JPH06101501A - Method and device for fuel control in gas turbine - Google Patents

Method and device for fuel control in gas turbine

Info

Publication number
JPH06101501A
JPH06101501A JP4254867A JP25486792A JPH06101501A JP H06101501 A JPH06101501 A JP H06101501A JP 4254867 A JP4254867 A JP 4254867A JP 25486792 A JP25486792 A JP 25486792A JP H06101501 A JPH06101501 A JP H06101501A
Authority
JP
Japan
Prior art keywords
fuel
gas turbine
turbine
valve
trip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254867A
Other languages
Japanese (ja)
Inventor
Shinji Fujita
眞司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4254867A priority Critical patent/JPH06101501A/en
Publication of JPH06101501A publication Critical patent/JPH06101501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To provide a method and device for fuel control in a gas turbine which can effectively and certainly prevent damage of a ceramic material resulting from rapid change in the temp. of a working fluid even when the gas turbine undergoes a rapid change in the operating conditions. CONSTITUTION:A gas turbine of ceramic is equipped with adjustability for the rate of fuel flow supplied to a fuel injection valve 10 furnished on a combustor 2, wherein the flow path to the valve 10 is branched into two lines, and a main fuel shutoff valve 15 is connected with one of the flow paths while an aux. fuel control valve 16 is connected with the other flow path, and further an operation control means 17 is furnished to make control of the operations of these main fuel shutoff valve 15 and aux. fuel control valve 16. When the gas turbine undergoes a rapid change in its operating conditions. for example a turbine trip, the rate of fuel flow to the combustor 2 is controlled for controlling the temp. of the combustion gas flowing therefrom into the turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス製動翼や静
翼を備えたガスタービンに係り、特にガスタービンの急
激な運転状態の変化時にセラミックスに生ずる非定常熱
応力を低減させるガスタービンの燃料制御装置およびそ
の燃料制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine equipped with ceramic moving blades and stationary blades, and more particularly to a gas turbine fuel for reducing unsteady thermal stress generated in ceramics when the gas turbine is rapidly changed in operating condition. The present invention relates to a control device and a fuel control method thereof.

【0002】[0002]

【従来の技術】一般に、ガスタービンは図4に示すよう
なものがある。すなわち、圧縮機1で圧縮された空気は
燃焼器2に供給され、ここで燃料は燃料遮断弁3を通
り、ガスタービンの回転軸4に接続された駆動装置5に
より駆動される燃料噴射ポンプ6により昇圧され、その
一部の流量を燃料バイパス制御弁7で制御して燃料噴射
ポンプ6の一次側へ戻すとともに、残りの燃料は流量分
配器8を通り、逆止弁9を経て燃料噴射弁10に供給さ
れて燃焼される。燃焼器2での燃焼の結果、発生した高
温・高圧の燃焼ガスはタービン11で仕事をして発電機
12などの被駆動機を駆動させるようにしている。
2. Description of the Related Art Generally, there is a gas turbine as shown in FIG. That is, the air compressed by the compressor 1 is supplied to the combustor 2, where the fuel passes through the fuel cutoff valve 3 and is driven by the fuel injection pump 6 driven by the drive device 5 connected to the rotating shaft 4 of the gas turbine. The pressure of the fuel is increased by the fuel bypass control valve 7 to return the fuel to the primary side of the fuel injection pump 6, and the remaining fuel passes through the flow distributor 8 and the check valve 9 to the fuel injection valve 6. 10 is supplied and burned. The high temperature, high pressure combustion gas generated as a result of combustion in the combustor 2 works in the turbine 11 to drive a driven machine such as the generator 12.

【0003】この種のガスタービンでは、タービン入口
温度を上昇させると、ガスタービンの熱効率が向上する
ことが知られており、ガスタービンの熱効率を高めるた
め、タービン入口温度を上昇させる方策が種々採られて
いる。タービン入口温度を上昇させるためには、ガスタ
ービンの構成部品が高温の燃焼ガスに耐え得る設計とす
ることが必要である。
In this type of gas turbine, it is known that when the turbine inlet temperature is raised, the thermal efficiency of the gas turbine is improved. In order to enhance the thermal efficiency of the gas turbine, various measures are taken to raise the turbine inlet temperature. Has been. In order to raise the turbine inlet temperature, it is necessary for the components of the gas turbine to be designed to withstand the hot combustion gases.

【0004】このため、近年ガスタービンの主要構成部
品である動翼・静翼や燃焼器2の材料としては、耐熱性
に優れたセラミックスを用いることが試みられている。
Therefore, in recent years, it has been attempted to use ceramics having excellent heat resistance as the material of the moving blades / stator blades and the combustor 2 which are the main components of the gas turbine.

【0005】また、ガスタービンのトリップ時には、燃
料遮断弁3が遮断され、燃料バイパス制御弁7を開き、
図5(A)に示すように燃料流量Qを急速に減少させる
運転制御が行われる。
When the gas turbine trips, the fuel cutoff valve 3 is cut off and the fuel bypass control valve 7 is opened.
As shown in FIG. 5 (A), operation control for rapidly reducing the fuel flow rate Q is performed.

【0006】このような制御を行うと、ガスタービンの
トリップなどの急激な運転条件変化時に図5(B)に示
すように、燃焼ガス温度Tが急変し、ガス通路部を構成
するタービン動翼・静翼や燃焼器2の材料は急激な非定
常温度勾配を生ずることになる。
When such control is performed, the combustion gas temperature T changes abruptly as shown in FIG. 5 (B) when the operating conditions such as a trip of the gas turbine changes abruptly, and the turbine rotor blades forming the gas passage portion are changed. -The material of the stationary blades and the combustor 2 causes a sudden unsteady temperature gradient.

【0007】[0007]

【発明が解決しようとする課題】上記のように、従来の
ガスタービンの燃料制御装置においては、タービントリ
ップ時などの運転条件変化時に、燃料流量Qを急激に遮
断させるため、燃焼ガス温度Tは急激に低下することに
なる。燃焼ガスが通過するガス通路部を構成するガスタ
ービン動翼・静翼や燃焼器2などの材料温度は、主に燃
焼ガス温度Tに追従するため、急激な非定常温度勾配が
生じ、これらの構成部品に熱応力が発生する。
As described above, in the conventional fuel control device for a gas turbine, the combustion gas temperature T is set so that the fuel flow rate Q is sharply cut off when the operating conditions change such as when the turbine trips. It will fall sharply. Since the material temperature of the gas turbine rotor blades / stator blades and the combustor 2 that constitute the gas passage portion through which the combustion gas passes mainly follows the combustion gas temperature T, a rapid unsteady temperature gradient occurs, and these Thermal stress is generated in the components.

【0008】一般に、セラミックス材料は金属材料のよ
うに塑性変形を起こさず、脆性破壊を起こす特性があ
る。また、セラミックス材料の製造方法において、材料
中に存在する微小欠陥を皆無にすることは不可能であ
る。このため、セラミックス材料は瞬間的な非定常応力
であっても、限界応力を越えた応力が作用した場合に
は、即時に破壊してしまう。
Generally, a ceramic material has a characteristic that, unlike a metal material, it does not undergo plastic deformation and causes brittle fracture. Further, in the method of manufacturing a ceramic material, it is impossible to eliminate all the minute defects existing in the material. Therefore, even if the ceramic material has an instantaneous unsteady stress, it will be immediately destroyed when a stress exceeding the limit stress is applied.

【0009】したがって、ガス通路部を構成するタービ
ン動翼・静翼や燃焼器2にセラミックス材料を用いたセ
ラミックスガスタービンにおいては、トリップなどの急
激な温度条件変化時に、セラミックス材料の温度の非定
常温度勾配が非常に大きくなり、セラミックス材料が脆
性破壊し、重大事故が発生する虞があるなどの問題点が
あった。
Therefore, in the ceramic gas turbine using the ceramic material for the turbine rotor blades / stator blades constituting the gas passage and the combustor 2, the temperature of the ceramic material is unsteady when the temperature changes suddenly such as trip. There has been a problem that the temperature gradient becomes extremely large, the brittle fracture of the ceramic material, and a serious accident may occur.

【0010】本発明は上述した事情を考慮してなされた
もので、ガスタービンの急激な運転条件変化時にも作動
流体温度の急変に起因してセラミックス材料の損傷を有
効且つ確実に防止することのできるガスタービンの燃料
制御装置およびその燃料制御方法を提供することを目的
とする。
The present invention has been made in consideration of the above circumstances, and it is possible to effectively and surely prevent damage to a ceramic material due to a sudden change in working fluid temperature even when the operating conditions of the gas turbine change suddenly. An object of the present invention is to provide a fuel control device for a gas turbine and a fuel control method thereof.

【0011】[0011]

【課題を解決するための手段】本発明に係るガスタービ
ンの燃料制御装置は、上述した課題を解決するために、
燃焼器に設けた燃料噴射弁へ供給する燃料流量を調節可
能なセラミックス製のガスタービンにおいて、上記燃料
噴射弁への流路を2系統に分岐し、一方の流路に主燃料
遮断弁を接続し、他方の流路に補助燃料制御弁を接続
し、上記主燃料遮断弁および上記補助燃料制御弁を作動
制御する作動制御手段を設け、タービントリップなどの
急激な運転条件変化時に、上記燃焼器への燃料流量を制
御し、上記燃焼器からタービンに流入する燃焼ガスの温
度を制御したものである。
In order to solve the above-mentioned problems, a fuel control device for a gas turbine according to the present invention is
In a ceramic gas turbine capable of adjusting a fuel flow rate supplied to a fuel injection valve provided in a combustor, a flow path to the fuel injection valve is branched into two systems, and a main fuel cutoff valve is connected to one flow path. Then, an auxiliary fuel control valve is connected to the other flow path, and operation control means for operating and controlling the main fuel cutoff valve and the auxiliary fuel control valve is provided, and the combustor is operated when the operating conditions change suddenly such as a turbine trip. The fuel flow rate to the turbine is controlled to control the temperature of the combustion gas flowing into the turbine from the combustor.

【0012】また、本発明に係るガスタービンの燃料制
御方法は、セラミックス製のガスタービンのトリップ条
件を損害程度に応じて少なくとも2種類に分け、この内
の第1種のトリップ条件で、燃焼器に供給される主燃料
を遮断し、その後引き続き補助燃料流量を徐々に低下さ
せていき、第2種のトリップ条件で、主燃料および補助
燃料の双方を遮断するように制御した。
Further, in the fuel control method for a gas turbine according to the present invention, the trip condition of the gas turbine made of ceramics is divided into at least two types according to the degree of damage, and the combustor is operated under the first trip condition of the trip conditions. The main fuel supplied to the fuel cell was shut off, then the auxiliary fuel flow rate was gradually reduced, and both the main fuel and the auxiliary fuel were shut off under the second type trip condition.

【0013】[0013]

【作用】上記の構成を有する本発明において、セラミッ
クス製のガスタービンは、タービン動翼・静翼や燃焼器
にセラミックス材料が用いられる。ガスタービンの動翼
・静翼に用いられるセラミックスの温度は燃焼ガスと一
致すると考えられる。
In the present invention having the above construction, the ceramic gas turbine uses the ceramic material for the turbine blades / stator blades and the combustor. It is considered that the temperature of the ceramics used for the moving and stationary blades of a gas turbine matches the combustion gas.

【0014】この点から、本発明に係るガスタービンの
燃料制御装置は、ガスタービンのタービントリップなど
の急激な運転条件変化時に、燃焼器に供給される燃料流
量を制御し、燃焼器からタービンに流入する燃焼ガスの
温度を制御すると、セラミックスの温度の時間的変化を
少なく抑えることができる。
From this point of view, the fuel control device for a gas turbine according to the present invention controls the flow rate of fuel supplied to the combustor at the time of a sudden change in operating conditions such as a turbine trip of the gas turbine so that the combustor changes the turbine flow to the turbine. By controlling the temperature of the inflowing combustion gas, it is possible to suppress temporal changes in the temperature of the ceramics.

【0015】また、本発明に係るガスタービンの燃料制
御方法はタービントリップ時に、トリップ条件を少なく
とも2種類に分ける。例えば2種類に分けた場合、第1
種の条件をタービンや燃焼器の損害が比較的軽度で、損
害がタービンなどの機器内部に限られる程度のもの、ま
た第2種の条件は不具合による損害が比較的重度で、タ
ービンなどの機器の外部、すなわちプラント全体に損害
が及ぶ虞がある程度のものとする。
Further, in the fuel control method for a gas turbine according to the present invention, at the time of turbine trip, trip conditions are divided into at least two types. For example, when divided into two types, the first
Type 2 conditions are such that damage to turbines and combustors is relatively minor and damage is limited to the inside of equipment such as turbines, and Type 2 conditions are damage due to defects that are relatively severe, and equipment such as turbines. To the outside of the plant, that is, to the extent that the entire plant may be damaged.

【0016】そして、タービンが第1種の条件でトリッ
プした場合、トリップ直後に、主燃料を遮断し、その後
は補助燃料を緩やかに減少させてセラミックスの温度の
時間的変化を少なく抑えることにより、熱応力の発生を
低く抑えることができる。
When the turbine trips under the first type condition, the main fuel is shut off immediately after the trip, and then the auxiliary fuel is gradually reduced to suppress the temporal change of the temperature of the ceramics. Generation of thermal stress can be suppressed to a low level.

【0017】また、タービンが最終、例えば第2種の条
件でトリップした場合、燃焼ガス温度は圧縮機からの吐
出温度まで急速に低下するので、セラミックスに許容限
界以上の熱応力が発生する可能性があるが、急速にター
ビンを停止させることにより、ガスタービン以外の他機
器すなわちプラント全体にまでタービントリップの悪影
響が及ぶのを回避することができる。
Further, when the turbine trips in the final condition, for example, the second type condition, the combustion gas temperature rapidly decreases to the discharge temperature from the compressor, so that thermal stress exceeding the allowable limit may occur in the ceramics. However, by rapidly stopping the turbine, it is possible to prevent the turbine trip from being adversely affected to other devices than the gas turbine, that is, the entire plant.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明に係るガスタービンの燃料制
御装置の第1実施例を備えたセラミックスガスタービン
の概略構成を示す。なお、従来の構成と同一または対応
する部分には図4と同一の符号を用いて説明する。
FIG. 1 shows a schematic structure of a ceramics gas turbine provided with a first embodiment of a fuel control device for a gas turbine according to the present invention. Note that the same or corresponding portions as those of the conventional configuration will be described using the same reference numerals as those in FIG.

【0020】図1に示すように、ガスタービン燃料系統
は、燃料遮断弁3の下流側に、ガスタービンの回転軸4
に接続された駆動装置5により駆動される燃料噴射ポン
プ6が設けられるとともに、一部の流量は燃料バイパス
制御弁7で制御され、燃料噴射ポンプ6の一次側へ戻さ
れる。
As shown in FIG. 1, in the gas turbine fuel system, a rotary shaft 4 of the gas turbine is provided downstream of the fuel cutoff valve 3.
A fuel injection pump 6 driven by a drive device 5 connected to the fuel injection pump 6 is provided, and a part of the flow rate is controlled by the fuel bypass control valve 7 to be returned to the primary side of the fuel injection pump 6.

【0021】また、燃料噴射ポンプ6の二次側は2系統
の流路に分岐され、一方の流路には主燃料遮断弁15が
接続され、他方の流路には補助燃料制御弁16が接続さ
れている。そして、燃料はそれぞれ主燃料遮断弁15お
よび補助燃料制御弁16を通り、再び合流して流量分配
器8を経て、逆止弁9を通り燃料噴射弁10に供給され
燃焼される。
Further, the secondary side of the fuel injection pump 6 is branched into two flow passages, one of which is connected to the main fuel cutoff valve 15 and the other of which is provided with an auxiliary fuel control valve 16. It is connected. Then, the fuel passes through the main fuel cutoff valve 15 and the auxiliary fuel control valve 16, respectively, merges again, passes through the flow rate distributor 8, passes through the check valve 9, is supplied to the fuel injection valve 10, and is burned.

【0022】燃料遮断弁3、燃料バイパス制御弁7、主
燃料遮断弁15および補助燃料制御弁16は作動制御手
段としてのトリップ条件判別装置17からの制御信号に
より作動制御される。このトリップ条件判別装置17は
タービントリップのトリップ条件の程度に応じて少なく
とも2種類(2段階)に分け、第1種のトリップ信号、
…最終種のトリップ信号を出力するようになっている。
The operation of the fuel cutoff valve 3, the fuel bypass control valve 7, the main fuel cutoff valve 15 and the auxiliary fuel control valve 16 is controlled by a control signal from a trip condition judging device 17 as an operation control means. The trip condition determination device 17 is divided into at least two types (two stages) according to the degree of the trip condition of the turbine trip, and the trip signal of the first type,
… It outputs the last type of trip signal.

【0023】次に、本実施例の作用を説明する。なお、
以下の説明では簡略化するために、トリップ条件を2種
類に分ける例について説明する。
Next, the operation of this embodiment will be described. In addition,
In the following description, for simplification, an example of dividing the trip condition into two types will be described.

【0024】トリップ条件判別装置17では、図示しな
いセンサにて測定されたガスタービンの回転軸4の振動
レベルや排気ガス温度などの検出信号を入力してトリッ
プ条件を判別しており、例えばガスタービンの回転軸4
の振動レベル(振幅)が10/100mmでアラーム信号
を出力するとともに、15/100mmで第1種のトリッ
プ信号、50/100mmで第2種のトリップ信号をそれ
ぞれ出力するようになっている。
The trip condition discriminating device 17 discriminates the trip condition by inputting detection signals such as a vibration level of the rotating shaft 4 of the gas turbine and an exhaust gas temperature measured by a sensor (not shown). Axis of rotation 4
When the vibration level (amplitude) of 10 is 100/100 mm, an alarm signal is output, and when it is 15/100 mm, the first type trip signal is output, and when it is 50/100 mm, the second type trip signal is output.

【0025】排気ガス温度を検出する場合、排気ガス温
度が例えば600℃でアラーム信号を、620℃で第1
種のトリップ信号を、660℃で第2種のトリップ信号
をそれぞれ出力するようになっている。そして、トリッ
プ条件判別装置17からのアラーム信号で図示しない警
報器が作動される一方、第1種のトリップ信号で主燃料
遮断弁15を遮断し、第2種のトリップ信号で主燃料遮
断弁15および補助燃料制御弁16の双方を遮断するよ
うになっている。
When detecting the exhaust gas temperature, an alarm signal is output when the exhaust gas temperature is, for example, 600 ° C., and a first signal is output when the exhaust gas temperature is 620 ° C.
The second type trip signal is output at 660 ° C., and the second type trip signal is output at 660 ° C. An alarm signal (not shown) is activated by an alarm signal from the trip condition determining device 17, while the main fuel shutoff valve 15 is shut off by a first type trip signal and the main fuel shutoff valve 15 is shut by a second type trip signal. Both the auxiliary fuel control valve 16 and the auxiliary fuel control valve 16 are shut off.

【0026】なお、トリップ条件判別装置17はガスタ
ービンの回転軸4の振動レベルや排気ガス温度の他に、
表1に示すものがある。
In addition to the vibration level of the rotating shaft 4 of the gas turbine and the exhaust gas temperature, the trip condition determining device 17
Some are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】上記表1に示すように、回転軸4の回転速
度、回転軸4の軸受給油圧力、軸受排油温度、発電機の
内部故障の程度、発電機遮断器の開閉状態、火災の有無
などを検出して第1種および第2種のトリップ条件を判
別するようにしてもよく、これらを総合的に組み合わせ
て判別するようにしてもよい。
As shown in Table 1 above, the rotation speed of the rotary shaft 4, the bearing oil supply pressure of the rotary shaft 4, the bearing oil discharge temperature, the degree of internal failure of the generator, the open / close state of the generator circuit breaker, and the presence or absence of fire. Etc. may be detected to determine the first type and the second type trip conditions, or they may be comprehensively combined for determination.

【0029】次に、本発明に係るガスタービンの燃料制
御方法の第1実施例について説明する。
Next, a first embodiment of a fuel control method for a gas turbine according to the present invention will be described.

【0030】ガスタービンの通常運転負荷時には、主燃
料遮断弁15および補助燃料制御弁16を開いて、補助
燃料制御弁16は一定開度で、必要燃料流量は燃料バイ
パス制御弁7により供給される。第1種のトリップ時に
主燃料遮断弁15を閉じて、その後補助燃料制御弁16
を緩やかに絞り込み、燃料流量を徐々に低下させ、ター
ビントリップより一定時間経過後または回転速度が一定
値以下に降下した後、補助燃料制御弁16を閉じる。ま
た、第2種のトリップ時には、主燃料遮断弁15および
補助燃料制御弁16を閉じて燃料を遮断する。
During normal operation load of the gas turbine, the main fuel cutoff valve 15 and the auxiliary fuel control valve 16 are opened so that the auxiliary fuel control valve 16 has a constant opening and the required fuel flow rate is supplied by the fuel bypass control valve 7. . The main fuel cutoff valve 15 is closed at the time of the first type trip, and then the auxiliary fuel control valve 16
Is gradually narrowed down, the fuel flow rate is gradually reduced, and after a lapse of a certain time from the turbine trip or after the rotation speed falls below a certain value, the auxiliary fuel control valve 16 is closed. During the second type trip, the main fuel cutoff valve 15 and the auxiliary fuel control valve 16 are closed to cut off the fuel.

【0031】セラミックスガスタービンが定格運転時に
第1種のトリップ条件でタービントリップした場合に
は、タービントリップ直後に、図2(B)に示すように
燃料バイパス制御弁開度aを増加させることにより、燃
料流量を補助燃料流量まで急速に減少させ、その後は補
助燃料制御弁開度bを緩やかに減少させていく。
When the ceramics gas turbine trips under the first type trip condition during the rated operation, the fuel bypass control valve opening a is increased immediately after the turbine trip as shown in FIG. 2 (B). , The fuel flow rate is rapidly reduced to the auxiliary fuel flow rate, and thereafter the auxiliary fuel control valve opening degree b is gradually decreased.

【0032】補助燃料制御弁16を緩やかに絞り込んで
いく段階では、図2(A)に示すように燃焼ガス温度T
の変化率も小さくなり、発生するセラミックスの非定常
熱応力も小さくなり、セラミックスの破損を防止するこ
とが可能となる。
At the stage where the auxiliary fuel control valve 16 is gradually narrowed down, as shown in FIG. 2 (A), the combustion gas temperature T
The rate of change is also small, the unsteady thermal stress of the generated ceramics is also small, and it is possible to prevent the ceramics from being damaged.

【0033】一般に、燃料制御弁では燃料流量の制御範
囲に限界があり、一つの制御弁ではトリップ後の低流量
域までカバーできなかった。そして、セラミックスガス
タービンの場合、失火を防止することがとりわけ重要で
あり、本実施例では燃料流量の小さい領域に対してそれ
に対応した補助燃料制御弁16を用いているので安定性
が高い。
In general, the fuel control valve has a limit in the control range of the fuel flow rate, and one control valve cannot cover the low flow rate range after the trip. In the case of a ceramics gas turbine, it is especially important to prevent misfire, and in the present embodiment, the auxiliary fuel control valve 16 corresponding to the region where the fuel flow rate is small is used, so that the stability is high.

【0034】図3は本発明に係るガスタービンの燃料制
御装置の第2実施例を示し、前記第1実施例と同一の部
分には同一の符号を付して説明する。
FIG. 3 shows a second embodiment of the fuel control device for a gas turbine according to the present invention, and the same parts as those of the first embodiment will be described with the same reference numerals.

【0035】本実施例のガスタービンの燃料制御装置
は、燃焼器2に燃料を供給する燃料系統の構成が図1に
示した燃料制御装置と基本的に相違する。すなわち、燃
料は十分に高く昇圧されたガス燃料で、速度比制御弁2
0によりガスタービンの速度に比例した二次圧力となる
ように制御され、その二次側は2系統に分岐され、一方
の流路には燃料制御弁21が接続され、他方の流路には
補助燃料制御弁16が接続されている。そして、燃料は
それぞれ燃料制御弁21および補助燃料制御弁16を通
り、再び合流して燃料噴射弁10に供給され燃焼され
る。
The fuel control system for a gas turbine of this embodiment is basically different from the fuel control system shown in FIG. 1 in the structure of the fuel system for supplying fuel to the combustor 2. That is, the fuel is gas fuel whose pressure is sufficiently high, and the speed ratio control valve 2
It is controlled so that the secondary pressure is proportional to the speed of the gas turbine by 0, the secondary side is branched into two systems, the fuel control valve 21 is connected to one flow passage, and the other flow passage is connected to the other flow passage. The auxiliary fuel control valve 16 is connected. Then, the fuel passes through the fuel control valve 21 and the auxiliary fuel control valve 16, respectively, and merges again to be supplied to the fuel injection valve 10 and burned.

【0036】速度比制御弁20、燃料制御弁21および
補助燃料制御弁16はトリップ条件判別装置17からの
制御信号により作動制御される。
The speed ratio control valve 20, the fuel control valve 21, and the auxiliary fuel control valve 16 are operation-controlled by a control signal from the trip condition determining device 17.

【0037】次に、本発明に係るガスタービンの燃料制
御方法の第2実施例について説明する。
Next, a second embodiment of the fuel control method for a gas turbine according to the present invention will be described.

【0038】ガスタービンの通常運転負荷時には、燃料
制御弁21および補助燃料制御弁16を開いて、補助燃
料制御弁16は一定開度で、必要燃料流量は燃料制御弁
21により供給される。第1種のトリップ時には燃料制
御弁21を閉じて、その後補助燃料制御弁16を緩やか
に絞り込み、燃料流量を徐々に低下させ、タービントリ
ップより一定時間経過後または回転速度が一定値以下に
降下した後、補助燃料制御弁16を閉じる。
During normal operation load of the gas turbine, the fuel control valve 21 and the auxiliary fuel control valve 16 are opened so that the auxiliary fuel control valve 16 has a constant opening and the required fuel flow rate is supplied by the fuel control valve 21. During the first type trip, the fuel control valve 21 is closed, then the auxiliary fuel control valve 16 is gradually narrowed down, the fuel flow rate is gradually reduced, and after a lapse of a certain time from the turbine trip or the rotation speed falls below a certain value. After that, the auxiliary fuel control valve 16 is closed.

【0039】また、第2種のトリップ時には、燃料制御
弁21および補助燃料制御弁16を閉じて燃料を遮断す
る。この場合、燃料制御弁21は図1に示した燃料制御
装置における主燃料遮断弁15の機能を兼ね備えるもの
であり、その他の構成および作用は前記第1実施例と同
一であるのでその説明を省略する。
During the second type trip, the fuel control valve 21 and the auxiliary fuel control valve 16 are closed to shut off the fuel. In this case, the fuel control valve 21 also has the function of the main fuel cutoff valve 15 in the fuel control device shown in FIG. 1, and since the other configurations and operations are the same as those in the first embodiment, the description thereof will be omitted. To do.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係るガス
タービンの燃料制御装置によれば、タービントリップな
どの急激な運転条件変化時に、燃焼器への燃料流量を制
御し、燃焼器からタービンに流入する燃焼ガスの温度を
制御することにより、セラミックス材料の非定常温度勾
配を少なくし、セラミックス材料に脆性破壊が生ずるの
を有効的に防止し、ガスタービンの安全性や信頼性の向
上を図ることができる。
As described above, according to the fuel control device for a gas turbine of the present invention, the fuel flow rate to the combustor is controlled when the operating condition changes abruptly, such as when the turbine trips. By controlling the temperature of the combustion gas flowing into the furnace, the unsteady temperature gradient of the ceramic material is reduced, brittle fracture of the ceramic material is effectively prevented, and the safety and reliability of the gas turbine are improved. Can be planned.

【0041】また、本発明に係るガスタービンの燃料制
御方法においては、タービントリップのトリップ条件を
損害程度に応じて少なくとも2種類に分け、第1種のト
リップ条件でタービントリップ直後に主燃料を遮断し、
引き続き補助燃料により、燃焼ガスの温度を徐々に低下
させるので、タービントリップ時にセラミックス材料に
生じる非定常熱応力を極力低減し、セラミックスガスタ
ービンを安全に緊急停止させ、被害を最小限に止めるこ
とができる。
Further, in the fuel control method for a gas turbine according to the present invention, the trip condition of the turbine trip is divided into at least two types according to the degree of damage, and the main fuel is shut off immediately after the turbine trip under the first type trip condition. Then
Since the temperature of the combustion gas is gradually decreased by the auxiliary fuel, the unsteady thermal stress generated in the ceramic material during the turbine trip can be reduced as much as possible, and the ceramic gas turbine can be safely stopped in an emergency to minimize the damage. it can.

【0042】さらに、第2種のトリップ条件では、トリ
ップ直後に主燃料および補助燃料を遮断し、仮にセラミ
ックス材料の破損が生じても、その破損の悪影響が外部
に及ぶのを防止し、全体的被害を最小限に抑えることが
できる。
Furthermore, in the second type of trip condition, the main fuel and the auxiliary fuel are shut off immediately after the trip, and even if the ceramic material is damaged, the adverse effect of the damage is prevented from reaching the outside, and the overall The damage can be minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガスタービンの燃料制御装置の第
1実施例を備えたセラミックスガスタービンを示す概略
構成図。
FIG. 1 is a schematic configuration diagram showing a ceramics gas turbine provided with a first embodiment of a fuel control device for a gas turbine according to the present invention.

【図2】(A),(B)は図1の実施例におけるタービ
ントリップ時の状態量の時間的変化を示す特性図。
2 (A) and 2 (B) are characteristic diagrams showing temporal changes in state quantities at the time of turbine trip in the embodiment of FIG.

【図3】本発明に係るガスタービンの燃料制御装置の第
2実施例を備えたセラミックスガスタービンを示す概略
構成図。
FIG. 3 is a schematic configuration diagram showing a ceramics gas turbine including a second embodiment of the fuel control device for a gas turbine according to the present invention.

【図4】従来のガスタービンの燃料制御装置を示す概略
構成図。
FIG. 4 is a schematic configuration diagram showing a fuel control device for a conventional gas turbine.

【図5】(A),(B)は従来のガスタービンのトリッ
プ時の状態量の時間的変化を示す特性図。
5 (A) and 5 (B) are characteristic diagrams showing temporal changes in state quantities when a conventional gas turbine trips.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 燃焼器 3 燃料遮断弁 4 回転軸 5 駆動装置 6 燃料噴射ポンプ 7 燃料バイパス制御弁 8 流量分配器 9 逆止弁 10 燃料噴射弁 11 タービン 12 発電機 15 主燃料遮断弁 16 補助燃料制御弁 17 トリップ条件判別装置(作動制御手段) 20 速度比制御弁 21 燃料制御弁 1 Compressor 2 Combustor 3 Fuel cutoff valve 4 Rotating shaft 5 Drive device 6 Fuel injection pump 7 Fuel bypass control valve 8 Flow distributor 9 Check valve 10 Fuel injection valve 11 Turbine 12 Generator 15 Main fuel cutoff valve 16 Auxiliary fuel Control valve 17 Trip condition determination device (operation control means) 20 Speed ratio control valve 21 Fuel control valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼器に設けた燃料噴射弁へ供給する燃
料流量を調節可能なセラミックス製のガスタービンにお
いて、上記燃料噴射弁への流路を2系統に分岐し、一方
の流路に主燃料遮断弁を接続し、他方の流路に補助燃料
制御弁を接続し、上記主燃料遮断弁および上記補助燃料
制御弁を作動制御する作動制御手段を設け、タービント
リップなどの急激な運転条件変化時に、上記燃焼器への
燃料流量を制御し、上記燃焼器からタービンに流入する
燃焼ガスの温度を制御したことを特徴とするガスタービ
ンの燃料制御装置。
1. In a ceramic gas turbine capable of adjusting a fuel flow rate supplied to a fuel injection valve provided in a combustor, a flow path to the fuel injection valve is branched into two systems, and one of the flow paths is mainly connected to the main flow path. A fuel cutoff valve is connected, an auxiliary fuel control valve is connected to the other flow path, and operation control means for controlling the operation of the main fuel cutoff valve and the auxiliary fuel control valve is provided to rapidly change operating conditions such as a turbine trip. A fuel control device for a gas turbine, wherein a fuel flow rate to the combustor is controlled at a time to control a temperature of combustion gas flowing into the turbine from the combustor.
【請求項2】 セラミックス製のガスタービンのトリッ
プ条件を損害程度に応じて少なくとも2種類に分け、こ
の内の第1種のトリップ条件で、燃焼器に供給される主
燃料を遮断し、その後引き続き補助燃料流量を徐々に低
下させていき、第2種のトリップ条件で、主燃料および
補助燃料の双方を遮断するように制御したことを特徴と
するガスタービンの燃料制御方法。
2. The trip condition of the gas turbine made of ceramics is divided into at least two types according to the degree of damage, and the first type of trip conditions among them is used to shut off the main fuel supplied to the combustor, and then continue. A fuel control method for a gas turbine, characterized in that the auxiliary fuel flow rate is gradually reduced and the main fuel and the auxiliary fuel are shut off under a second type trip condition.
JP4254867A 1992-09-24 1992-09-24 Method and device for fuel control in gas turbine Pending JPH06101501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254867A JPH06101501A (en) 1992-09-24 1992-09-24 Method and device for fuel control in gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254867A JPH06101501A (en) 1992-09-24 1992-09-24 Method and device for fuel control in gas turbine

Publications (1)

Publication Number Publication Date
JPH06101501A true JPH06101501A (en) 1994-04-12

Family

ID=17270946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254867A Pending JPH06101501A (en) 1992-09-24 1992-09-24 Method and device for fuel control in gas turbine

Country Status (1)

Country Link
JP (1) JPH06101501A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03932A (en) * 1989-02-10 1991-01-07 Toshiba Corp Control process of turbo machine and controller thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03932A (en) * 1989-02-10 1991-01-07 Toshiba Corp Control process of turbo machine and controller thereof

Similar Documents

Publication Publication Date Title
JP3658415B2 (en) Gas turbine equipment
EP0501152B1 (en) Apparatus for ignition diagnosis in a combustion turbine
US5388960A (en) Forced-air cooling apparatus of steam turbine
JP3708965B2 (en) Blowout detection method and blowout detection device for gas turbine combustor
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
US5275528A (en) Flow control method and means
US4907406A (en) Combined gas turbine plant
JPH0577854B2 (en)
JPH03179134A (en) Method and apparatus for generating ignition-enable signal and power generation plant
KR100315179B1 (en) Apparatus and method of automatic nox control for a gas turbine
JP2004511695A (en) Method and apparatus for rotor overspeed and overboost prevention
JPH03932A (en) Control process of turbo machine and controller thereof
JP4113728B2 (en) Flame-out detection method, flame-out detection apparatus, and gas turbine engine
US6915639B1 (en) Method and apparatus for gas turbine over-speed protection
EP3954877B1 (en) System and method for detection of excessive flow in a fluid system
JP4229579B2 (en) Combined cycle power plant and method for supplying steam for heating and cooling combined cycle power plant
US4280059A (en) Detecting power loss in free turbines
US6253537B1 (en) Revolution speed control method in gas turbine shutdown process
JPH06101501A (en) Method and device for fuel control in gas turbine
JP2005233157A (en) Two spindle type gas turbine power generation system and method for stopping the same
JP2018127987A (en) Biaxial-type gas turbine power generation system and control method of biaxial-type gas turbine power generation system
JP3842653B2 (en) Gas turbine and operation method thereof
US20080229746A1 (en) Method for protecting the hot gas parts of a gas turbine installation from overheating and for detecting flame extinction in the combustion chamber
JPH0932508A (en) Combined cycle plant
JPH0721885Y2 (en) Fuel flow controller for gas turbine