JPH06101577A - Exhaust gas recirculation device of 2-cycle internal combustion engine - Google Patents

Exhaust gas recirculation device of 2-cycle internal combustion engine

Info

Publication number
JPH06101577A
JPH06101577A JP4248069A JP24806992A JPH06101577A JP H06101577 A JPH06101577 A JP H06101577A JP 4248069 A JP4248069 A JP 4248069A JP 24806992 A JP24806992 A JP 24806992A JP H06101577 A JPH06101577 A JP H06101577A
Authority
JP
Japan
Prior art keywords
exhaust
valve
egr
passage
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248069A
Other languages
Japanese (ja)
Inventor
Tatsuo Kobayashi
辰夫 小林
Hiroaki Nihei
裕昭 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4248069A priority Critical patent/JPH06101577A/en
Publication of JPH06101577A publication Critical patent/JPH06101577A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/16Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system with EGR valves located at or near the connection to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent the NOx conversion efficiency of a three-way catalytic converter from being deteriorated by an increase in the air-fuel ratio of exhaust gas caused by the blowby of fresh air in a 2-cycle engine. CONSTITUTION:An EGR port 21 is provided near the exhaust valve 14 of an exhaust port 13 in a 2-cycle engine 1, and an EGR passage 25 for connecting the EGR port 21 to an intake passage 2 and a control valve 22 for opening and closing the EGR port 21 are provided. The control valve 22 is open during the open period of an intake valve 12 and recirculates to the intake side exhaust including a large amount of blowby fresh air. Therefore, the concentration of oxygen in the exhaust flowing through a three-way catalytic converter located downstream of an exhaust passage is reduced and the conversion efficiency of NOx can be kept good. Since the control valve 22 is closed while not in the above period, fresh air is not forced to flow into the exhaust side from the intake side by pressure fluctuation in the exhaust port 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2サイクル内燃機関の
排気ガス再循環装置に関し、更に詳細には各シリンダの
行程に同期して排気ガス再循環を行うタイムドEGR装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation system for a two-cycle internal combustion engine, and more particularly to a timed EGR system for performing exhaust gas recirculation in synchronization with the stroke of each cylinder.

【0002】[0002]

【従来の技術】2サイクルエンジンでは排気弁開弁後の
掃気行程中給気弁を開放して掃気ポンプにより加圧した
給気をシリンダ内に導入してシリンダ内に残留した既燃
ガスを排気ポートに押し出している。このため、掃気期
間中、特にシリンダ内に新気の充填が進んだピストン下
死点近傍以降では新気が直接給気弁から排気弁に吹き抜
けるため、排気ガスに多くの新気が混入して排気ガス中
の酸素濃度が上昇する。排気ガス中の酸素濃度が上昇し
た場合、三元触媒を用いた排気浄化装置ではNOx の転
換効率が低下し排気エミッションが悪化する問題を生じ
る。この新気吹き抜けを考慮して、NOx の浄化を良好
にするために三元触媒に到達する排気が理論空燃比付近
になるように予め燃焼時の空燃比をリッチ側になるよう
に燃料供給量を増大させることも可能であるが燃料供給
を増大させたのでは燃焼時の空燃比が過濃となり、燃費
の悪化や機関出力の低下を生じる恐れがある。
2. Description of the Related Art In a two-cycle engine, the air supply valve is opened during the scavenging process after the exhaust valve is opened, and the supply air pressurized by the scavenging pump is introduced into the cylinder to exhaust the burned gas remaining in the cylinder. Pushing out to the port. For this reason, during the scavenging period, especially after the piston bottom dead center where the cylinder is filled with fresh air, the fresh air blows directly from the air supply valve to the exhaust valve, so a large amount of fresh air is mixed in the exhaust gas. The oxygen concentration in the exhaust gas rises. When the oxygen concentration in the exhaust gas rises, the NOx conversion efficiency of the exhaust purification system using a three-way catalyst decreases, which causes a problem of deterioration of exhaust emission. In consideration of this fresh air blow-through, the amount of fuel supplied so that the exhaust reaching the three-way catalyst is near the stoichiometric air-fuel ratio and the air-fuel ratio during combustion is set to the rich side in advance in order to improve NOx purification. However, if the fuel supply is increased, the air-fuel ratio at the time of combustion becomes excessive, which may result in deterioration of fuel efficiency and reduction of engine output.

【0003】上記問題を解決するため、掃気期間中の新
気を多く含んだ排気を給気側に再循環させることによ
り、燃料供給量を増大させることなく三元触媒での空燃
比の増大を防止する排気ガス再循環(EGR)装置が考
案されている。この種のEGR装置の例としては、例え
ば実開平3−5961号公報に記載されたものがある。
同公報のEGR装置は、新気をほとんど含まない排気ブ
ローダウン中の排気ガスが流れる第一の排気通路と多量
の新気を含む排気ガスが流れる第二の排気通路とを設
け、上記第二の排気通路と給気通路とをEGR通路で接
続して多量の新気を含む排気ガスのみを給気通路に還流
させている。
In order to solve the above problem, the exhaust gas containing a large amount of fresh air during the scavenging period is recirculated to the air supply side to increase the air-fuel ratio in the three-way catalyst without increasing the fuel supply amount. Exhaust gas recirculation (EGR) devices have been devised to prevent this. An example of this type of EGR device is described in Japanese Utility Model Laid-Open No. 3-5961.
The EGR device of the same publication is provided with a first exhaust passage through which exhaust gas during exhaust blowdown containing almost no fresh air flows and a second exhaust passage through which exhaust gas containing a large amount of fresh air flows. The exhaust passage and the air supply passage are connected by the EGR passage, and only the exhaust gas containing a large amount of fresh air is recirculated to the air supply passage.

【0004】上記公報の装置によれば燃料供給量を増大
することなく三元触媒での空燃比を理論空燃比近傍に保
持してNOx の転換効率の低下を防止する効果を得られ
る他、既燃ガスを含む排気を給気側に再循環させること
により燃焼温度を下げ、NOx の発生を低減させる通常
の外部EGR効果を同時に得ることができる。
According to the device disclosed in the above publication, the effect of keeping the air-fuel ratio of the three-way catalyst near the stoichiometric air-fuel ratio without increasing the fuel supply amount and preventing the reduction of NOx conversion efficiency can be obtained. By recirculating the exhaust gas containing the fuel gas to the charge side, the combustion temperature can be lowered and the normal external EGR effect of reducing the generation of NOx can be obtained at the same time.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記実開平
3−5961号公報の装置ではEGR実施中にはEGR
通路は常時開放されているため、給気通路からEGR通
路を通って排気側に新気が流入する場合があり、三元触
媒での排気空燃比が増大する(リーン側になる)問題が
生じる。
However, in the apparatus disclosed in Japanese Utility Model Laid-Open No. 3-5961, EGR is performed during execution of EGR.
Since the passage is always open, fresh air may flow from the air supply passage to the exhaust side through the EGR passage, causing a problem that the exhaust air-fuel ratio in the three-way catalyst increases (becomes leaner). .

【0006】すなわち、排気通路内の圧力は一定でな
く、各シリンダの排気弁開閉に応じて脈動しており、排
気通路内圧力が給気通路内圧力より低くなる期間が生じ
る。このため、排気通路内圧力低下時には、給気通路内
の新気やEGR通路内の新気を多量に含む排気が排気通
路側に逆流し、排気通路内の排気空燃比を増大させるこ
とになるのである。
That is, the pressure in the exhaust passage is not constant and pulsates according to the opening / closing of the exhaust valve of each cylinder, and there is a period in which the pressure in the exhaust passage becomes lower than the pressure in the supply passage. Therefore, when the pressure in the exhaust passage decreases, exhaust containing a large amount of fresh air in the supply passage and fresh air in the EGR passage flows back to the exhaust passage side, increasing the exhaust air-fuel ratio in the exhaust passage. Of.

【0007】この問題を解決するために、例えばEGR
通路に新気の逆流を防止する逆止弁を設けることも考え
られるが、逆止弁を設けたのではEGR通路の流路抵抗
が大幅に増大するため新気を含んだ排気ガスを充分に流
すことができなくなり、排気空燃比を充分に下げること
ができなくなる問題を生じる。本発明は上記問題に鑑
み、排気側への新気の逆流を防止して常に三元触媒での
排気空燃比を理論空燃比近傍に維持することができる2
サイクル内燃機関の排気ガス再循環装置を提供すること
を目的としている。
To solve this problem, for example, EGR
It is possible to install a check valve in the passage to prevent the reverse flow of fresh air. However, if a check valve is provided, the flow resistance of the EGR passage will increase significantly, so exhaust gas containing fresh air will be sufficient. There is a problem in that the air flow cannot be made to flow and the exhaust air-fuel ratio cannot be lowered sufficiently. In view of the above problems, the present invention can prevent the reverse flow of fresh air to the exhaust side and always maintain the exhaust air-fuel ratio in the three-way catalyst near the stoichiometric air-fuel ratio.
An object of the present invention is to provide an exhaust gas recirculation device for a cycle internal combustion engine.

【0008】[0008]

【課題を解決するための手段】本発明によれば、シリン
ダ掃気期間中に排気ガス再循環を行う2サイクル内燃機
関において、各シリンダ排気ポートの排気弁近傍と機関
給気通路とをそれぞれ連通する排気還流通路と、該それ
ぞれの排気還流通路を開閉する制御弁とを設け、各排気
還流通路の制御弁を、それぞれ対応するシリンダの給気
弁の開弁期間中に開弁させることを特徴とする2サイク
ル内燃機関の排気ガス再循環装置が提供される。
According to the present invention, in a two-cycle internal combustion engine in which exhaust gas is recirculated during a cylinder scavenging period, the vicinity of the exhaust valve of each cylinder exhaust port and the engine supply passage are communicated with each other. An exhaust gas recirculation passage and a control valve for opening and closing the respective exhaust gas recirculation passage are provided, and the control valve of each exhaust gas recirculation passage is opened during the opening period of the air supply valve of the corresponding cylinder. An exhaust gas recirculation system for a two-cycle internal combustion engine is provided.

【0009】また、上記排気ガス再循環装置において更
に排気ガス再循環を停止する手段を設け、軽負荷時に排
気ガス再循環を停止するようにすることも可能である。
It is also possible to further provide a means for stopping the exhaust gas recirculation in the exhaust gas recirculation device so as to stop the exhaust gas recirculation when the load is light.

【0010】[0010]

【作用】各排気還流通路の制御弁はそれぞれ対応するシ
リンダの給気弁開弁期間中に開弁するため、掃気期間中
及び排気弁閉弁直後の新気を多量に含んだ排気ポート内
の排気ガスが給気通路に還流される。また、排気弁閉弁
後排気ポートの圧力が低下する期間は制御弁が閉弁して
いるため給気通路側から排気ポートに新気が流入しな
い。また、軽負荷時に排気ガス再循環を停止することに
より軽負荷時の燃焼の安定化が図られる。
[Function] Since the control valve of each exhaust gas recirculation passage is opened during the air supply valve opening period of the corresponding cylinder, the exhaust port inside the exhaust port containing a large amount of fresh air during the scavenging period and immediately after the exhaust valve is closed. Exhaust gas is returned to the air supply passage. Also, since the control valve is closed during the period when the pressure of the exhaust port drops after the exhaust valve is closed, fresh air does not flow into the exhaust port from the air supply passage side. Further, by stopping the exhaust gas recirculation when the load is light, the combustion is stabilized when the load is light.

【0011】[0011]

【実施例】以下添付図面を用いて本発明の実施例を説明
する。図1は本発明の第一の実施例を示す図である。図
において1は2サイクルエンジン、2は給気通路、3は
スロットル弁、4は給気通路2のスロットル弁3下流に
設けられた過給機である。また、11はエンジン1の各
気筒の給気ポート、12は給気弁、13は各気筒の排気
ポート、14は排気弁、15は各気筒内に直接燃料を噴
射する筒内燃料噴射弁である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a first embodiment of the present invention. In the figure, 1 is a two-cycle engine, 2 is a supply passage, 3 is a throttle valve, and 4 is a supercharger provided downstream of the throttle valve 3 in the supply passage 2. Further, 11 is an air supply port of each cylinder of the engine 1, 12 is an air supply valve, 13 is an exhaust port of each cylinder, 14 is an exhaust valve, and 15 is an in-cylinder fuel injection valve for directly injecting fuel into each cylinder. is there.

【0012】各気筒の排気ポート13の排気弁14近傍
の壁面には排気ガスを取り入れるEGRポート21が開
口しており、各EGRポート21は排気ロータリ弁22
を介してEGRマニホルド24に連通している。EGR
マニホルド24には複数気筒のEGRポート21が接続
されており、ここでまとめられた排気ガスは単一のEG
R通路25を通って給気通路2のスロットル弁3下流の
負圧部に接続されている。
An EGR port 21 for taking in exhaust gas is opened on a wall surface near the exhaust valve 14 of the exhaust port 13 of each cylinder, and each EGR port 21 has an exhaust rotary valve 22.
Through the EGR manifold 24. EGR
The manifold 24 is connected to a plurality of cylinder EGR ports 21, and the exhaust gas collected here is a single EG.
It is connected to the negative pressure portion downstream of the throttle valve 3 of the air supply passage 2 through the R passage 25.

【0013】図2,図3は排気ロータリ弁22の構成を
示す図である。図2,図3に示すように排気ロータリ弁
22は各気筒のEGRポート21とEGRマニホルド2
4とを連通する連通路26を横断して配置され、エンジ
ンクランク軸31からタイミングベルト32等によりク
ランク軸回転に同期してクランク軸31の 1/2の速度で
回転する。排気ロータリ弁22内には、各気筒の連通路
26部分に直径方向に延設されたガス通路27が設けら
れており、ロータリ弁22が 1/2回転する毎に各気筒の
連通路26が開放され、EGRポート21とEGRマニ
ホルド24が連通する。
2 and 3 are views showing the structure of the exhaust rotary valve 22. As shown in FIG. As shown in FIGS. 2 and 3, the exhaust rotary valve 22 includes an EGR port 21 and an EGR manifold 2 of each cylinder.
4 and across the communication passage 26 that communicates arranged to rotate at a 1/2 of the speed of the crank shaft 31 in synchronization with the crankshaft rotation from an engine crankshaft 31 by a timing belt 32 or the like. The exhaust rotary valve 22, and gas passage 27 which extends in the diameter direction communicating channel 26 portion of each cylinder is provided, the communication passage 26 of each cylinder whenever the rotary valve 22 is rotated 1/2 When opened, the EGR port 21 and the EGR manifold 24 communicate with each other.

【0014】図3は排気ロータリ弁22とEGRマニホ
ルド24の配置を示す。図3は3気筒エンジンの場合の
配置を示し、各気筒には3つの排気弁14が設けられ、
EGRポート21も各排気弁14近傍に各気筒毎に3つ
ずつ設けられている。本実施例では、排気ロータリ弁2
2のそれぞれのガス通路27は、それぞれ対応する気筒
の給気弁開弁期間のうち、給気弁開弁時から排気弁閉弁
時までの間EGRポート21とEGRマニホルド24と
を連通する位置に設けられている。
FIG. 3 shows the arrangement of the exhaust rotary valve 22 and the EGR manifold 24. FIG. 3 shows an arrangement for a three-cylinder engine, in which each cylinder is provided with three exhaust valves 14,
Three EGR ports 21 are also provided near each exhaust valve 14 for each cylinder. In this embodiment, the exhaust rotary valve 2
Each of the gas passages 27 of No. 2 is a position that connects the EGR port 21 and the EGR manifold 24 between the opening of the intake valve and the closing of the exhaust valve in the intake valve opening period of the corresponding cylinder. It is provided in.

【0015】図4は、各気筒の給気弁と排気弁の開閉時
期と排気ロータリ弁22の開閉時期との関係を説明する
タイミング図である。図においてTDC,BDCはそれ
ぞれ各気筒のピストン上死点と下死点を示し、EXO,
EXCはそれぞれ排気弁14の開弁と閉弁を、またIN
O,INCはそれぞれ給気弁の開弁と閉弁のクランク回
転角を示している。
FIG. 4 is a timing chart for explaining the relationship between the opening / closing timing of the air supply valve and the exhaust valve of each cylinder and the opening / closing timing of the exhaust rotary valve 22. In the figure, TDC and BDC respectively indicate the piston top dead center and bottom dead center of each cylinder, and EXO,
EXC opens and closes the exhaust valve 14, and IN
O and INC represent the crank rotation angles of the intake valve opening and closing, respectively.

【0016】2サイクルエンジンでは、爆発行程後排気
弁が開弁すると(図4,EXO)、気筒内の高圧の既燃
ガスが排気ポートに排出される排気ブローダウンが生じ
(図4,区間I)、排気ポート圧力が上昇する。次いで
給気弁が開弁すると(図4,INO)、過給機により加
圧された新気が給気ポートから流入し、気筒内に残留し
ていた既燃ガスを排気ポートから押し出す掃気行程(図
4,区間II) が行われる。排気弁閉弁(図4,EXC)
の後も給気ポートからの新気流入が続き、給気弁閉弁
(図4,INC)まで気筒内には新気が充填され(図
4,区間III)、給気弁閉弁後に圧縮,爆発の各行程が行
われサイクルが完了する。
In the two-cycle engine, when the exhaust valve opens after the explosion stroke (EXO in FIG. 4), exhaust blowdown occurs in which high-pressure burned gas in the cylinder is discharged to the exhaust port (in FIG. 4, section I). ), Exhaust port pressure rises. Next, when the intake valve opens (Fig. 4, INO), fresh air pressurized by the supercharger flows in from the intake port, and burnt gas remaining in the cylinder is pushed out from the exhaust port. (Fig. 4, Section II) is performed. Exhaust valve closed (Fig. 4, EXC)
After that, fresh air continues to flow from the air supply port, and the cylinder is filled with fresh air until the air supply valve is closed (Fig. 4, INC) (Fig. 4, Section III), and compression is performed after the air supply valve is closed. , Each stroke of explosion is performed and the cycle is completed.

【0017】上記のうち、ブローダウン行程中(図4,
区間I)に排気ポートに排出される排気ガスは既燃ガス
であり、残留酸素濃度は低い。一方、掃気行程中に排気
ポートに排出される排気ガスは、掃気行程初期には既燃
ガスを多く含み酸素濃度が低いが、掃気行程が進むにつ
れて掃気される既燃ガスに新気が混入するため酸素濃度
が上昇して行く。また、エンジン低回転時にはブローダ
ウン行程中に筒内既燃ガスの大部分が排気ポートに排出
されるため、掃気行程初期から既燃ガスに多くの新気が
混入する場合がある。
Of the above, during the blowdown process (see FIG. 4,
The exhaust gas discharged to the exhaust port in the section I) is a burnt gas, and the residual oxygen concentration is low. On the other hand, the exhaust gas discharged to the exhaust port during the scavenging process contains a large amount of burned gas at the beginning of the scavenging process and has a low oxygen concentration, but fresh air is mixed with the burned gas that is scavenged as the scavenging process proceeds. Therefore, the oxygen concentration rises. In addition, since most of the burned gas in the cylinder is discharged to the exhaust port during the blowdown stroke when the engine is running at low speed, a large amount of fresh air may be mixed with the burned gas from the beginning of the scavenging stroke.

【0018】更に、ピストン下死点(BCD)近傍より
後では気筒内に新気の充填が進み、筒内圧力と給気ポー
トとの差が小さくなるため、給気ポートから流入する新
気流の速度が低下して給気ポートから直接排気ポートに
流出する新気の吹き抜けが生じ、排気ガス中に含まれる
新気の割合が増大する。特に、下死点以降では、ピスト
ンの上昇により気筒内上部に滞留している新気が排気弁
から排出されるようになるため、ピストン下死点(BD
C)から排気弁閉弁(EXC)までの間に新気の吹き抜
けが最も増大する。
Further, after the piston is close to the bottom dead center (BCD), the fresh air is filled into the cylinder and the difference between the cylinder internal pressure and the air supply port becomes small. The velocity decreases and blow-through of fresh air flowing out from the air supply port directly to the exhaust port occurs, and the ratio of fresh air contained in the exhaust gas increases. In particular, after the bottom dead center, since the fresh air accumulated in the upper part of the cylinder is exhausted from the exhaust valve due to the rise of the piston, the piston bottom dead center (BD
The blow-through of fresh air increases most during the period from C) to the exhaust valve closing (EXC).

【0019】本実施例では排気ロータリ弁を給気弁開弁
から排気弁閉弁までの間に開弁させることにより(図4
斜線区間)、上記吹き抜けにより多量の新気を含む排気
を給気側に還流させるようにしている。このため、排気
通路下流に設けた三元触媒に流れる排気に含まれる新気
の割合が低下し、三元触媒での排気空燃比増大が防止さ
れる。また、排気弁閉弁後排気ポート圧力が低下するピ
ストン上死点付近では排気ロータリ弁は閉弁しているた
め、給気側から排気ポートに新気が流入することを防止
できる。
In this embodiment, the exhaust rotary valve is opened between the intake valve opening and the exhaust valve closing (see FIG. 4).
In the shaded area), the exhaust containing a large amount of fresh air is recirculated to the air supply side by the blow-by. As a result, the proportion of fresh air contained in the exhaust flowing through the three-way catalyst provided downstream of the exhaust passage is reduced, and an increase in the exhaust air-fuel ratio at the three-way catalyst is prevented. Further, since the exhaust rotary valve is closed near the piston top dead center where the exhaust port pressure drops after the exhaust valve is closed, it is possible to prevent fresh air from flowing into the exhaust port from the air supply side.

【0020】次に、図5は排気ロータリ弁の開弁期間設
定の別の例を示す。図5の例においても、排気ロータリ
バルブは給気弁開弁と共に開弁するが、排気ロータリバ
ルブは排気弁閉弁後も開弁を続け、給気弁閉弁と共に閉
弁するようにされている点が図4の場合と相違する。前
述のように、排気弁閉弁直前には多量の新気が排気ポー
トに吹き抜けるが、排気弁閉弁後は排気の流れがなくな
るため排気ポートに流入した新気は排気弁閉弁直後は排
気ポートの排気弁近傍に滞留し、排気弁近傍では排気ガ
スの酸素濃度が上昇した状態になっている。この排気弁
近傍に滞留した新気は時間の経過と共に拡散し、排気ポ
ート内の排気ガスの酸素濃度は均一化されて排気弁近傍
での酸素濃度も低下するが、図5の例では排気ロータリ
弁の閉弁時期を給気弁閉弁時期付近まで遅延させること
により、排気弁開弁中の吹き抜けによる新気に加え、排
気弁閉弁直後の酸素濃度の高い排気ガスをも給気側に還
流させるようにしている。
Next, FIG. 5 shows another example of setting the valve opening period of the exhaust rotary valve. In the example of FIG. 5 as well, the exhaust rotary valve is opened together with the intake valve opening, but the exhaust rotary valve is kept open even after the exhaust valve is closed and closed together with the intake valve closing. This is different from the case of FIG. As described above, a large amount of fresh air is blown into the exhaust port immediately before the exhaust valve is closed, but after the exhaust valve is closed, the flow of exhaust gas disappears, so the fresh air that has flowed into the exhaust port is exhausted immediately after the exhaust valve is closed. The gas stays in the vicinity of the exhaust valve of the port, and the oxygen concentration of the exhaust gas is increased near the exhaust valve. The fresh air staying in the vicinity of the exhaust valve diffuses with the passage of time, and the oxygen concentration of the exhaust gas in the exhaust port becomes uniform and the oxygen concentration in the vicinity of the exhaust valve also decreases. By delaying the valve closing timing to near the intake valve closing timing, in addition to fresh air due to blow-by during exhaust valve opening, exhaust gas with high oxygen concentration immediately after closing the exhaust valve is also supplied to the intake side. I try to bring it to reflux.

【0021】このように排気ロータリ弁の閉弁時期を遅
延(すなわち、開弁期間を延長)することにより給気通
路内の負圧が小さく、排気ポート圧力との差が小さい場
合でも新気を多く含む排気を充分な量だけ給気側に還流
させることが可能となる。特に、図1に示したように、
スロットル弁3の下流側に過給機4を配置した場合に
は、過給機4の駆動損失を低減し、燃費を向上させるた
めにスロットル弁3の下流側負圧をできるだけ小さくな
るように設定することが必要であり、排気ポート13と
の差圧を充分に大きく取れない場合が生じる。このよう
な場合でも、排気ロータリ弁の開弁期間を延長して排気
弁閉弁直後の酸素濃度の高い排気ガスを給気側に還流さ
せることにより、差圧の低下による排気ガス還流量の減
少を防止することができる。
By delaying the closing timing of the exhaust rotary valve (that is, extending the opening period) in this way, even if the negative pressure in the air supply passage is small and the difference from the exhaust port pressure is small, fresh air is supplied. It is possible to recirculate a large amount of exhaust gas containing a large amount to the supply side. In particular, as shown in FIG.
When the supercharger 4 is arranged on the downstream side of the throttle valve 3, the downstream side negative pressure of the throttle valve 3 is set to be as small as possible in order to reduce the drive loss of the supercharger 4 and improve the fuel consumption. Therefore, there is a case where the differential pressure with the exhaust port 13 cannot be sufficiently large. Even in such a case, the exhaust gas recirculation amount is reduced by decreasing the differential pressure by extending the exhaust rotary valve opening period and recirculating exhaust gas with high oxygen concentration immediately after the exhaust valve is closed to the supply side. Can be prevented.

【0022】なお、図1の実施例では、各気筒の給気ポ
ートを共通のEGRマニホルド24に連通させている
が、EGRマニホルド24を設けたことにより、各気筒
からの排気ガスを単一のEGR通路25を介して給気通
路2に戻すことができるため、各気筒毎の個別のEGR
通路が不要になる利益がある。また、EGRマニホルド
24はサージタンクとしても機能するため、例えば、排
気ブローダウン直後に排気通路内に生じる圧力波により
給気ポート11内が瞬間的に負圧になったような場合で
も給気通路2から排気ポート13側に新気が流れること
を防止できる。更に、EGRマニホルド24を設けたこ
とにより排気ガスの滞留時間が増大するため、EGRガ
スの冷却効果が向上するのでEGRガス温度が低減さ
れ、筒内燃焼温度の上昇を防ぎ、NOx 発生量を低減す
る通常の外部EGR効果を得ることができる。
In the embodiment of FIG. 1, the air supply port of each cylinder is communicated with the common EGR manifold 24. However, since the EGR manifold 24 is provided, the exhaust gas from each cylinder is separated into a single gas. Since the air can be returned to the air supply passage 2 via the EGR passage 25, an individual EGR for each cylinder can be obtained.
There is a benefit of eliminating the passage. Further, since the EGR manifold 24 also functions as a surge tank, for example, even if the inside of the air supply port 11 momentarily becomes negative pressure due to a pressure wave generated in the exhaust air passage immediately after exhaust blowdown, the air supply passage is It is possible to prevent fresh air from flowing from 2 to the exhaust port 13 side. Further, since the residence time of the exhaust gas is increased by providing the EGR manifold 24, the cooling effect of the EGR gas is improved, the EGR gas temperature is reduced, the rise of the in-cylinder combustion temperature is prevented, and the NOx generation amount is reduced. The usual external EGR effect can be obtained.

【0023】次に、図6に本発明の第二の実施例の構成
を示す。本実施例では前述の実施例の排気ロータリ弁
(図1,22)とEGRマニホルド(同24)は採用し
ておらず、各気筒のEGRポート21と給気通路2のス
ロットル弁3下流部を個別のEGR配管35で接続し、
各EGR配管35を高速EGR弁36を用いて開閉する
ようにした点が相違している。高速EGR弁36には高
速開閉電磁弁が使用され、図示しないエンジン制御回路
からの信号に応じてEGR配管35を開閉する。本実施
例においても、各高速EGR弁36の開閉時期を図4又
は図5のタイミングに設定することにより図1の実施例
と同等の効果を得ることができる。また、本実施例では
制御回路からの信号により高速EGR弁36の開閉時期
を変えることができるため、スロットル弁3下流の負圧
や負荷状態に応じて高速EGR弁36の開弁時間を調整
し、運転状態に応じた最適のEGR量を設定できる効果
がある。
Next, FIG. 6 shows the configuration of the second embodiment of the present invention. In this embodiment, the exhaust rotary valve (FIGS. 1 and 22) and the EGR manifold (24) of the above-described embodiment are not adopted, and the EGR port 21 of each cylinder and the downstream portion of the throttle valve 3 of the air supply passage 2 are connected. Connect with individual EGR piping 35,
The difference is that each EGR pipe 35 is opened and closed by using a high-speed EGR valve 36. A high-speed opening / closing solenoid valve is used as the high-speed EGR valve 36, and opens / closes the EGR pipe 35 in response to a signal from an engine control circuit (not shown). Also in this embodiment, the same effect as that of the embodiment of FIG. 1 can be obtained by setting the opening / closing timing of each high speed EGR valve 36 to the timing of FIG. 4 or 5. Further, in this embodiment, since the opening / closing timing of the high speed EGR valve 36 can be changed by the signal from the control circuit, the opening time of the high speed EGR valve 36 is adjusted according to the negative pressure and the load condition downstream of the throttle valve 3. There is an effect that an optimum EGR amount can be set according to the operating state.

【0024】次に図7に本発明の第三の実施例の構成を
示す。本実施例の構成は図1の実施例と略同様であるが
EGR通路25を閉塞する電磁弁41が設けられている
点が図1と相違する。本実施例では電磁弁41は図示し
ないエンジン制御回路からの信号に応じて作動し、アイ
ドル時等軽負荷運転時にEGR通路25を閉塞してEG
R通路25を通るEGRガスの還流を遮断する。
Next, FIG. 7 shows the configuration of the third embodiment of the present invention. The configuration of this embodiment is substantially the same as that of the embodiment of FIG. 1, but differs from that of FIG. 1 in that an electromagnetic valve 41 for closing the EGR passage 25 is provided. In this embodiment, the solenoid valve 41 operates in response to a signal from an engine control circuit (not shown), and closes the EGR passage 25 during light load operation such as idling to close the EG.
The recirculation of EGR gas passing through the R passage 25 is blocked.

【0025】EGRガスの還流量は排気ロータリ弁22
の開閉に伴い変動するが、アイドル時にEGRガス還流
量の変動により気筒吸入空気量が変動するとアイドル回
転が不安定になる場合がある。また、軽負荷運転時等に
筒内噴射弁15から圧縮行程時に気筒内に燃料を噴射し
て成層燃焼を行うような場合には、燃料の霧化を促進し
て燃焼状態を改善するために混合気温度を上昇させる必
要があるが、EGR通路25を介して多量の外部EGR
ガスが気筒内に供給されると、気筒内に残留する高温の
既燃ガス量(内部EGR量)が減少し、混合気温度を高
く維持することができない。
The recirculation amount of EGR gas is determined by the exhaust rotary valve 22.
However, if the cylinder intake air amount fluctuates due to fluctuations in the EGR gas recirculation amount during idling, idle rotation may become unstable. Further, in the case of performing the stratified combustion by injecting the fuel from the in-cylinder injection valve 15 into the cylinder during the compression stroke during the light load operation or the like, in order to promote the atomization of the fuel and improve the combustion state. Although it is necessary to raise the mixture temperature, a large amount of external EGR is passed through the EGR passage 25.
When the gas is supplied into the cylinder, the amount of high temperature burnt gas (internal EGR amount) remaining in the cylinder decreases, and the mixture temperature cannot be kept high.

【0026】そこで、本実施例ではアイドル時や成層燃
焼を行う軽負荷時には電磁弁41を閉弁し、EGR通路
を介して還流するEGRガスを遮断することによりアイ
ドル回転の安定と軽負荷時の燃焼改善とを図っている。
次に、図8に本発明の第四の実施例を示す。本実施例で
は、図1の実施例の構成に、更にEGRポート21下流
の排気通路51に排気絞り弁52を配置している。排気
絞り弁52は、全開時の圧力損失が少ない、例えばバタ
フライ弁が使用され、図示しないエンジン制御回路から
の信号に応じて作動する電磁式又は負圧式アクチュエー
タ52aにより開閉駆動される。
Therefore, in the present embodiment, the electromagnetic valve 41 is closed at the time of idling or at the time of light load for performing stratified charge combustion, and the EGR gas that recirculates through the EGR passage is shut off to stabilize idle rotation and at the time of light load. Combustion is improved.
Next, FIG. 8 shows a fourth embodiment of the present invention. In the present embodiment, an exhaust throttle valve 52 is arranged in the exhaust passage 51 downstream of the EGR port 21 in the configuration of the embodiment of FIG. The exhaust throttle valve 52 has a small pressure loss when fully opened, for example, a butterfly valve is used, and is opened / closed by an electromagnetic or negative pressure actuator 52a that operates according to a signal from an engine control circuit (not shown).

【0027】本実施例においては、排気絞り弁52は、
エンジン制御回路からの信号によりエンジン低回転時
(例えば1600rpm 以下) に所定の開度まで閉じられ
排気通路51に絞りを与える。これにより、新気の吹き
抜けが増大するエンジン低回転時に排気ポート圧が上昇
するので、EGRガス量を増大させることができ、三元
触媒に流れる排気ガスの酸素濃度を大幅に低減すること
ができる。
In the present embodiment, the exhaust throttle valve 52 is
In response to a signal from the engine control circuit, the engine is closed to a predetermined opening when the engine speed is low (for example, 1600 rpm or less), and the exhaust passage 51 is throttled. As a result, the exhaust port pressure rises when the engine is rotating at a low speed where the fresh air blow-through increases, so that the amount of EGR gas can be increased and the oxygen concentration of the exhaust gas flowing through the three-way catalyst can be greatly reduced. .

【0028】また、エンジン回転数が増大した場合に
は、排気絞り弁52は全開にされるため、排気抵抗の増
大による出力低下等の問題は生じない。また、本実施例
によればEGR量を増大させる際には排気ポート圧力が
上昇するため、EGR通路25や排気ロータリ弁22を
予め大径に設定しておく必要がないため、各部品を小型
化できる利点がある。
Further, when the engine speed increases, the exhaust throttle valve 52 is fully opened, so that there is no problem such as a decrease in output due to an increase in exhaust resistance. Further, according to the present embodiment, since the exhaust port pressure rises when the EGR amount is increased, it is not necessary to set the EGR passage 25 and the exhaust rotary valve 22 to large diameters in advance, so that each component is small. There is an advantage that can be realized.

【0029】なお、上述の第三と第四の実施例において
も排気ロータリ弁22の開弁時期は図4又は図5に示す
時期に設定される。また第二の実施例(図6)におい
て、軽負荷時に高速EGR弁36を閉弁保持することに
より第三の実施例と同等の効果を得ることができる。同
様に、第二の実施例においても排気通路に図8と同様の
絞り弁を設ければ上記第四の実施例と同等の効果を得る
ことができる。
In the third and fourth embodiments, the opening timing of the exhaust rotary valve 22 is set to the timing shown in FIG. 4 or 5. Further, in the second embodiment (FIG. 6), the same effect as that of the third embodiment can be obtained by keeping the high speed EGR valve 36 closed during a light load. Similarly, also in the second embodiment, if the throttle valve similar to that shown in FIG. 8 is provided in the exhaust passage, the same effect as in the fourth embodiment can be obtained.

【0030】[0030]

【発明の効果】本発明は、上述のように構成したことに
より、吹き抜けによる新気を多量に含んだ排気を給気側
に再循環させることができ、しかも給気側から排気側に
新気が流れることを防止することができるので、三元触
媒での排気空燃比を常に理論空燃比近傍に保持してNO
x の浄化効率を良好に維持することができる。また、更
にアイドル時や軽負荷時には排気の再循環を停止するよ
うにすれば、アイドル時,軽負荷時の燃焼を良好に保つ
ことのできる効果を奏する。
As described above, according to the present invention, exhaust gas containing a large amount of fresh air due to blow-through can be recirculated to the air supply side, and fresh air from the air supply side to the air exhaust side can be recirculated. Therefore, the exhaust air-fuel ratio at the three-way catalyst is always kept near the stoichiometric air-fuel ratio and NO
The purification efficiency of x can be favorably maintained. Further, if the exhaust gas recirculation is stopped at the time of idling or at the time of light load, there is an effect that the combustion at the time of idling and at the time of light load can be favorably maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例構成を示す図である。FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】排気ロータリ弁の構成を示す図である。FIG. 2 is a diagram showing a configuration of an exhaust rotary valve.

【図3】排気ロータリ弁の構成を示す図である。FIG. 3 is a diagram showing a configuration of an exhaust rotary valve.

【図4】排気ロータリ弁の開弁時期設定を示すタイミン
グ図である。
FIG. 4 is a timing chart showing the opening timing setting of the exhaust rotary valve.

【図5】排気ロータリ弁の開弁時期設定の別の例を示す
タイミング図である。
FIG. 5 is a timing chart showing another example of setting the valve opening timing of the exhaust rotary valve.

【図6】本発明の第二の実施例構成を示す図である。FIG. 6 is a diagram showing a configuration of a second exemplary embodiment of the present invention.

【図7】本発明の第三の実施例構成を示す図である。FIG. 7 is a diagram showing a configuration of a third exemplary embodiment of the present invention.

【図8】本発明の第四の実施例構成を示す図である。FIG. 8 is a diagram showing a configuration of a fourth exemplary embodiment of the present invention.

【符号の説明】 1…エンジン 2…給気通路 3…スロットル弁 4…過給機 12…給気弁 13…排気ポート 14…排気弁 15…筒内燃料噴射弁 21…EGRポート 22…排気ロータリ弁 24…EGRマニホルド 25…EGR通路 31…クランク軸 32…タイミングベルト 35…EGR配管 36…高速EGR弁 41…電磁弁 51…排気通路 52…排気絞り弁 52a…アクチュエータ[Explanation of Codes] 1 ... Engine 2 ... Air Supply Passage 3 ... Throttle Valve 4 ... Supercharger 12 ... Air Supply Valve 13 ... Exhaust Port 14 ... Exhaust Valve 15 ... Cylinder Fuel Injection Valve 21 ... EGR Port 22 ... Exhaust Rotary Valve 24 ... EGR manifold 25 ... EGR passage 31 ... Crankshaft 32 ... Timing belt 35 ... EGR piping 36 ... High speed EGR valve 41 ... Electromagnetic valve 51 ... Exhaust passage 52 ... Exhaust throttle valve 52a ... Actuator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリンダ掃気期間中に排気ガス再循環を
行う2サイクル内燃機関において、各シリンダ排気ポー
トの排気弁近傍と機関給気通路とをそれぞれ連通する排
気還流通路と、該それぞれの排気還流通路を開閉する制
御弁とを設け、各排気還流通路の制御弁を、それぞれ対
応するシリンダの給気弁の開弁期間中に開弁させること
を特徴とする2サイクル内燃機関の排気ガス再循環装
置。
1. In a two-cycle internal combustion engine that recirculates exhaust gas during a cylinder scavenging period, an exhaust gas recirculation passage that connects the vicinity of an exhaust valve of each cylinder exhaust port with an engine air supply passage, and the respective exhaust gas recirculation passages. A control valve for opening and closing the passage is provided, and the control valve of each exhaust gas recirculation passage is opened during the opening period of the air supply valve of the corresponding cylinder. apparatus.
【請求項2】 更に、機関軽負荷運転時に前記排気ガス
再循環を停止する手段を設けたことを特徴とする請求項
1記載の排気ガス再循環装置。
2. The exhaust gas recirculation system according to claim 1, further comprising means for stopping the exhaust gas recirculation during engine light load operation.
JP4248069A 1992-09-17 1992-09-17 Exhaust gas recirculation device of 2-cycle internal combustion engine Pending JPH06101577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248069A JPH06101577A (en) 1992-09-17 1992-09-17 Exhaust gas recirculation device of 2-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248069A JPH06101577A (en) 1992-09-17 1992-09-17 Exhaust gas recirculation device of 2-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06101577A true JPH06101577A (en) 1994-04-12

Family

ID=17172752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248069A Pending JPH06101577A (en) 1992-09-17 1992-09-17 Exhaust gas recirculation device of 2-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06101577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476195B1 (en) * 2001-12-18 2005-03-16 현대자동차주식회사 Exhaust gas recirculation system for internal combustion engine
CN103370523A (en) * 2010-12-11 2013-10-23 曼柴油机涡轮机欧洲股份公司曼柴油机涡轮机德国分公司 Internal combustion engine, exhaust valve and cylinder head therefor, and production, operation and use of an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476195B1 (en) * 2001-12-18 2005-03-16 현대자동차주식회사 Exhaust gas recirculation system for internal combustion engine
CN103370523A (en) * 2010-12-11 2013-10-23 曼柴油机涡轮机欧洲股份公司曼柴油机涡轮机德国分公司 Internal combustion engine, exhaust valve and cylinder head therefor, and production, operation and use of an internal combustion engine
JP2013545028A (en) * 2010-12-11 2013-12-19 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Internal combustion engine, exhaust valve and cylinder head therefor, and manufacture, operation and use of internal combustion engine
CN103370523B (en) * 2010-12-11 2015-11-25 曼柴油机涡轮机欧洲股份公司曼柴油机涡轮机德国分公司 Two-stroke large diesel engine, cylinder cap and combustion gas extracting method

Similar Documents

Publication Publication Date Title
US6135088A (en) Controlled self-ignition 4-stroke engine operating process
JP2753874B2 (en) Multi-cylinder engine intake system
US5309886A (en) Supercharged internal combustion engine
US8315777B2 (en) Control apparatus and control method for internal combustion engine
US5133309A (en) Multi-poppet valve type two cycle engine
US4325346A (en) Four-cycle internal combustion engine
JP3153283B2 (en) Engine with mechanical supercharger
JP2662799B2 (en) Engine intake control device
JPH06101577A (en) Exhaust gas recirculation device of 2-cycle internal combustion engine
JPH06241127A (en) Exhaust gas recirculation device of two-cycle internal combustion engine
JPS6146421A (en) Engine
US4781154A (en) Two-cycle internal combustion engine
JPH10252486A (en) Intake/exhaust device for internal combustion engine
JP3948081B2 (en) Spark ignition internal combustion engine
JP2966129B2 (en) Engine combustion chamber structure
JPH10274069A (en) Cylinder injection type engine with mechanical supercharger
JPH06147022A (en) Cylinder injection type internal combustion engine
JPH03151532A (en) Two-cycle engine
JPH084599A (en) Combustion control method for engine
JP3008417B2 (en) 2-stroke engine
JPH0544501A (en) Internal combustion engine
JP6548571B2 (en) Internal combustion engine
JPH0476234A (en) Nox reducing method for two-cycle internal combustion engine
JPS63201312A (en) Two-cycle internal combustion engine
JPH0447153A (en) Internal exhaust gas recirculation type engine