JPH06101454A - Exhaust gas purifying device for diesel engine - Google Patents

Exhaust gas purifying device for diesel engine

Info

Publication number
JPH06101454A
JPH06101454A JP4252686A JP25268692A JPH06101454A JP H06101454 A JPH06101454 A JP H06101454A JP 4252686 A JP4252686 A JP 4252686A JP 25268692 A JP25268692 A JP 25268692A JP H06101454 A JPH06101454 A JP H06101454A
Authority
JP
Japan
Prior art keywords
exhaust gas
light oil
catalyst
catalyst layer
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4252686A
Other languages
Japanese (ja)
Inventor
Kazuyuki Takazawa
一行 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP4252686A priority Critical patent/JPH06101454A/en
Publication of JPH06101454A publication Critical patent/JPH06101454A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To provide an exhaust gas purifying device which is designed to achieve efficiently denitration of exhaust gas from a diesel engine without forming the particulates of a catalyst surface, in a denitration system wherein exhaust gas is brought into contact with a catalyst. CONSTITUTION:Exhaust gas exhausted from an engine is guided to an exhaust gas purifying device 1. The exhaust gas purifying device 1 is provided, in order, from a position situated upper stream of the flow of exhaust gas with a secondary air feed port 2, a gasifying combustion chamber 3 for light oil, and a catalyst layer 5. The gasifying combustion chamber 3 is served to burn light oil, fed for denitration of exhaust gas, right before the catalyst layer 5. The combustion chamber comprises a protector 6 having structure wherein a cover part arranged on the upper stream side in a direction crossing an exhaust gas flow passage is provided and a release part is provided on the downstream side, a partition plate 10 arranged in the protector 6 and to the vicinity of a pipe 8 for feeding light oil and a tip nozzle 7, a globe plug 11, and a cylindrical mesh part 12 made of a metal. In the catalyst layer 5, a denitrided catalyst (magnetite) is sintered on a carrier of honeycomb structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼル機関の排ガス
浄化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying device for a diesel engine.

【0002】[0002]

【従来の技術】燃焼装置から排出される排ガス中の窒素
酸化物(以下、NOxと言うことがある。)の除去方法
として、従来から大型ボイラ等で実用化している方法は
還元剤としてアンモニアを用いてCr23、Mn23
25、CuO、Fe23、CoO等の非金属系酸化物
触媒の存在下に、これを排ガス中に添加して、排ガス中
の窒素酸化物と反応させて、NOxを無害の窒素と酸素
に分解する方法がある。しかし、この脱硝方法は有害物
質であるアンモニアを用いるため、その取り扱いには法
的規制もあり、定置式の大型排ガス脱硝装置にしか使用
されていなかった。
2. Description of the Related Art As a method for removing nitrogen oxides (hereinafter sometimes referred to as NOx) in exhaust gas discharged from a combustion device, a method that has been put to practical use in a large boiler or the like has conventionally used ammonia as a reducing agent. Using Cr 2 O 3 , Mn 2 O 3 ,
In the presence of a non-metallic oxide catalyst such as V 2 O 5 , CuO, Fe 2 O 3 , CoO, etc., this is added to the exhaust gas and reacted with the nitrogen oxides in the exhaust gas to make NOx harmless. There is a method of decomposing it into nitrogen and oxygen. However, since this denitrification method uses ammonia, which is a harmful substance, there are legal restrictions on its handling, and it has only been used in a stationary large-scale exhaust gas denitration device.

【0003】ところが大気汚染、環境保全の必要性が叫
ばれている中で、例えば都市型コージェネレーションシ
ステムまたはディーゼル車等のディーゼル燃焼装置から
排出される排ガス中のNOxが無視し得ない状況にあ
り、その効果的な除去手段の開発が望まれている。
However, in the midst of calls for air pollution and environmental protection, NOx in exhaust gas emitted from diesel combustion devices such as urban cogeneration systems or diesel vehicles cannot be ignored. , The development of the effective removal means is desired.

【0004】ディーゼル燃焼装置から排出された排ガス
には9〜13%という高濃度の酸素が残存している。ま
た、この排ガス中の硫黄酸化物濃度も100〜500p
pmと高く、スス濃度が10〜100mg/m3とパー
ティキュレートが多いこともある。さらに、この排ガス
温度が200〜600℃と低い特徴がある。このような
排ガス条件に適合して、しかも経済性が成り立つNOx
低減反応系の開発が必要である。
Oxygen having a high concentration of 9 to 13% remains in the exhaust gas discharged from the diesel combustion device. Also, the concentration of sulfur oxides in this exhaust gas is 100 to 500 p.
In some cases, the soot concentration is as high as pm and the soot concentration is as high as 10 to 100 mg / m 3 . Further, there is a feature that the exhaust gas temperature is as low as 200 to 600 ° C. NOx that meets such exhaust gas conditions and is economically viable
Development of reduction reaction system is necessary.

【0005】前記ディーゼル燃焼装置の排ガス処理方法
として本発明者らは先にマグネタイトの存在下に燃焼排
ガスに炭化水素またはアルコールからなる還元剤と二次
空気を加えて、燃焼排ガス中の窒素酸化物を高率で除去
する排ガス脱硝方法を開発した(特開平3−20705
4号)。当該特許出願発明は図8に示すように、ディー
ゼル機関のエンジンからの排ガスが常時流れているマグ
ネタイト触媒層35の上流側に軽油等の還元剤供給管3
6と二次空気供給管37を設けてそれぞれに還元剤と二
次空気を供給し、これをマグネタイト触媒層35に接触
させると、排ガス中のNOxが還元されるというもので
ある。
As a method for treating exhaust gas of the diesel combustion apparatus, the present inventors first added a reducing agent composed of a hydrocarbon or alcohol and secondary air to the combustion exhaust gas in the presence of magnetite to produce nitrogen oxides in the combustion exhaust gas. An exhaust gas denitration method for removing nitrogen at a high rate was developed (JP-A-3-20705).
No. 4). As shown in FIG. 8, the patent application invention has a reducing agent supply pipe 3 such as light oil on the upstream side of the magnetite catalyst layer 35 in which exhaust gas from a diesel engine is constantly flowing.
No. 6 in the exhaust gas is reduced when the reducing agent and the secondary air are supplied to the No. 6 and the secondary air supply pipe 37, respectively, and they are brought into contact with the magnetite catalyst layer 35.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記特許出願
発明は排圧が加わる箇所に直接、軽油等の還元剤を添加
または噴射するため、還元剤を多量に必要としていた。
また、排ガス中に存在するパーティキュレート(SO
F:soluble organicfractio
n、ISOF:insoluble organicf
raction)が触媒層35の触媒表面に形成され脱
硝性能が低下することがあった。
However, in the above-mentioned patent application invention, since a reducing agent such as light oil is added or injected directly to the place where exhaust pressure is applied, a large amount of reducing agent is required.
Also, the particulates (SO
F: soluble organic fraction
n, ISOF: insoluble organicf
Raction) is formed on the catalyst surface of the catalyst layer 35, and the denitration performance may decrease.

【0007】そこで、本発明の目的は触媒部の上流側に
軽油等の還元剤と二次空気を供給し、これをマグネタイ
ト触媒に接触させる脱硝方式において触媒表面のパーテ
ィキュレートを形成させないで、ディーゼル機関の排ガ
スの脱硝を効率的に達成する排ガス浄化装置を提供する
ことである。
Therefore, an object of the present invention is to supply a reducing agent such as light oil and secondary air to the upstream side of the catalyst part and to contact the magnetite catalyst with the denitration system without forming the particulates on the catalyst surface without forming particulates. An object of the present invention is to provide an exhaust gas purifying device that efficiently achieves denitration of exhaust gas from an engine.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、排ガス排出流路の
脱硝用の触媒部の上流側に、還元剤の気化室と排気ガス
流れにより還元剤の気化、燃焼が影響されないようなプ
ロテクターとを一体化した還元剤の気化燃焼室を設けた
ディーゼル機関の排ガス浄化装置である。
The above objects of the present invention can be achieved by the following constitutions. That is, on the upstream side of the catalyst portion for denitration of the exhaust gas discharge flow path, a reducing agent vaporization combustion chamber in which a reducing agent vaporization chamber and a protector that does not affect the vaporization and combustion of the reducing agent by the exhaust gas flow are integrated. Is an exhaust gas purifying device for a diesel engine.

【0009】脱硝触媒としてマグネタイト(Fe34
を用いる。マグネタイトは磁鉄鉱を焼結したものを使用
できる。そして、マグネタイトは排ガスとの接触面積が
大きい形状にして用いる。例えば、粒状物、ペレット、
ハニカム形状物等の形状で使用できる。また、還元剤と
して用いられる炭化水素としては軽油、重油、ベンジ
ン、メタン、エタン、プロパン、n−ヘキサン等のパラ
フィン、エチレン、プロピレン等のオレフィン、メタノ
ール等のアルコール類がそれぞれ単独または混合物とし
て使用できる。
Magnetite (Fe 3 O 4 ) as a denitration catalyst
To use. The magnetite can be obtained by sintering magnetite. The magnetite is used in a shape having a large contact area with the exhaust gas. For example, granules, pellets,
It can be used in the shape of a honeycomb-shaped product. As the hydrocarbon used as the reducing agent, light oil, heavy oil, paraffins such as benzine, methane, ethane, propane and n-hexane, olefins such as ethylene and propylene, and alcohols such as methanol can be used alone or as a mixture. .

【0010】また、還元剤の燃焼性を高めるため、また
は排ガスの脱硝反応のために、二次空気を排ガス排出流
路に導入するが、その使用量は排ガスの7〜13容量%
で用いる。この範囲外では脱硝率が悪くなる。本発明の
触媒層での脱硝反応温度は400℃〜700℃、好まし
くは450℃〜500℃で行う。700℃を超えると、
マグネタイトがヘマタイトまで変化してしまい、触媒活
性が失われる。400℃未満では、反応効率が低下し、
NOxの還元率が悪くなる。
In order to improve the combustibility of the reducing agent or the denitration reaction of the exhaust gas, secondary air is introduced into the exhaust gas discharge passage, but the amount used is 7 to 13% by volume of the exhaust gas.
Used in. If it is outside this range, the denitrification rate will be poor. The denitration reaction temperature in the catalyst layer of the present invention is 400 ° C to 700 ° C, preferably 450 ° C to 500 ° C. Above 700 ° C,
The magnetite changes to hematite and the catalytic activity is lost. If the temperature is lower than 400 ° C, the reaction efficiency will decrease,
The reduction rate of NOx becomes worse.

【0011】前記本発明者らの脱硝装置は簡単な構成で
あるので、移動式のディーゼル燃焼装置または都市型の
定置式のディーゼル燃焼装置の排ガス排出部に設置する
ことができる。特にディーゼル車の排ガスに適するもの
である。
Since the denitration device of the present inventors has a simple structure, it can be installed in the exhaust gas discharge part of a mobile diesel combustion device or an urban stationary diesel combustion device. It is especially suitable for exhaust gas from diesel vehicles.

【0012】[0012]

【作用】燃焼排ガスに炭化水素またはアルコールからな
る還元剤と二次空気(酸素)を加えて、これをマグネタ
イト(Fe34)に接触させると、排ガス中のNOxが
還元されて窒素となる。NOxの窒素への還元反応機構
は完全には明らかになっていない。しかし、還元剤およ
び酸素が存在しないとマグネタイトの脱硝触媒反応はほ
とんど進行しないことを確認している。
[Function] When a reducing agent composed of hydrocarbon or alcohol and secondary air (oxygen) are added to combustion exhaust gas and brought into contact with magnetite (Fe 3 O 4 ), NOx in the exhaust gas is reduced to nitrogen. . The mechanism of the reduction reaction of NOx to nitrogen is not completely clear. However, it has been confirmed that the denitration catalytic reaction of magnetite hardly progresses in the absence of a reducing agent and oxygen.

【0013】また、ディーゼル機関の排ガスが常時流れ
ている箇所で、軽油、重油等の還元剤を高効率で燃焼さ
せると、触媒表面のパーティキュレートが除去され、触
媒表面を清浄しながら、ディーゼル機関の排ガスの脱硝
を効率的に達成することができる。
Further, when the reducing agent such as light oil or heavy oil is burned with high efficiency at the place where the exhaust gas of the diesel engine is constantly flowing, the particulate matter on the catalyst surface is removed, and the diesel engine is cleaned while cleaning the catalyst surface. It is possible to efficiently achieve denitration of the exhaust gas.

【0014】本発明の構成により、排気ガスが排出流路
に配置される触媒部の上流側に設けた還元剤の気化室に
おいて、還元剤を気化させる。このとき、ディーゼル機
関の排ガスが吐出して、気化室の燃焼状態を阻害しない
ようにするためのプロテクターにより還元剤の気化、燃
焼が支障なく行える。
According to the configuration of the present invention, the reducing agent is vaporized in the reducing agent vaporizing chamber provided on the upstream side of the catalyst portion in which the exhaust gas is arranged in the exhaust passage. At this time, the exhaust gas of the diesel engine is discharged, and the reducing agent can be vaporized and burned without trouble by a protector for preventing the combustion state of the vaporization chamber from being disturbed.

【0015】[0015]

【実施例】本発明の一実施例を図面と共に説明する。図
1に本実施例のディーゼル機関の排ガス浄化装置を示
し、図1(a)はその概念図、図1(b)はその気化燃
焼室の正面図、図1(c)には気化燃焼室の側面図をそ
れぞれ示す。エンジンから排出される排ガスは排ガス浄
化装置1に導かれる。排ガス浄化装置1は排ガスの流れ
の上流側から順に二次空気供給口2、還元剤(本実施例
では燃料である軽油を用いた。)の気化燃焼室3、触媒
層5が配置されている。そして、二次空気供給口2は燃
料の燃焼用の空気を供給するために設けられている。ま
た、気化燃焼室3は排ガスの脱硝のために供給される軽
油を触媒層5の直前で燃焼させるためのものであり、排
ガス流路を横断する方向の上流側に覆い部を持ち、下流
側に開放部を持つ構造のプロテクター6と、該プロテク
ター6の覆い部の内部には排ガス流路断面のほぼ中央部
に先端ノズル7を持つ軽油供給用パイプ8と前記先端ノ
ズル7近傍に設けられた仕切板10および、該仕切板1
0を介して軽油供給用パイプ8と反対側の覆い部内に配
置されたグロープラグ11およびこれら軽油供給用パイ
プ8、仕切板10、グロープラグ11を囲うように配置
される円筒状の金属製メッシュ部12とから構成されて
いる。プロテクター6の覆い部は気化した軽油が排ガス
流れにより影響を受けないようにするために設けられる
ものである。さらに、触媒層5は排ガス浄化装置1の排
ガス流路の全面に配置されたハニカム構造の担体上に脱
硝触媒(マグネタイト)が焼結されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an exhaust gas purifying apparatus for a diesel engine of the present embodiment. FIG. 1 (a) is a conceptual diagram thereof, FIG. 1 (b) is a front view of the vaporization combustion chamber, and FIG. 1 (c) is a vaporization combustion chamber. The side view of each is shown. Exhaust gas discharged from the engine is guided to the exhaust gas purification device 1. In the exhaust gas purifying apparatus 1, a secondary air supply port 2, a vaporizing combustion chamber 3 for a reducing agent (light oil as a fuel is used in this embodiment), and a catalyst layer 5 are arranged in this order from the upstream side of the flow of exhaust gas. . The secondary air supply port 2 is provided to supply the air for burning the fuel. Further, the vaporization combustion chamber 3 is for burning light oil supplied for denitration of exhaust gas immediately before the catalyst layer 5, has a cover portion on the upstream side in the direction crossing the exhaust gas flow passage, and has a downstream side. A protector 6 having a structure having an open portion, and a light oil supply pipe 8 having a tip nozzle 7 in the central portion of the exhaust gas flow passage cross section inside the cover portion of the protector 6 and the tip nozzle 7 are provided in the vicinity thereof. Partition plate 10 and the partition plate 1
Glow plug 11 arranged in the cover portion on the side opposite to the light oil supply pipe 8 through 0, and a cylindrical metal mesh arranged so as to surround these light oil supply pipe 8, partition plate 10 and glow plug 11. And a part 12. The cover of the protector 6 is provided to prevent vaporized light oil from being affected by the exhaust gas flow. Further, in the catalyst layer 5, a denitration catalyst (magnetite) is sintered on a honeycomb-structured carrier arranged on the entire surface of the exhaust gas passage of the exhaust gas purifying apparatus 1.

【0016】軽油供給用パイプ8から軽油が供給される
と、仕切板10上に落下して後、メッシュ部12に触れ
る。このときメッシュ部12はグロープラグ11で80
0〜1000℃に加熱されているので、メッシュ部12
上で軽油は気化し、排ガスの高温(約300℃以上)に
より発火して、触媒層5の触媒表面に付着したパーティ
キュレートを燃焼させ、触媒層5の表面を清浄に保持す
ることができる。この時、メッシュ部12は排ガスがプ
ロテクター6の開口部に巻き込まれるのを防止する機能
を持ち、また、軽油の発火を排ガス流れの横断面方向に
均等に分散させる機能を持つので、軽油はプロテクター
6全体に亙り、満遍なく発火する。排ガス流量48×1
6cm3/hr、排ガス空間速度0.0105、触媒
(成分)重量140g、軽油添加量24ml/minで
、NOの低減率は13%であった。
When light oil is supplied from the light oil supply pipe 8, the light oil drops on the partition plate 10 and then touches the mesh portion 12. At this time, the mesh part 12 is made up of 80 glow plugs.
Since it is heated to 0 to 1000 ° C, the mesh part 12
The light oil vaporizes above and is ignited by the high temperature of the exhaust gas (about 300 ° C. or higher) to burn the particulates adhering to the catalyst surface of the catalyst layer 5 to keep the surface of the catalyst layer 5 clean. At this time, the mesh portion 12 has a function of preventing the exhaust gas from being caught in the opening of the protector 6, and also has a function of uniformly dispersing the ignition of the light oil in the cross-sectional direction of the exhaust gas flow, so that the light oil is used as the protector. Fires evenly throughout 6 Exhaust gas flow rate 48 x 1
The NO reduction rate was 13% at 0 6 cm 3 / hr, exhaust gas space velocity of 0.0105, catalyst (component) weight of 140 g, and light oil addition amount of 24 ml / min.

【0017】また、排ガス流路の下流側に図1の開口部
を持つプロテクター6に代えて、図2に示すように円筒
状のプロテクター13を用い、しかも、触媒層5に面し
た側の該円筒状プロテクター13には細孔14を設ける
こともできる。こうすると、気化燃焼室3で燃焼した軽
油で着火した火炎が細孔14から貫通力を持った状態で
触媒層5に吹き出され、火炎の方向性を定めることがで
き、開口部を持つプロテクター6(図1)に比べ、燃料
消費量が少なくて済む。
Further, instead of the protector 6 having the opening shown in FIG. 1 on the downstream side of the exhaust gas flow path, a cylindrical protector 13 is used as shown in FIG. 2, and the protector 6 on the side facing the catalyst layer 5 is used. The cylindrical protector 13 may be provided with pores 14. In this way, the flame ignited by the light oil burned in the vaporization combustion chamber 3 is blown out from the pores 14 to the catalyst layer 5 with a penetrating force, the direction of the flame can be determined, and the protector 6 having an opening is formed. Compared to (Fig. 1), it consumes less fuel.

【0018】図1の場合は排ガスの一部が触媒層5の端
面に衝突した後、反射波として気化燃焼室3のメッシュ
部12に戻ってくるため、添加する軽油を増加して反射
波を上回る火炎軸を生成する必要があるが、図2に示す
細孔付きプロテクター13を用いることにより、細孔1
4から気化した軽油を噴出させて、排ガス温度より自然
着火させるが、プロテクター13がシールド構造になっ
ているので、添加する軽油を低減することができる。
In the case of FIG. 1, since a part of the exhaust gas collides with the end surface of the catalyst layer 5 and returns to the mesh portion 12 of the vaporization combustion chamber 3 as a reflected wave, the amount of light oil to be added is increased to produce a reflected wave. Although it is necessary to generate a flame axis exceeding the above, the use of the protector 13 with pores shown in FIG.
Although the gas oil vaporized from No. 4 is jetted and spontaneously ignited at the exhaust gas temperature, the protector 13 has a shield structure, so that the amount of gas oil to be added can be reduced.

【0019】具体的に数値で示すと、図1の構造からな
る排ガス浄化装置1の場合には燃料油(軽油)の添加量
が24ml/minでNO低減率が12%であったもの
が、図2の構造からなるものは燃料油添加量が1.5m
l/minで低減率が13%であった。ただし、いずれ
の場合もエンジンの運転条件は同一とした。また、燃料
油の添加量を低減できたのでトータルの未燃炭化水素の
増加が図1の場合が3850ppmであったのに対して
図2の場合は650ppmと最小限にとどめることがで
きた。
Specifically, in the case of the exhaust gas purifying apparatus 1 having the structure shown in FIG. 1, the amount of fuel oil (light oil) added was 24 ml / min and the NO reduction rate was 12%. The structure of Fig. 2 has a fuel oil addition of 1.5 m
The reduction rate was 13% at 1 / min. However, the operating conditions of the engine were the same in all cases. Further, since the addition amount of fuel oil could be reduced, the total increase of unburned hydrocarbons was 3850 ppm in the case of FIG. 1, whereas it was 650 ppm in the case of FIG. 2 and could be minimized.

【0020】また、燃焼油(軽油)を気化燃焼させるの
に必要な二次空気(O2)を図3に示すように、触媒層
5の上流側に設けたステンレス細管16を通し直接、気
化燃焼室3まで導入する構造とすることもできる。な
お。図2、図3で示す破線は流入排ガスの分散板15で
ある。図1、図2の構造からなる気化燃焼室3では、排
ガス中に二次空気を導入するため酸素濃度が不活性ガス
(排ガス)により希釈される。この時、気化燃焼に必要
な酸素濃度にするには過大な空気量を導入する必要があ
ったが、図3に示す構造では次に示すように、NOX
低減効果に影響を与えることなく、導入する二次空気量
を低減させることができる。 図1、図2のシステム…二次空気量:50リットル/m
in NO低減率:12.8% 図3のシステム…二次空気量:1〜2リットル/min NO低減率:13.4%
As shown in FIG. 3, the secondary air (O 2 ) required for vaporizing and burning the combustion oil (light oil) is directly vaporized through a stainless thin tube 16 provided upstream of the catalyst layer 5. It is also possible to adopt a structure in which the combustion chamber 3 is introduced. Incidentally. The broken lines shown in FIGS. 2 and 3 represent the inflowing exhaust gas dispersion plate 15. In the vaporizing combustion chamber 3 having the structure shown in FIGS. 1 and 2, the oxygen concentration is diluted with the inert gas (exhaust gas) because the secondary air is introduced into the exhaust gas. At this time, it was necessary to introduce an excessive amount of air to obtain the oxygen concentration necessary for vaporized combustion, but in the structure shown in FIG. 3, as shown below, the NO x reduction effect is not affected. The amount of secondary air introduced can be reduced. 1 and 2 system ... Secondary air volume: 50 liters / m
in NO reduction rate: 12.8% System of FIG. 3 Secondary air amount: 1-2 liter / min NO reduction rate: 13.4%

【0021】また、図4に示すように、気化燃焼室部分
を断熱効果の高いセラミック気化室17とガス室18と
に分割し、燃焼室部位を二次空気挿入部位から独立さ
せ、二次空気をガス室18に直接圧送することにより、
軽油の気化密度が均一となり、燃焼火炎が安定する。そ
のため、触媒層5での熱分布が均一となり、排ガス中の
NOの直接分解効率を向上させることができた。図4の
気化燃焼室部分の拡大詳細図に示しているように、気化
燃焼室の軽油供給用パイプ8の先端ノズル7はセラミッ
ク製部材19で囲われたセラミック気化室17に開口し
ており、また、このセラミック気化室17は二次空気導
入口20を持つ円筒状プロテクター13から構成されて
いる。なお、セラミック気化室17の下方部はプラグ1
1が臨んでおり、円筒状プロテクター13の二次空気導
入口20の反対側側面には気化された軽油の噴出口21
が設けられている。
Further, as shown in FIG. 4, the vaporization combustion chamber portion is divided into a ceramic vaporization chamber 17 and a gas chamber 18 having a high heat insulation effect, and the combustion chamber portion is made independent of the secondary air insertion portion to obtain the secondary air. By directly pumping the gas to the gas chamber 18,
The vaporization density of light oil becomes uniform and the combustion flame becomes stable. Therefore, the heat distribution in the catalyst layer 5 became uniform, and the direct decomposition efficiency of NO in the exhaust gas could be improved. As shown in the enlarged detailed view of the vaporization combustion chamber portion in FIG. 4, the tip nozzle 7 of the gas oil supply pipe 8 of the vaporization combustion chamber is opened to the ceramic vaporization chamber 17 surrounded by the ceramic member 19. The ceramic vaporization chamber 17 is composed of a cylindrical protector 13 having a secondary air inlet 20. The lower part of the ceramic vaporization chamber 17 is the plug 1
1, and a jet port 21 of vaporized light oil 21 is provided on the side surface of the cylindrical protector 13 opposite to the secondary air introduction port 20.
Is provided.

【0022】触媒層5の上流部の温度(計測部は触媒層
の中心部分)を同一テスト条件で比較した結果を次に示
す。 図3のシステム…499℃ 図4のシステム…520℃ このように、図3のシステムでは気化室とガス室が一体
となっているため、軽油の気化が二次空気量によって影
響を受け、気化密度が不均一となり、燃焼火炎が断続的
になり、安定しなかったが、図4に示すシステムでは触
媒層5での熱分布が均一になり、常に安定した燃焼火炎
を得ることができた。
The results of comparing the temperature of the upstream portion of the catalyst layer 5 (the measurement portion is the central portion of the catalyst layer) under the same test conditions are shown below. 3 system ... 499 ° C. FIG. 4 system ... 520 ° C. Thus, in the system of FIG. 3, since the vaporization chamber and the gas chamber are integrated, vaporization of light oil is affected by the amount of secondary air and vaporized. The density became non-uniform and the combustion flame was intermittent and not stable, but in the system shown in FIG. 4, the heat distribution in the catalyst layer 5 was uniform, and a stable combustion flame could always be obtained.

【0023】また、上記図1〜図4のシステムではエン
ジンの負荷変動等により、消炎した気化燃焼室3を、再
度、排ガスのみの温度で再着火しようとしても、なかな
か着火が起こらないことがあった。そこで、図5に示す
ように、触媒層5の上流側に燃焼フード22を設け、さ
らに、軽油の再着火に必要な酸素濃度を上げるために燃
焼フード22に二次空気供給孔24を開口する。このと
き、軽油の再着火用に燃焼フード22には軽油再着火用
のグロープラグ25を設ける必要がある。また、さら
に、排ガスの逆流防止用のパンチメタル26を燃焼フー
ド22端面に設置することもできる。目視によると図5
の構造を採用することで軽油の再着火が確実に、かつ瞬
時に行われることを確認できた。
In addition, in the systems shown in FIGS. 1 to 4, even if an attempt is made to reignite the extinguished vaporization combustion chamber 3 again at the temperature of only the exhaust gas, ignition may not occur easily due to engine load fluctuations and the like. It was Therefore, as shown in FIG. 5, a combustion hood 22 is provided on the upstream side of the catalyst layer 5, and a secondary air supply hole 24 is opened in the combustion hood 22 to increase the oxygen concentration necessary for re-ignition of light oil. . At this time, it is necessary to provide a glow plug 25 for re-ignition of light oil in the combustion hood 22 for re-ignition of light oil. Further, a punch metal 26 for preventing backflow of exhaust gas can be installed on the end surface of the combustion hood 22. According to visual inspection, FIG.
It was confirmed that the re-ignition of light oil was reliably and instantaneously adopted by adopting the structure of.

【0024】また、図5のシステムの場合は燃焼フード
22内の内壁に沿って二次空気を送っていたが、この場
合、長時間運転をすると燃焼フード22内壁の熱により
二次空気が熱せられ、空気密度の低下をまねき、燃焼火
炎の中に酸素を取り込むことができず、消炎することが
あった。そこで、図6に示すように、燃焼フード22内
に供給する二次空気の方向を燃焼火炎と同方向となるよ
うなノズルフード28を設け、このノズルフード28に
二次空気導入管29がノズルフード28内に開口するよ
うに接続する構成を採用することもできる。図6に示す
システムの場合は、気化燃焼室3の気化燃料噴出ノズル
30から噴出された燃焼火炎を回りから包み込むように
二次空気が流れ、また燃焼火炎と同軸方向に二次空気が
送ることができるため、燃焼継続に必要な酸素を取り込
むことができ、長時間運転でも消炎しない燃焼室にな
る。なお、その他の構造については、燃焼フード22内
に燃料再着火用のグロープラグ25を設ける構造と気化
燃焼室3は図5の場合と同様である。
Further, in the case of the system of FIG. 5, the secondary air was sent along the inner wall of the combustion hood 22, but in this case, when operating for a long time, the heat of the inner wall of the combustion hood 22 heats the secondary air. As a result, the air density was reduced, and oxygen could not be taken into the combustion flame, resulting in extinction. Therefore, as shown in FIG. 6, a nozzle hood 28 is provided so that the direction of the secondary air supplied into the combustion hood 22 is in the same direction as the combustion flame, and the secondary air introducing pipe 29 is provided in the nozzle hood 28. It is also possible to adopt a configuration in which the hood 28 is connected so as to open. In the case of the system shown in FIG. 6, the secondary air flows so as to wrap around the combustion flame ejected from the vaporized fuel injection nozzle 30 of the vaporization combustion chamber 3, and the secondary air is sent in the direction coaxial with the combustion flame. As a result, it is possible to take in oxygen required for continuous combustion, and a combustion chamber that does not extinguish flames even during long-term operation. Regarding the other structures, the structure in which the glow plug 25 for re-igniting the fuel in the combustion hood 22 and the vaporization combustion chamber 3 are the same as in the case of FIG.

【0025】また、図7に示すように気化燃料噴出ノズ
ル30先端部にプラチナ等の金属製のメッシュ31を設
置すると、該メッシュ部分の隙間で空気の乱れが生じ
て、あるいは火炎核が安定し、燃焼火炎に空気を取り込
むことが可能となり、たとえ軽油供給量を絞った状態で
長時間運転しても、消炎することはなくなる。
As shown in FIG. 7, when a mesh 31 made of metal such as platinum is installed at the tip of the vaporized fuel injection nozzle 30, air turbulence occurs in the gap between the mesh parts or the flame kernel stabilizes. As a result, air can be taken into the combustion flame, and the flame will not be extinguished even if it is operated for a long time with the amount of light oil being reduced.

【0026】また、燃焼フード22と触媒層5(図示せ
ず)間に排ガス導入ガイド32を設け、エンジンからの
排ガスを燃焼フード22の外壁に沿って流れる排ガスを
触媒層に達する前に燃焼火炎に接触するように誘導する
ことで、エンジンからの排ガスは必ず燃焼火炎の中を通
って排出されることになり、触媒層上での排ガス中のパ
ーティキュレートが確実に燃焼される。ボッシュスモー
ク濃度は前記ガイド32のない場合が26%であったも
のが、ガイド32を設置した場合は24%と減少した。
Further, an exhaust gas introduction guide 32 is provided between the combustion hood 22 and the catalyst layer 5 (not shown) so that the exhaust gas from the engine flows along the outer wall of the combustion hood 22 before the exhaust gas reaches the catalyst layer. By inducing the exhaust gas from the engine to come into contact with the exhaust gas, the exhaust gas from the engine is always discharged through the combustion flame, and the particulates in the exhaust gas on the catalyst layer are surely combusted. The Bosch smoke concentration was 26% when the guide 32 was not provided, but decreased to 24% when the guide 32 was installed.

【0027】[0027]

【発明の効果】本発明によれば、ディーゼル機関の排ガ
ス流路に排ガスにより燃焼が阻害されない還元剤の気化
と還元剤の燃焼を確実に行える室を設置することで、触
媒表面のパーティキュレートが有効に除去され、触媒表
面を清浄しながら、ディーゼル機関の排ガスの脱硝を効
率的に達成することができる。
EFFECTS OF THE INVENTION According to the present invention, by providing a chamber in the exhaust gas passage of a diesel engine, which can surely vaporize the reducing agent and combust the reducing agent, the particulate matter on the catalyst surface can be prevented. While being effectively removed and the catalyst surface can be cleaned, denitration of exhaust gas of a diesel engine can be efficiently achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 排ガス浄化装置を示す図。FIG. 1 is a diagram showing an exhaust gas purification apparatus.

【図2】 排ガス浄化装置を示す図。FIG. 2 is a diagram showing an exhaust gas purification apparatus.

【図3】 排ガス浄化装置を示す図。FIG. 3 is a diagram showing an exhaust gas purification apparatus.

【図4】 排ガス浄化装置の燃料気化燃焼室の断面図。FIG. 4 is a cross-sectional view of a fuel vaporization combustion chamber of an exhaust gas purification device.

【図5】 排ガス浄化装置を示す図。FIG. 5 is a diagram showing an exhaust gas purification apparatus.

【図6】 排ガス浄化装置を示す図。FIG. 6 is a diagram showing an exhaust gas purifying apparatus.

【図7】 排ガス浄化装置を示す図。FIG. 7 is a diagram showing an exhaust gas purification apparatus.

【図8】 従来技術の排ガス浄化装置を示す図。FIG. 8 is a diagram showing an exhaust gas purifying apparatus of a conventional technique.

【符号の説明】[Explanation of symbols]

1…排ガス浄化装置、3…気化燃焼室、5…触媒層、6
…プロテクター
1 ... Exhaust gas purifying device, 3 ... Vaporizing combustion chamber, 5 ... Catalyst layer, 6
…protector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス排出流路の脱硝用の触媒部の上流
側に、還元剤の気化室と排気ガス流れにより還元剤の気
化、燃焼が影響されないようなプロテクターとを一体化
した還元剤の気化燃焼室を設けたことを特徴とするディ
ーゼル機関の排ガス浄化装置。
1. A reducing agent comprising a reducing agent vaporization chamber and a protector that are not affected by the exhaust gas flow to vaporize and burn the reducing agent on the upstream side of the catalyst for denitration in the exhaust gas discharge channel. An exhaust gas purification device for a diesel engine, which is provided with a vaporization combustion chamber.
JP4252686A 1992-09-22 1992-09-22 Exhaust gas purifying device for diesel engine Pending JPH06101454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4252686A JPH06101454A (en) 1992-09-22 1992-09-22 Exhaust gas purifying device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4252686A JPH06101454A (en) 1992-09-22 1992-09-22 Exhaust gas purifying device for diesel engine

Publications (1)

Publication Number Publication Date
JPH06101454A true JPH06101454A (en) 1994-04-12

Family

ID=17240833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4252686A Pending JPH06101454A (en) 1992-09-22 1992-09-22 Exhaust gas purifying device for diesel engine

Country Status (1)

Country Link
JP (1) JPH06101454A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039091A1 (en) 2011-09-14 2013-03-21 日野自動車株式会社 Fuel reformer and exhaust gas purification device using same
CN103920394A (en) * 2014-04-25 2014-07-16 浙江浙大海元环境科技有限公司 Glass furnace flue gas denitration catalyst protection device
CN111947137A (en) * 2020-08-27 2020-11-17 哈尔滨工业大学 Oil secondary air assisted ignition self-stable combustion W flame boiler and self-stable combustion method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039091A1 (en) 2011-09-14 2013-03-21 日野自動車株式会社 Fuel reformer and exhaust gas purification device using same
US9623376B2 (en) 2011-09-14 2017-04-18 Hino Motors, Ltd. Fuel reformer and exhaust gas purifier using the same
CN103920394A (en) * 2014-04-25 2014-07-16 浙江浙大海元环境科技有限公司 Glass furnace flue gas denitration catalyst protection device
CN111947137A (en) * 2020-08-27 2020-11-17 哈尔滨工业大学 Oil secondary air assisted ignition self-stable combustion W flame boiler and self-stable combustion method

Similar Documents

Publication Publication Date Title
JP5033912B2 (en) Emission reduction assembly with mixing baffles and related methods
RU2386078C2 (en) System of delivery of catalytic aerosol and method of catalytic of fuel burning
JP4614448B2 (en) Exhaust gas purification device for internal combustion engine
JP5566134B2 (en) Exhaust gas temperature increase combustor
JP4659097B2 (en) Plasma reactor and system for reducing particulate matter in exhaust gas using the same
KR20140050092A (en) Exhaust treatment system with hydrocarbon lean nox catalyst
US20080053070A1 (en) Apparatus and method for regenerating a particulate filter with a non-uniformly loaded oxidation catalyst
JPS6011617A (en) Combustion apparatus for vehicle
JP3460122B2 (en) Combustion type abatement system and burner for combustion abatement system
JPH06101454A (en) Exhaust gas purifying device for diesel engine
KR100699495B1 (en) PM Reduction Equipment of DPF System using Plasma Reactor
US6237395B1 (en) Annular after reactor for use with a jet engine test cell
US20090000478A1 (en) Filter purge system utilizing a reactive propellant
JPS62500465A (en) Waste liquid incinerator equipped with heat recovery means
KR101166229B1 (en) Apparatus for reducing exhaust gas
KR101017021B1 (en) Plasma burner for dpf system
JP2018066587A (en) Particulate substance generator
CN109253459B (en) Ground torch closed type combustor exhaust gas denitration and dust removal system and method
CN109723529B (en) Tail gas pipe assembly and tail gas treatment system
KR102225344B1 (en) Marine 3D Exhaust Gas Spray Injector
KR101398571B1 (en) Shape of fuel/air injection device for the stability of ignition and combustion in a exhaust gas cleaning device of diesel vehicle
JPS5948134B2 (en) Method for reducing NOx in combustion gas from a high-temperature furnace
US3991567A (en) Vortical flow exhaust gas reactor
TWM554941U (en) Device for lowering exhaust gas
MX2008002067A (en) Methods and systems for removing mercury from combustion flue gas.