32(以下、説明の便宜上「第2の環状板」と記すことがある)は薄板群から離れた側に配置されるものである。なお、第1の環状板31、第2の環状板32は、大型流体機械への組付け性から、実際には、従来一般のリーフシール20での高圧側側板24の構成と同様に、周方向に複数に分割されたものである。   As shown in FIGS. 1 and 2, the high-pressure side plate 24 is formed by stacking two annular plates 31 and 32 in the axial direction of the rotary shaft 4. The annular plate 31 (hereinafter sometimes referred to as “first annular plate” for convenience of description) is disposed on the side close to the thin plate group, and is one side that is the high-pressure side of each thin plate 21 in the thin plate group. Abut. The annular plate 32 (hereinafter sometimes referred to as “second annular plate” for convenience of description) is disposed on the side away from the thin plate group. It should be noted that the first annular plate 31 and the second annular plate 32 are, in fact, similar to the configuration of the high-pressure side plate 24 in the conventional general leaf seal 20 because of the ease of assembly to a large fluid machine. It is divided into a plurality of directions.

ここで、第1の環状板31と第2の環状板32は外径が等しく、互いに積み重ねられた状態で第1の環状板31の外周縁部には、回転軸4の軸方向に突出する突起35が設けられている。本実施形態では、その突起35は、スポット溶接等(溶接部を図1及び図2中に符号「W1」で示す)によって、第1の環状板31に対してのみならず第2の環状板32に対しても固定され、これにより3者は一体化される。そして突起35は、従来一般の高圧側側板24における突起24a(図12参照)に相当するものであって、第1の環状板31及び第2の環状板32より成る高圧側側板24を薄板群に組み付ける際、薄板群における各薄板21の切欠き部21aに嵌め込まれる。薄板群の切欠き部21aに突起35が嵌め込まれた第1の環状板31及び第2の環状板32は、リテーナ22によって保持される。   Here, the first annular plate 31 and the second annular plate 32 have the same outer diameter, and project in the axial direction of the rotary shaft 4 at the outer peripheral edge portion of the first annular plate 31 in a stacked state. A protrusion 35 is provided. In the present embodiment, the protrusion 35 is not only the first annular plate 31 but also the second annular plate by spot welding or the like (the welded portion is indicated by a symbol “W1” in FIGS. 1 and 2). 32 is also fixed, so that the three parties are integrated. The protrusion 35 corresponds to the protrusion 24a (see FIG. 12) of the conventional high-pressure side plate 24, and the high-pressure side plate 24 composed of the first annular plate 31 and the second annular plate 32 is a thin plate group. When assembling to each other, it is fitted into the notch 21a of each thin plate 21 in the thin plate group. The first annular plate 31 and the second annular plate 32 in which the protrusions 35 are fitted in the notches 21 a of the thin plate group are held by the retainer 22.

また、第2の環状板32の内径は、従来一般の高圧側側板24の内径と同じに設定されており、第1の環状板31の内径は、第2の環状板32の内径よりも所定量(例えば片側1mm程度)大きく設定されている。そして第2の環状板32の内周縁部には、回転軸4の軸方向であって薄板群へ向けて突出する突条38が設けられている。この突条38は、第2の環状板32の内径と同じ内径で、第1の環状板31の内径よりも僅かに小さい外径を有しつつ、第1の環状板31と同じ厚さを有しており、薄板群における各薄板21の高圧側である一側に当接する。本実施形態では、その突条38は、第2の環状板32とは別体に成形されたものであって、スポット溶接等(溶接部を図1及び図2中に符号「W2」で示す)によって、第2の環状板32に対して固定され、これにより両者は一体化される。   Further, the inner diameter of the second annular plate 32 is set to be the same as the inner diameter of the conventional general high-pressure side plate 24, and the inner diameter of the first annular plate 31 is greater than the inner diameter of the second annular plate 32. The fixed amount (for example, about 1 mm on one side) is set large. On the inner peripheral edge of the second annular plate 32, a ridge 38 is provided that protrudes toward the thin plate group in the axial direction of the rotary shaft 4. This protrusion 38 has the same inner diameter as the inner diameter of the second annular plate 32 and an outer diameter slightly smaller than the inner diameter of the first annular plate 31, but has the same thickness as the first annular plate 31. It has one side which is the high voltage side of each thin plate 21 in the thin plate group. In the present embodiment, the protrusion 38 is formed separately from the second annular plate 32, and is spot welded or the like (the welded portion is indicated by the symbol “W2” in FIGS. 1 and 2). ) To be fixed to the second annular plate 32, thereby integrating them.

このような構成の高圧側側板24を備えたリーフシール20にすると、回転軸4の相対的な偏芯が過大に生じた場合、回転軸4の周面に対する高圧側側板24の内周の接触は、事実上、薄板群から離れている第2の環状板32でなされるため、高圧側側板24の破損は第2の環状板32に止められ、第1の環状板31は無傷にできる。従って、第2の環状板32が損傷してその機能を失ったとしても、第1の環状板31によって高圧側側板24の機能を補えることになり、その機能を維持できることから、その結果として、ガスの漏れ量を抑えることが可能になる。   When the leaf seal 20 including the high-pressure side plate 24 having such a configuration is used, when the relative eccentricity of the rotary shaft 4 is excessively generated, the inner periphery of the high-pressure side plate 24 contacts the peripheral surface of the rotary shaft 4. Is actually made by the second annular plate 32 that is separated from the thin plate group, so that the breakage of the high-pressure side plate 24 is stopped by the second annular plate 32, and the first annular plate 31 can be made intact. Therefore, even if the second annular plate 32 is damaged and loses its function, the function of the high-pressure side plate 24 can be supplemented by the first annular plate 31 and the function can be maintained. It becomes possible to suppress the amount of gas leakage.

もっとも、第2の環状板32が破損に至らない正規の状態では、この第2の環状板32が有する突条38により、薄板群の各薄板21の内周端側における高圧側である一側での表出域を従来一般の高圧側側板24での表出域と同じにできるため、高圧側側板24の機能に遜色はない。   However, in a normal state in which the second annular plate 32 does not break, one side which is a high pressure side on the inner peripheral end side of each thin plate 21 of the thin plate group is caused by the protrusion 38 which the second annular plate 32 has. Therefore, the function of the high-pressure side plate 24 is not inferior to that of the conventional high-pressure side plate 24.

次に、本発明の第2実施形態について、図3及び図4を参照しながら説明する。図3は第2実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図、図4はそのリーフシールの構成要素である高圧側側板の斜視図である。本第2実施形態の特徴は、第1実施形態における第2の環状板32の構成を変形した点にある。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a sectional view along the axial direction of the rotary shaft showing the main part of a large-sized fluid machine having a leaf seal of the second embodiment, and FIG. 4 is a perspective view of a high-pressure side plate that is a component of the leaf seal. . The feature of the second embodiment is that the configuration of the second annular plate 32 in the first embodiment is modified.

つまり本実施形態では、図3及び図4に示すように、第2の環状板32が有する突条38は、第2の環状板32と一体成形品になっている。このような第2の環状板32を製作するにあたっては、その素材として、外径及び内径が第1実施形態での第2の環状板32と等しく、突条38を含む一定厚さを有する環状板を準備し、この素材の片面について、突条38となる内周縁部をそのまま残しつつ第1の環状板31の厚さと同じ深さまでエッチングして取り除く。これにより、突条38とこれを有する第2の環状板32とが一体成形品として得られる。   That is, in this embodiment, as shown in FIG. 3 and FIG. 4, the protrusion 38 included in the second annular plate 32 is an integrally molded product with the second annular plate 32. In manufacturing the second annular plate 32, the outer diameter and the inner diameter of the second annular plate 32 are equal to those of the second annular plate 32 in the first embodiment, and the annular ring 32 has a constant thickness including the protrusions 38. A plate is prepared, and one side of this material is removed by etching to the same depth as the thickness of the first annular plate 31 while leaving the inner peripheral edge portion that becomes the protrusion 38 as it is. Thereby, the protrusion 38 and the 2nd annular plate 32 which has this are obtained as an integrally molded product.

このような構成によれば、第1実施形態での第2の環状板32の場合は、突条38が第2の環状板32と別体に成形されたものであって、両者が溶接等で組み付けられて成るため、部品点数の増加や組立作業効率の悪化を伴うが、本第2実施形態での第2の環状板32の場合は、部品点数の増加も溶接等による組立作業効率の悪化もない。   According to such a configuration, in the case of the second annular plate 32 in the first embodiment, the protrusion 38 is formed separately from the second annular plate 32, and both are welded or the like. However, in the case of the second annular plate 32 in the second embodiment, the increase in the number of parts also increases the efficiency of the assembly work by welding or the like. There is no deterioration.

次に、本発明の第3実施形態について、図5及び図6を参照しながら説明する。図5は第3実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図、図6はそのリーフシールの構成要素である高圧側側板の斜視図である。本第3実施形態の特徴は、第1、第2実施形態を更に変形して、高圧側側板24としての機能をより確実に確保できるよう図った点にある。第1、第2実施形態の高圧側側板24では、第1の環状板31と第2の環状板32とが1つの突起35を含めて一体化されているため、第2の環状板32の内周と回転軸4の周面との接触に伴う第2の環状板32の破損の際、第1の環状板32にまで不必要な外力を与えてしまうおそれがある。なお、図5及び図6では、第2実施形態の変形例として図示している。   Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a sectional view along the axial direction of the rotary shaft showing the main part of a large-sized fluid machine having a leaf seal of the third embodiment, and FIG. 6 is a perspective view of a high-pressure side plate that is a component of the leaf seal. . The feature of the third embodiment is that the first and second embodiments are further modified to ensure the function as the high-pressure side plate 24 more reliably. In the high-pressure side plate 24 of the first and second embodiments, the first annular plate 31 and the second annular plate 32 are integrated including one protrusion 35, so that the second annular plate 32 When the second annular plate 32 is damaged due to the contact between the inner periphery and the peripheral surface of the rotating shaft 4, an unnecessary external force may be applied to the first annular plate 32. In FIGS. 5 and 6, a modification of the second embodiment is shown.

本実施形態では、図5及び図6に示すように、第1の環状板31の外径が第2の環状板32の外径よりも所定量小さく、第1の環状板31の外周縁部には、回転軸4の軸方向に突出する第1の突起36が設けられ、他方の第2の環状板32の外周縁部には、同じく回転軸4の軸方向に突出する第2の突起37が設けられている。第1の突起36は、スポット溶接等(溶接部を図5及び図6中に符号「W3」で示す)によって、第1の環状板31に対して固定され、これにより両者は一体化される。同様に第2の突起37は、スポット溶接等(溶接部を図5及び図6中に符号「W4」で示す)によって、第2の環状板32に対して固定され、これにより両者は一体化される。   In the present embodiment, as shown in FIGS. 5 and 6, the outer diameter of the first annular plate 31 is smaller than the outer diameter of the first annular plate 31 by a predetermined amount smaller than the outer diameter of the second annular plate 32. Is provided with a first protrusion 36 that protrudes in the axial direction of the rotating shaft 4, and a second protrusion that also protrudes in the axial direction of the rotating shaft 4 on the outer peripheral edge of the other second annular plate 32. 37 is provided. The first protrusion 36 is fixed to the first annular plate 31 by spot welding or the like (the welded portion is indicated by a symbol “W3” in FIGS. 5 and 6), and thereby both are integrated. . Similarly, the second protrusion 37 is fixed to the second annular plate 32 by spot welding or the like (the welded portion is indicated by a symbol “W4” in FIGS. 5 and 6), and thereby both are integrated. Is done.

そして、第1の環状板31と第2の環状板32とが互いに積み重ねられ、この状態で第1の突起36と第2の突起37とが1つの突起となり、この第1の突起36及び第2の突起37は、薄板群における各薄板21の切欠き部21aに嵌め込まれる。薄板群の切欠き部21aに第1の突起36及び第2の突起37が嵌め込まれた第1の環状板31及び第2の環状板32は、リテーナ22によって保持される。   Then, the first annular plate 31 and the second annular plate 32 are stacked on each other, and in this state, the first protrusion 36 and the second protrusion 37 become one protrusion, and the first protrusion 36 and the second protrusion 37 The two protrusions 37 are fitted into the notches 21a of the thin plates 21 in the thin plate group. The first annular plate 31 and the second annular plate 32 in which the first protrusion 36 and the second protrusion 37 are fitted in the notch 21 a of the thin plate group are held by the retainer 22.

このような構成によれば、第1の環状板31と第2の環状板32とが事実上一体化されているわけではないため、第2の環状板32の内周と回転軸4の周面との接触に伴う第2の環状板32の破損の際にも、第1の環状板32に不必要な外力は付与されない。従って、残された第1の環状板32をもってして高圧側側板24としての機能をより確実に確保できる。しかも、第2の環状板32が破損した場合、その交換が簡単であるし、また、第2の環状板32のみの交換で済むことから経済性に優れる。   According to such a configuration, since the first annular plate 31 and the second annular plate 32 are not effectively integrated, the inner circumference of the second annular plate 32 and the circumference of the rotating shaft 4 are not integrated. Even when the second annular plate 32 is damaged due to contact with the surface, unnecessary external force is not applied to the first annular plate 32. Therefore, the function as the high-pressure side plate 24 can be more reliably ensured with the remaining first annular plate 32. In addition, when the second annular plate 32 is damaged, the replacement is simple, and only the second annular plate 32 needs to be replaced.

次に、本発明の第4実施形態について、図7及び図8を参照しながら説明する。図7は第4実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図、図8はそのリーフシールの構成要素である高圧側側板の斜視図である。本第4実施形態の特徴は、第1〜第3実施形態を更に変形して、高圧側側板24としての機能をより機動的に確保できるよう図った点にある。第1〜第3実施形態での高圧側側板24は、第1の環状板31と第2の環状板32という2枚の環状板より成るため、回転軸4の相対的な偏芯が予定以上に過大に生じた場合、第1の環状板31の内周まで回転軸4の周面と接触する事態が想定されるからである。ちなみに、第1の環状板31の内径を第2の環状板32の内径よりも格段に大きく設定すれば、第1の環状板31の内周と回転軸4の周面との接触を回避できるが、この場合、第2の環状板32が破損した際、直ちに、薄板群の各薄板21の内周端側における高圧側である一側での表出域が過剰に大きくなり、その結果高圧側側板24としての機能が著しく低下するため、決して得策とは言えない。なお、図7及び図8では、第2実施形態の変形例として図示している。   Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a sectional view along the axial direction of the rotary shaft showing the main part of a large-sized fluid machine equipped with a leaf seal of the fourth embodiment, and FIG. 8 is a perspective view of a high-pressure side plate that is a component of the leaf seal. . The feature of the fourth embodiment is that the first to third embodiments are further modified so that the function as the high-pressure side plate 24 can be secured more flexibly. The high-pressure side plate 24 in the first to third embodiments is composed of two annular plates, the first annular plate 31 and the second annular plate 32, so that the relative eccentricity of the rotating shaft 4 is more than expected. This is because a situation in which the outer peripheral surface of the first annular plate 31 comes into contact with the peripheral surface of the first annular plate 31 is assumed. Incidentally, if the inner diameter of the first annular plate 31 is set to be much larger than the inner diameter of the second annular plate 32, contact between the inner periphery of the first annular plate 31 and the peripheral surface of the rotary shaft 4 can be avoided. However, in this case, when the second annular plate 32 is damaged, the exposed area on one side, which is the high pressure side, on the inner peripheral end side of each thin plate 21 of the thin plate group becomes excessively large. Since the function as the side plate 24 is remarkably deteriorated, it is never a good idea. In FIGS. 7 and 8, a modification of the second embodiment is shown.

本実施形態では、図7及び図8に示すように、第1の環状板31と第2の環状板32の間に第3の環状板33が挟み込まれている。つまり、高圧側側板24は、薄板群に向けて順に、第2の環状板32、第3の環状板33、及び第1の環状板31という3枚の環状板が積み重ねられて成る。ここで、第3の環状板33の内径は、第2の環状板32の内径よりも所定量(例えば片側1mm程度)大きく設定され、第1の環状板31の内径は、第3の環状板33の内径よりも更に所定量(例えば片側1mm程度)大きく設定されている。   In the present embodiment, as shown in FIGS. 7 and 8, a third annular plate 33 is sandwiched between the first annular plate 31 and the second annular plate 32. That is, the high-pressure side plate 24 is formed by stacking three annular plates, the second annular plate 32, the third annular plate 33, and the first annular plate 31, in order toward the thin plate group. Here, the inner diameter of the third annular plate 33 is set to be larger than the inner diameter of the second annular plate 32 by a predetermined amount (for example, about 1 mm on one side), and the inner diameter of the first annular plate 31 is the third annular plate. A predetermined amount (for example, about 1 mm on one side) is set larger than the inner diameter of 33.

また、第3の環状板33は、第2の環状板32に準じた構成となっていて、その内周縁部には、回転軸4の軸方向であって薄板群へ向けて突出する突条39が設けられている。この突条39は、第3の環状板33の内径と同じ内径で、第1の環状板31の内径よりも僅かに小さい外径を有しつつ、第1の環状板31と同じ厚さを有しており、薄板群における各薄板21の高圧側である一側に当接する。なお、ここでの第2の環状板32の突条38は、第2の環状板32の内径と同じ内径で、第3の環状板33の内径よりも僅かに小さい外径を有しつつ、第3の環状板33における突条37を含む厚さを有しており、薄板群における各薄板21の高圧側である一側に当接する。   Further, the third annular plate 33 has a configuration similar to that of the second annular plate 32, and the inner peripheral edge of the third annular plate 33 protrudes toward the thin plate group in the axial direction of the rotating shaft 4. 39 is provided. The protrusion 39 has the same inner diameter as the third annular plate 33 and an outer diameter slightly smaller than the inner diameter of the first annular plate 31, and has the same thickness as the first annular plate 31. It has one side which is the high voltage side of each thin plate 21 in the thin plate group. Here, the protrusion 38 of the second annular plate 32 has the same inner diameter as the inner diameter of the second annular plate 32 and an outer diameter slightly smaller than the inner diameter of the third annular plate 33, The third annular plate 33 has a thickness including the protrusions 37 and abuts on one side which is the high pressure side of each thin plate 21 in the thin plate group.

このような構成の高圧側側板24では、回転軸4の相対的な偏芯が過大に生じた場合、回転軸4の周面に対する高圧側側板24の内周の接触は、事実上、薄板群から最も離れている第2の環状板32で先ずはなされ、更に過大な偏芯が生じた場合は、次に控えている第3の環状板33でなされる。そのため、高圧側側板24の破損は、第2の環状板32、更には第3の環状板33に段階的に止められる。従って、第2の環状板32が損傷してその機能を失ったとしても、次の第3の環状板33によって高圧側側板24の機能を補え、更に第3の環状板33が損傷してその機能を失ったとしても、次の第1の環状板31によって高圧側側板24の機能を補えることになり、その機能を機動的に維持できる。   In the high-pressure side plate 24 having such a configuration, when the relative eccentricity of the rotary shaft 4 occurs excessively, the contact of the inner periphery of the high-pressure side plate 24 with the peripheral surface of the rotary shaft 4 is actually a thin plate group. First, the second annular plate 32 that is farthest from the center is made, and if excessive eccentricity occurs, it is made by the third annular plate 33 that is reserved next. Therefore, the breakage of the high-pressure side plate 24 is stopped in stages by the second annular plate 32 and further by the third annular plate 33. Therefore, even if the second annular plate 32 is damaged and loses its function, the function of the high-pressure side plate 24 is supplemented by the next third annular plate 33, and the third annular plate 33 is further damaged and Even if the function is lost, the function of the high-pressure side plate 24 can be supplemented by the next first annular plate 31, and the function can be maintained flexibly.

なお、本実施形態では、高圧側側板24が3枚の環状板が積み重ねられて成るが、更に枚数(第3の環状板33の枚数)を増すことも可能である。但し、環状板の枚数を増した場合、薄板群に近い環状板ほどその内径が大きくなるため、高圧側側板24としての機能の若干の低下は否めないが、環状板が有する突条により、薄板群の各薄板の内周端側における高圧側である一側での表出域を最大限に狭めることができるため、その機能低下を著しく抑えることができる。   In the present embodiment, the high-pressure side plate 24 is formed by stacking three annular plates, but the number of sheets (the number of third annular plates 33) can be increased. However, when the number of the annular plates is increased, the inner diameter of the annular plate closer to the thin plate group becomes larger. Therefore, the function as the high-pressure side plate 24 cannot be slightly reduced. Since the exposed area on one side, which is the high-pressure side, on the inner peripheral end side of each thin plate of the group can be narrowed to the maximum, the function deterioration can be remarkably suppressed.

次に、本発明の第5実施形態について、図9を参照しながら説明する。図9は本発明の第5実施形態のリーフシールを環状に配置した状態を示す平面図である。   Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 9 is a plan view showing a state in which the leaf seals of the fifth embodiment of the present invention are arranged in an annular shape.

本第5実施形態では、図9に示すように、高圧側側板24の内周について、鉛直方向での下半分が鉛直方向下方へ偏芯(オフセット)されている。その偏芯量dは、その高圧側側板24を備えたリーフシール20が流体機械の軸シール機構として設置される場所によって適宜設定される。   In the fifth embodiment, as shown in FIG. 9, the lower half of the inner periphery of the high-pressure side plate 24 in the vertical direction is eccentric (offset) downward in the vertical direction. The eccentric amount d is appropriately set depending on the location where the leaf seal 20 including the high-pressure side plate 24 is installed as a shaft seal mechanism of a fluid machine.

このような構成にすると、回転軸4に対してリーフシール20を含むステータ60全体が鉛直方向上方へ偏芯することにより、回転軸4の相対的な偏芯が過大に生じた場合であっても、互いに接近する状況下にある高圧側側板24の下半分の内周と回転軸4の周面とが接触することはない。従って、高圧側側板24の破損を回避できるため、高圧側側板24の機能を維持できることになり、ガスの漏れ量を抑えることが可能になる。これは、高温の作動流体を取り扱う大型流体機械(例えばガスタービンや蒸気タービン)に有効である。   With such a configuration, when the entire stator 60 including the leaf seal 20 is eccentric with respect to the rotating shaft 4 in the vertical direction, the relative eccentricity of the rotating shaft 4 is excessively generated. However, the inner periphery of the lower half of the high-pressure side plate 24 in a state of approaching each other does not come into contact with the peripheral surface of the rotating shaft 4. Therefore, since the damage of the high-pressure side plate 24 can be avoided, the function of the high-pressure side plate 24 can be maintained, and the amount of gas leakage can be suppressed. This is effective for a large fluid machine (for example, a gas turbine or a steam turbine) that handles a high-temperature working fluid.

但し、本実施形態では高圧側側板24の内周の下半分のみを偏芯させているが、これと併せて、上半分を鉛直方向上方へすなわち下半分の偏芯方向とは逆方向へ偏芯させることも有効である。大型流体機械においては、起動の際や停止に至る際にその運転条件によってはケーシング全体の変形方向や変形量が不安定になる場合があり、この場合でも、高圧側側板24の上半分の内周と回転軸4の周面との接触を防止できるからである。   However, in this embodiment, only the lower half of the inner periphery of the high-pressure side plate 24 is eccentric, but at the same time, the upper half is shifted upward in the vertical direction, that is, in the direction opposite to the eccentric direction of the lower half. It is also effective to have a core. In a large fluid machine, the deformation direction and amount of deformation of the entire casing may become unstable depending on the operating conditions when starting or stopping, and even in this case, the inner portion of the upper half of the high-pressure side plate 24 may be unstable. This is because contact between the periphery and the peripheral surface of the rotating shaft 4 can be prevented.

なお、本実施形態の構成は、上記の第1〜第4実施形態にも適用が可能である。   Note that the configuration of the present embodiment can also be applied to the first to fourth embodiments.

その他本発明は上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、図10に示すガスタービンにリーフシールを採用しているものを例示しているが、それに限定されるものではなく、蒸気タービン、圧縮機、水車、冷凍機、ポンプ等の大型流体機械のように、軸の回転と作動流体の流動の関係でエネルギーを仕事に変換するものに広く採用することができる。また、回転軸の周面に沿った軸方向での作動流体の流動を抑えるためにも用いることができる。   In addition, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, although the thing which employ | adopted the leaf seal is illustrated in the gas turbine shown in FIG. 10, it is not limited to it, Large-sized fluid machinery, such as a steam turbine, a compressor, a water turbine, a refrigerator, a pump, is shown. As described above, it can be widely applied to those that convert energy into work due to the relationship between the rotation of the shaft and the flow of the working fluid. It can also be used to suppress the flow of the working fluid in the axial direction along the peripheral surface of the rotating shaft.

本発明は、大型流体機械の回転軸に対しての軸シール機構として有用である。   The present invention is useful as a shaft seal mechanism for a rotating shaft of a large fluid machine.

本発明の第1実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the rotating shaft which shows the principal part of the large sized fluid machine provided with the leaf seal of 1st Embodiment of this invention. 第1実施形態のリーフシールの構成要素である高圧側側板の斜視図である。It is a perspective view of the high voltage | pressure side board which is a component of the leaf seal of 1st Embodiment. 本発明の第2実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the rotating shaft which shows the principal part of the large sized fluid machine provided with the leaf seal of 2nd Embodiment of this invention. 第2実施形態のリーフシールの構成要素である高圧側側板の斜視図である。It is a perspective view of the high voltage | pressure side board which is a component of the leaf seal of 2nd Embodiment. 本発明の第3実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the rotating shaft which shows the principal part of the large sized fluid machine provided with the leaf seal of 3rd Embodiment of this invention. 第3実施形態のリーフシールの構成要素である高圧側側板の斜視図である。It is a perspective view of the high voltage | pressure side board which is a component of the leaf seal of 3rd Embodiment. 本発明の第4実施形態のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the rotating shaft which shows the principal part of the large sized fluid machine provided with the leaf seal of 4th Embodiment of this invention. 第4実施形態のリーフシールの構成要素である高圧側側板の斜視図である。It is a perspective view of the high voltage | pressure side board which is a component of the leaf seal of 4th Embodiment. 本発明の第5実施形態のリーフシールを環状に配置した状態を示す平面図である。It is a top view which shows the state which has arrange | positioned the leaf seal of 5th Embodiment of this invention cyclically | annularly. 従来一般のリーフシールを備えた大型流体機械の一例であるガスタービンの構成を示す概略図である。It is the schematic which shows the structure of the gas turbine which is an example of the large sized fluid machine provided with the conventional general leaf seal. 従来一般のリーフシールの基本構成を示す斜視図である。It is a perspective view which shows the basic composition of the conventional general leaf seal. 従来一般のリーフシールを備えた大型流体機械の要部を示す回転軸の軸方向に沿う断面図である。It is sectional drawing which follows the axial direction of the rotating shaft which shows the principal part of the large sized fluid machine provided with the conventional general leaf seal. 従来一般のリーフシールの基本構成を示す回転軸の周方向に沿う側面図及び断面図である。It is the side view and sectional drawing which follow the circumferential direction of the rotating shaft which shows the basic composition of the conventional general leaf seal. 従来一般のリーフシールの構成要素である薄板の側面図である。It is a side view of the thin plate which is a component of the conventional general leaf seal. 従来一般のリーフシールの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the conventional general leaf seal. 従来一般のリーフシールの作用を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action of the conventional general leaf seal. 従来一般のリーフシールを環状に配置した状態を示す平面図である。It is a top view which shows the state which has arrange | positioned the conventional general leaf seal in cyclic | annular form.

符号の説明Explanation of symbols

4 回転軸
20 リーフシール
21 薄板
22,23 リテーナ
24 高圧側側板
25 低圧側側板
26 接続部材
27 スペーサ
28 板バネ
31,32,33 環状板
35,36,37 突起
38,39 突条
60 ステータ
61 取付け用凹溝
62 取付け用ピース
4 Rotating shaft 20 Leaf seal 21 Thin plate 22, 23 Retainer 24 High pressure side plate 25 Low pressure side plate 26 Connection member 27 Spacer 28 Leaf spring 31, 32, 33 Annular plate 35, 36, 37 Projection 38, 39 Projection 60 Stator 61 Mounting Recessed groove 62 Mounting piece

Claims (3)

回転軸の周面とこの回転軸に同軸状で静止した静止部材の内周面との隙間においての高圧側から低圧側への作動流体の漏れを抑える軸シール機構であって、
前記回転軸の軸方向に一定幅を有し、各々が前記回転軸の周方向へ互いに微小隙間を隔てながら前記回転軸の周面に対して鋭角に積み重ねられつつ、各々の内周端が回転停止時の前記回転軸の周面に接触する可撓性のある多数の薄板より成る環状の薄板群と、この薄板群における軸方向での両側のうちの高圧側に位置する一側に当接し、前記回転軸の径よりも所定量大きい内径を有する環状の高圧側側板と、前記薄板群における軸方向での両側のうちの低圧側に位置する他側に当接し、前記高圧側側板の内径よりも所定量大きい内径を有する環状の低圧側側板と、前記薄板群、前記高圧側側板、及び前記低圧側側板をこれらの外周部で一体に保持する環状の保持部材と、より成る軸シール部材を、前記静止部材に対して取り付けた軸シール機構において、
前記高圧側側板は前記薄板群に近いほど各々の内径が大きい複数の環状板が積み重ねられて成り、これらの各環状板のうちで前記薄板群に最も近い環状板以外の環状板は、その内周縁部から前記薄板群へ向けて突出して前記薄板群の前記一側に当接する突条を有することを特徴とする軸シール機構。
A shaft seal mechanism that suppresses leakage of working fluid from the high pressure side to the low pressure side in the gap between the peripheral surface of the rotating shaft and the inner peripheral surface of a stationary member that is coaxial and stationary with respect to the rotating shaft,
Each inner peripheral end rotates while having a certain width in the axial direction of the rotating shaft and being stacked at an acute angle with respect to the peripheral surface of the rotating shaft, with each having a small gap in the circumferential direction of the rotating shaft. An annular thin plate group consisting of a large number of flexible thin plates that come into contact with the peripheral surface of the rotating shaft when stopped, and one side located on the high pressure side of both sides of the thin plate group in the axial direction. An annular high-pressure side plate having an inner diameter larger than the diameter of the rotary shaft by contact with the other side located on the low-pressure side of both sides of the thin plate group in the axial direction, and the inner diameter of the high-pressure side plate A shaft seal member comprising: an annular low-pressure side plate having an inner diameter larger than the predetermined amount; an annular holding member that integrally holds the thin plate group, the high-pressure side plate, and the low-pressure side plate at their outer peripheral portions. A shaft sealing machine attached to the stationary member In,
The high-pressure side plate is formed by stacking a plurality of annular plates each having a larger inner diameter as it is closer to the thin plate group. Among these annular plates, the annular plates other than the annular plate closest to the thin plate group are included therein. A shaft seal mechanism comprising a protrusion protruding from a peripheral edge toward the thin plate group and abutting against the one side of the thin plate group.
前記突条とこれを有する前記環状板とが一体成形品であることを特徴とする請求項1に記載の軸シール機構。   The shaft seal mechanism according to claim 1, wherein the protrusion and the annular plate having the protrusion are integrally formed. 回転軸の周面とこの回転軸に同軸状で静止した静止部材の内周面との隙間においての高圧側から低圧側への作動流体の漏れを抑える軸シール機構であって、
前記回転軸の軸方向に一定幅を有し、各々が前記回転軸の周方向へ互いに微小隙間を隔てながら前記回転軸の周面に対して鋭角に積み重ねられつつ、各々の内周端が回転停止時の前記回転軸の周面に接触する可撓性のある多数の薄板より成る環状の薄板群と、この薄板群における軸方向での両側のうちの高圧側に位置する一側に当接し、前記回転軸の径よりも所定量大きい内径を有する環状の高圧側側板と、前記薄板群における軸方向での両側のうちの低圧側に位置する他側に当接し、前記高圧側側板の内径よりも所定量大きい内径を有する環状の低圧側側板と、前記薄板群、前記高圧側側板、及び前記低圧側側板をこれらの外周部で一体に保持する環状の保持部材と、より成る軸シール部材を、前記静止部材に対して取り付けた軸シール機構において、
前記高圧側側板における鉛直方向での下半分の内周が鉛直方向下方へ偏芯されたことを特徴とする軸シール機構。
A shaft seal mechanism that suppresses leakage of working fluid from the high pressure side to the low pressure side in the gap between the peripheral surface of the rotating shaft and the inner peripheral surface of a stationary member that is coaxial and stationary with respect to the rotating shaft,
Each inner peripheral end rotates while having a certain width in the axial direction of the rotating shaft and being stacked at an acute angle with respect to the peripheral surface of the rotating shaft, with each having a small gap in the circumferential direction of the rotating shaft. An annular thin plate group consisting of a large number of flexible thin plates that come into contact with the peripheral surface of the rotating shaft when stopped, and one side located on the high pressure side of both sides of the thin plate group in the axial direction. An annular high-pressure side plate having an inner diameter larger than the diameter of the rotary shaft by contact with the other side located on the low-pressure side of both sides of the thin plate group in the axial direction, and the inner diameter of the high-pressure side plate A shaft seal member comprising: an annular low-pressure side plate having an inner diameter larger than the predetermined amount; an annular holding member that integrally holds the thin plate group, the high-pressure side plate, and the low-pressure side plate at their outer peripheral portions. A shaft sealing machine attached to the stationary member In,
A shaft seal mechanism, wherein an inner periphery of a lower half in the vertical direction of the high-pressure side plate is eccentric downward in the vertical direction.
JP2004299243A 2004-10-13 2004-10-13 Shaft seal mechanism Active JP3917997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299243A JP3917997B2 (en) 2004-10-13 2004-10-13 Shaft seal mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299243A JP3917997B2 (en) 2004-10-13 2004-10-13 Shaft seal mechanism

Publications (2)

Publication Number Publication Date
JP2006112491A true JP2006112491A (en) 2006-04-27
JP3917997B2 JP3917997B2 (en) 2007-05-23

Family

ID=36381177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299243A Active JP3917997B2 (en) 2004-10-13 2004-10-13 Shaft seal mechanism

Country Status (1)

Country Link
JP (1) JP3917997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162330A1 (en) * 2010-06-24 2011-12-29 三菱重工業株式会社 Axial seal structure and rotation mechanism provided with same
JP2012140873A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Assembling method of turbine shaft seal, and jig
WO2013062040A1 (en) * 2011-10-26 2013-05-02 三菱重工業株式会社 Shaft sealing device and rotating machine comprising same
US9488279B2 (en) 2010-05-10 2016-11-08 Mitsubishi Heavy Industries, Ltd. Method for fabricating shaft sealing device and jig for fabricating shaft sealing device, and rotary machine provided with shaft sealing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488279B2 (en) 2010-05-10 2016-11-08 Mitsubishi Heavy Industries, Ltd. Method for fabricating shaft sealing device and jig for fabricating shaft sealing device, and rotary machine provided with shaft sealing device
WO2011162330A1 (en) * 2010-06-24 2011-12-29 三菱重工業株式会社 Axial seal structure and rotation mechanism provided with same
JP2012007668A (en) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd Shaft sealing mechanism and rotary machine equipped with the same
CN102918308A (en) * 2010-06-24 2013-02-06 三菱重工业株式会社 Axial seal structure and rotation mechanism provided with same
US9046179B2 (en) 2010-06-24 2015-06-02 Mitsubishi Heavy Industries, Ltd. Axial seal structure and rotation mechanism provided with same
JP2012140873A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Assembling method of turbine shaft seal, and jig
WO2013062040A1 (en) * 2011-10-26 2013-05-02 三菱重工業株式会社 Shaft sealing device and rotating machine comprising same
JP2013092205A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Shaft seal device and rotating machine having the same
CN103842695A (en) * 2011-10-26 2014-06-04 三菱重工业株式会社 Shaft sealing device and rotating machine comprising same
US9103223B2 (en) 2011-10-26 2015-08-11 Mitsubishi Hitachi Power Systems, Ltd. Shaft sealing device and rotating machine comprising same
KR101560110B1 (en) * 2011-10-26 2015-10-13 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Shaft sealing device and rotating machine comprising same
CN103842695B (en) * 2011-10-26 2016-01-13 三菱日立电力系统株式会社 Shaft sealer and possess the rotating machinery of this shaft sealer

Also Published As

Publication number Publication date
JP3917997B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
CN100494746C (en) Shaft sealing mechanism
EP1626210B1 (en) Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine
JP5174241B2 (en) Shaft seal and rotating machine equipped with the same
JP3593082B2 (en) Shaft seal mechanism and turbine
US9677669B2 (en) Shaft seal device and rotary machine
JP5848372B2 (en) Shaft seal device and rotary machine
JP2016003655A (en) Brush seal assembly
JP3917997B2 (en) Shaft seal mechanism
JP3950455B2 (en) Shaft sealing member, shaft sealing mechanism and large fluid machine
JP3872800B2 (en) Shaft seal mechanism, assembly structure of shaft seal mechanism, and large fluid machine
JP3986520B2 (en) Shaft seal mechanism
JP3944206B2 (en) Shaft seal mechanism
JP2010285924A (en) Steam turbine and stationary part sealing structure thereof
JP2007263376A (en) Shaft seal mechanism
JP4264384B2 (en) Shaft seal mechanism
WO2017195575A1 (en) Seal segment and rotary machine
JP3986518B2 (en) Shaft seal mechanism
JP2007046540A (en) Sealing structure of turbine
JP2009203947A (en) Seal device, gas turbine having seal device and operation method of gas turbine
JP2019143680A (en) Seal segment and rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060904

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R151 Written notification of patent or utility model registration

Ref document number: 3917997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7