JPS5948134B2 - Method for reducing NOx in combustion gas from a high-temperature furnace - Google Patents

Method for reducing NOx in combustion gas from a high-temperature furnace

Info

Publication number
JPS5948134B2
JPS5948134B2 JP51083200A JP8320076A JPS5948134B2 JP S5948134 B2 JPS5948134 B2 JP S5948134B2 JP 51083200 A JP51083200 A JP 51083200A JP 8320076 A JP8320076 A JP 8320076A JP S5948134 B2 JPS5948134 B2 JP S5948134B2
Authority
JP
Japan
Prior art keywords
combustion gas
furnace
nox
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51083200A
Other languages
Japanese (ja)
Other versions
JPS538361A (en
Inventor
欣之介 長岡
倫夫 植月
守也 鈴木
賢次 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP51083200A priority Critical patent/JPS5948134B2/en
Publication of JPS538361A publication Critical patent/JPS538361A/en
Publication of JPS5948134B2 publication Critical patent/JPS5948134B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass

Description

【発明の詳細な説明】 本発明は高温炉からの燃焼ガス中のNOx減少方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing NOx in combustion gas from a high temperature furnace.

ガラス溶融炉を代表とする高温炉では、一般に、炉中で
何らかの物理的化学的反応を起さすものが多く、これら
の炉の燃焼ガス中のNOx発生濃度が高い場合か゛多い
High-temperature furnaces, typified by glass melting furnaces, generally involve some kind of physical or chemical reaction in the furnace, and the concentration of NOx generated in the combustion gas of these furnaces is often high.

このため大気汚染防止の観点から排ガス中のNOx濃度
減少技術の早期確立が望まれている。
Therefore, from the viewpoint of preventing air pollution, it is desired to quickly establish technology for reducing NOx concentration in exhaust gas.

燃料燃焼時排ガスに伴なって大気中に放出されるNOx
量を減少させる方法としては、炉口体での燃料燃焼時の
NOx発生を抑える方法及び燃料燃焼によって発生した
NOxを別途除去する方法の二つの方法が検討されてい
る。
NOx released into the atmosphere with exhaust gas during fuel combustion
Two methods are being considered to reduce the amount: a method of suppressing the generation of NOx during fuel combustion in the furnace mouth body, and a method of separately removing NOx generated by fuel combustion.

前者の方法としては、既にボイラーにおいて一部実施さ
れている二段燃焼法、排ガス循環法などの炎温度自体を
抑えることによるNOx発生の抑制方法があるが、かか
る技術は高温を必要不可欠とする高温反応炉では側底実
用し得ない。
The former method includes methods for suppressing NOx generation by suppressing the flame temperature itself, such as the two-stage combustion method and the exhaust gas circulation method, which have already been implemented in some boilers, but such technologies require high temperatures. The side bottom cannot be put to practical use in high-temperature reactors.

たとえばガラス溶融炉において炉温度つまり炎の温度を
下げると製品ガラス中に泡やすし等の欠点を生じ、高温
反応炉本来の機能を維持できなくなる。
For example, in a glass melting furnace, if the furnace temperature, that is, the temperature of the flame, is lowered, defects such as bubbles and smudges will occur in the product glass, making it impossible to maintain the original functions of the high-temperature reactor.

また後者の一且発生したNOxを除去する方法としては
、乾式脱硝法と湿式脱硝法が知られている。
Further, as the latter method for removing generated NOx, a dry denitrification method and a wet denitrification method are known.

乾式脱硝法としては酸化鉄等の還元触媒を用いNH3,
CoなどによりNOxを還元元する方法及び無触媒下に
N H3によりNOxを還元する方法があり、いづれも
ボイラー等で一部実用段階にある。
The dry denitrification method uses a reduction catalyst such as iron oxide to reduce NH3,
There are two methods: one in which NOx is reduced using Co, etc., and one in which NOx is reduced in a non-catalytic manner using NH3, both of which are partially in practical use in boilers and the like.

しかして触媒を用いる乾式接触還元法では触媒も含め脱
硝装置が一般に高価であり且つその維持、運転にも多額
の費用がかかるという難点があると共に、これを高温反
応炉からの燃焼ガスに適用した場合には、その排ガスは
一般にダーティであるため触媒の能力及び寿命の著しい
低下を避は得ない場合が多いという欠点を有している。
However, the dry catalytic reduction method using a catalyst has the disadvantage that the denitration equipment including the catalyst is generally expensive, and it also costs a lot of money to maintain and operate. In some cases, the exhaust gas is generally dirty, so it has the disadvantage that in many cases it is unavoidable that the performance and life of the catalyst will be significantly reduced.

たとえばガラス溶融炉からの燃焼ガス中にはNOXと共
に燃料中の硫黄分から発生するSOx、ガラス原料の飛
散物、原料の分解物などのダストを混在したいわゆるダ
ーティ−ガスの状態にあり、詰まり現象など触媒への悪
影響を解決する手段・方法は確立できていない。
For example, the combustion gas from a glass melting furnace is in a state of so-called dirty gas, which contains NOx, SOx generated from sulfur in the fuel, scattered glass raw materials, and dust such as decomposed raw materials, which can cause clogging phenomena. No means or methods have been established to resolve the adverse effects on the catalyst.

またNHaを用いた無触媒法は有効な適用温度は低いが
その範囲が極めて限られているという欠点があり、高温
炉からの燃焼ガスでがかる制御を行なうことは極めて困
難であると共に経済性にも劣る。
In addition, the non-catalytic method using NHa has the drawback that although the effective application temperature is low, the range is extremely limited, and it is extremely difficult to perform such control using combustion gas from a high-temperature furnace, and it is not economical. Also inferior.

一方湿式脱硝法は、NOxを一旦酸化してN02の形に
し、水またはアルカリ液に吸収させる方法であるが吸収
反応時にドラフトを保証するために必要な排風機にかな
り大きな動力を要すると共に、NO□を吸収した処理液
の後処理のために膨大な排水処理装置を必要とするなど
の欠点を有している。
On the other hand, the wet denitrification method is a method in which NOx is oxidized to N02 and then absorbed into water or alkaline liquid. This method has drawbacks such as requiring a huge amount of wastewater treatment equipment for post-treatment of the treatment liquid that has absorbed □.

本発明は極めて簡単な方法により、高温炉、特に高温反
応炉からの排ガス中のNOxを効果的に減少せしめる方
法を提供するものである。
The present invention provides a method for effectively reducing NOx in exhaust gas from a high-temperature furnace, particularly a high-temperature reactor, using a very simple method.

即ち本発明方法は、高温炉からの燃焼ガスが1100℃
以上の温度域にある間に、別途空気又は酸素を導入する
ことなく、炭化水素またはその含酸素誘導体またはこれ
らを含む物質を前記炭化水素またはその含酸素誘導体ま
たはこれらを含む物質が不完全燃焼しない量的範囲内で
系に導入して、前記燃焼ガスと接触せしめることにより
、燃焼ガス中のNOx濃度を減少せしめるものである。
That is, in the method of the present invention, the combustion gas from the high temperature furnace is heated to 1100°C.
While in the above temperature range, the hydrocarbon, its oxygen-containing derivative, or a substance containing these will not be incompletely combusted without introducing air or oxygen separately. By introducing it into the system within a quantitative range and bringing it into contact with the combustion gas, the NOx concentration in the combustion gas is reduced.

本発明方法で対象とする排ガスはいわゆる高温炉からの
ものであれば本質的にはいずれでもよく、たとえばガラ
ス溶融炉、工業窯炉なと1100℃以上の反応温度を要
する反応炉からの排ガスが適宜適用される。
The exhaust gas targeted in the method of the present invention may essentially be from any so-called high-temperature furnace; for example, exhaust gas from a glass melting furnace, industrial kiln, or other reactor that requires a reaction temperature of 1100°C or higher is used. Applicable as appropriate.

本発明方法ではNOx低減用処理物質として炭化水素ま
たはその含酸素誘導体を用いることを本質とする。
The essence of the method of the present invention is to use hydrocarbons or their oxygen-containing derivatives as the treatment substance for NOx reduction.

ここで炭化水素としてはメタン、エタン、プロパン、ブ
タンなどの低級炭化水素が経済性などの理由から好まし
く用いられるが、処理温度が高温であることからも理解
されるように本質的にはより高級な炭化水素類たとえば
、ヘキサン、オクタン、デカン、ベンゼン、キシレンな
ども適宜用いられる。
As hydrocarbons, lower hydrocarbons such as methane, ethane, propane, and butane are preferably used for economical reasons, but as can be understood from the high processing temperature, they are essentially higher-grade hydrocarbons. Hydrocarbons such as hexane, octane, decane, benzene, and xylene can also be used as appropriate.

また炭化水素の含酸素誘導体はその分子が炭素、水素、
酸素からなる化合物であれば本質的にはいずれでもよく
、たとえばメチルアルコール、エチルアルコール、プロ
ピルアルコールなどのアルコール類によって代表される
可燃性含酸素誘導体が適宜用いられる。
In addition, oxygen-containing derivatives of hydrocarbons have molecules such as carbon, hydrogen,
Essentially any compound consisting of oxygen may be used, and flammable oxygen-containing derivatives typified by alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol may be used as appropriate.

これらNOx低減用処理物質はそれぞれを単独で用いて
もよくまた2種以上を併用してもよく、またさらには他
の成分との混合物として用いてもよい。
These NOx-reducing treatment substances may be used alone, in combination of two or more, or as a mixture with other components.

本発明のNOx低減用処理物質を含有する混合物として
は、たとえば液化石油ガス(L、 P、 G)、灯油、
重油、都市ガス等があり、これらはいずれも極めて好適
に用いられる。
Examples of the mixture containing the NOx reduction treatment substance of the present invention include liquefied petroleum gas (L, P, G), kerosene,
There are heavy oil, city gas, etc., and any of these can be used very suitably.

これらNOx低減用処理物質の添加量には特に制限はな
く少量であれば少量なりの効果がある。
There is no particular limit to the amount of these NOx reduction treatment substances added, and a small amount will have some effect.

通常は、発生NOxと等モル量程度からこれら処理物質
に由来するすすが出ない程度の量範囲で使用される。
Usually, it is used in an amount ranging from about equimolar amount to the amount of NOx generated to an amount that does not generate soot derived from these processing substances.

具体的にはNOx発生量、残存酸素量などに応じで決定
される。
Specifically, it is determined depending on the amount of NOx generated, the amount of residual oxygen, etc.

これらNOx低減用処理物質と燃焼ガスとを接触反応さ
せる際には、通常系に0.5〜10%程度の酸素が残存
するため、特に空気や酸素を別途導入する必要はないが
、炉体耐人物の隙間から燃焼ガス中にもれ空気が吸引さ
れることは、通常の炉ではよく見られる現象であり、勿
論さしつかえない。
When carrying out a catalytic reaction between these treated substances for NOx reduction and combustion gas, there is normally about 0.5 to 10% oxygen remaining in the system, so there is no need to separately introduce air or oxygen, but the furnace body The suction of air leaking into the combustion gas through the gaps between the supports is a phenomenon that is often seen in ordinary furnaces, and is of course not a problem.

本発明のNOx低減用処理物質を接触させる際の燃焼ガ
スの温度は1100℃以上であることが必要であり、こ
れ以下だと事実上NOx濃度の減少効果はほとんどない
The temperature of the combustion gas when brought into contact with the treatment substance for NOx reduction of the present invention needs to be 1100° C. or higher, and if it is lower than this, there is practically no effect of reducing the NOx concentration.

1100℃以上であれば上限には特に制限はなく、広い
範囲で効果を発現する。
As long as the temperature is 1100° C. or higher, there is no particular upper limit, and the effect is exhibited over a wide range.

通常は1200〜1500℃程度が特に好ましい。Generally, the temperature is particularly preferably about 1200 to 1500°C.

接触場所は炉の燃焼部から煙道部に至る適宜の個所が選
択される。
An appropriate contact point is selected from the combustion section of the furnace to the flue section.

たとえば工業窯炉にあっては燃焼室から煙道出口までの
間あるいは熱回収装置を有する炉では熱回収装置内が、
またガラス溶融炉にあっては、溶融槽端部のポート附近
、蓄熱室内部、換熱室内部または煙道部の間の適宜の個
所が選択される。
For example, in an industrial kiln, between the combustion chamber and the flue outlet, or in a furnace equipped with a heat recovery device, the inside of the heat recovery device
In a glass melting furnace, an appropriate location is selected near the port at the end of the melting tank, inside the heat storage chamber, inside the heat exchanger chamber, or between the flue section.

NOx低減用処理物質と燃焼ガスの接触は通常の気相化
学反応におけると同様、できるだけ接触面積を大きくま
た混合状態を良好にすることが望ましいが、必ずしも本
発明方法の実施のために特別の装置類は必要なく、NO
x低減用処理物質を所定の個所に導入するためのノズル
類を備えるだけでも十分である。
The contact between the NOx reduction treatment substance and the combustion gas is similar to that in a normal gas phase chemical reaction, and it is desirable to have as large a contact area as possible and to maintain a good mixing state. There is no need for similar, NO
It is sufficient to simply provide nozzles for introducing the x-reducing treatment substance into predetermined locations.

かくして極めて容易且つ安価に高温炉からの排ガス中の
NOxを効率的に減少させることが可能となったのであ
る。
In this way, it has become possible to efficiently reduce NOx in exhaust gas from a high-temperature furnace very easily and inexpensively.

以下、ガラス溶融炉での実験結果を実施例として示す。Below, experimental results in a glass melting furnace will be shown as examples.

第1図は実験に使用した容量的750kgの小型ガラス
溶融タンク炉の概略図である。
FIG. 1 is a schematic diagram of a small glass melting tank furnace with a capacity of 750 kg used in the experiment.

この炉は、ガラス溶融部1、大型のガラス溶融タンク炉
のそれと同様な構造をもつ内断面がlmX1m内高さ約
2.7mの蓄熱室2(ただし、実験では、燃焼ガスは常
に一定方向に流れており、この部分において二次空気の
加熱は行っていない。
This furnace consists of a glass melting section 1, a heat storage chamber 2 with an internal cross section of 1 m x 1 m and a height of about 2.7 m, which has a structure similar to that of a large glass melting tank furnace (however, in experiments, the combustion gas was always directed in a fixed direction). The secondary air is not heated in this part.

)、および煙道部3よりなり、1−2間は吹出部4によ
り連結されている。
), and a flue part 3, and 1 and 2 are connected by a blowing part 4.

ガラス溶融部1において、その下部に溶融ガラス5があ
り、その上部の燃焼6では、溶融槽1の端部に設けたバ
ーナー7からA重油を噴霧し、バーナーの囲りから導入
する二次空気によって燃焼し、炉を高温に保っている。
In the glass melting section 1, there is molten glass 5 in the lower part, and in the combustion 6 in the upper part, heavy oil A is sprayed from the burner 7 provided at the end of the melting tank 1, and secondary air is introduced from around the burner. burns and keeps the furnace at a high temperature.

蓄熱室2の内部は図に示したようにチェッカーレンガ8
を積んである。
The inside of the heat storage chamber 2 is made of checkered bricks 8 as shown in the figure.
It is loaded with.

したがって、溶融槽端部のバーナーから噴出した重油は
燃焼室で燃焼し、その燃焼ガスは溶融槽から吹出4をへ
て、蓄熱室2に入り、チェッカーレンガ8の隙間を通過
して、煙道へ入り、煙道出口9から図には示していない
が排風機によって大気中に放出される。
Therefore, the heavy oil ejected from the burner at the end of the melting tank is burned in the combustion chamber, and the combustion gas passes through the blowout 4 from the melting tank, enters the heat storage chamber 2, passes through the gap between the checker bricks 8, and passes through the flue. Although not shown in the figure, it is discharged into the atmosphere from the flue outlet 9 by an exhaust fan.

NOx低減のための処理物質は次の10〜14の位置よ
り供給した。
Treatment substances for NOx reduction were supplied from the following 10 to 14 positions.

すなわち溶融槽端部の吹出附近10、蓄熱室天井11.
蓄熱室内のチェッカーレンガを積んだ部分の上段12、
中段13、下段14から燃焼ガス中に送入した。
That is, the blowout area 10 at the end of the melting tank, the ceiling 11 of the heat storage chamber.
Upper tier 12 of the part where checker bricks are piled up in the heat storage room,
It was introduced into the combustion gas from the middle stage 13 and the lower stage 14.

処理物質を送入しない燃焼ガス(または未処理の排ガス
とよぶことにする)および処理物質を送入したときの処
理後の排ガスは煙道出口附近15において採取し、連続
式NOx分析計、および連続式02分析計によって、N
Ox、02濃度を測定した。
Combustion gas (or untreated exhaust gas) to which no treated substances are fed and treated exhaust gas when treated substances are fed are sampled near the flue outlet 15, and are analyzed using a continuous NOx analyzer, and By continuous type 02 analyzer, N
The Ox,02 concentration was measured.

昼下の述べる実験は炉が定常状態になってから行なわれ
たが、炉、したがって蓄熱室温度も比較的低く、燃焼ガ
ス中のNOx濃度が比較的低い状態、およびこれらが比
較的高い状態の計2回について行なったものである。
The experiments described in the afternoon were conducted after the furnace was in a steady state, but the temperature of the furnace and therefore the regenerator was relatively low, and the NOx concentration in the combustion gas was relatively low, and the NOx concentration in the combustion gas was relatively high. This was done twice in total.

このときの操炉条件の概略を表−1に示すが、測温位置
は10〜13の処理物質送入部附近および蓄熱室の煙道
出口、および排ガス採取位置15附近である。
Table 1 shows an outline of the furnace operation conditions at this time, and the temperature measurement positions were near the treatment material inlet parts 10 to 13, the flue outlet of the heat storage chamber, and the vicinity of the exhaust gas sampling position 15.

処理物質の送入点が、第1図において処理物質供給位置
10.11.12.13.14の順に該処理物質と、燃
焼ガスの最初の接触温度は低くなり、排ガス採取位置ま
での距離は小さくなっていることになる。
The initial contact temperature between the processing material and combustion gas becomes lower as the processing material feeding point becomes processing material supply position 10, 11, 12, 13, and 14 in the order of processing material supply position 10, 11, 12, 13, and 14 in FIG. It means it's smaller.

実施例1 処理物質としてり、P、Go、都市ガス(4500Kc
al/rr+Fで公表されている組成はVol、%で示
すとCO5,HH246,CH422,CmHn5.
CO210022,N210である)を送入したとき、
送入量が多すぎると処理後の排ガス中にススが発生した
が、ススが発生しないと思われた処理後の排ガス中の0
□濃度が1%の送入量のときの未処理、および処理後の
排ガス中のNOx濃度と送入点との関係を表−2に示す
が、未処理の排ガス中のNOx濃度は320ppmであ
った。
Example 1 Processing materials were Citrus, P, Go, city gas (4500Kc
The composition published in al/rr+F is expressed in Vol and % as CO5, HH246, CH422, CmHn5.
When injecting CO210022, N210),
If the amount of feed was too large, soot was generated in the exhaust gas after treatment, but when it was thought that no soot would be generated, zero in the exhaust gas after treatment.
□Table 2 shows the relationship between the NOx concentration in the untreated and treated exhaust gas and the inlet point when the concentration is 1%, and the NOx concentration in the untreated exhaust gas is 320 ppm. there were.

これらの実験は、表−1の第1回目の操炉条件のもとで
行なわれたが、いずれの送入点でも処理後の排ガス中の
NOx濃度は減少しており、で示したとき送入点温度が
高いほど減少率は大きいことかわかる。
These experiments were conducted under the first operation conditions shown in Table 1, and the NOx concentration in the flue gas after treatment decreased at all inlet points. It can be seen that the higher the entrance temperature, the greater the reduction rate.

実施例2 表−1の第2回目の操炉条件のもとで、処理物質として
都市ガスを送入したとき、その送入量と排ガス中のNO
X、 O□濃度の関係を第2図及び第3図に示した。
Example 2 Under the second operation conditions shown in Table 1, when city gas was fed as a treatment substance, the amount of feed and NO in the exhaust gas
The relationship between the X and O□ concentrations is shown in FIGS. 2 and 3.

第2図は比較的高温の溶融槽、蓄熱室天井から送入した
ときを第3図は比較的低温の蓄熱室の上、中、下段から
それぞれ送入したときの結果を示した。
Fig. 2 shows the results when the material was introduced from the relatively high-temperature melting tank and the ceiling of the heat storage chamber, and Fig. 3 shows the results when the material was introduced from the upper, middle, and lower stages of the relatively low-temperature heat storage chamber.

いずれの図でも、都市ガスの送入量の増加とともに排ガ
ス中のNOx、 O□濃度は減少しており、排ガス中の
NOxを減少する都市ガスの効果は明らかである。
In both figures, the NOx and O□ concentrations in exhaust gas decrease as the amount of city gas fed increases, and the effect of city gas on reducing NOx in exhaust gas is clear.

また、同−送入量においては、第3図の方がNOx、0
2濃度の減少量が大きい。
Also, for the same amount of feed, the one in Fig. 3 has a higher NOx, 0
2. The amount of decrease in concentration is large.

実施例3 表−1の第2回目の操炉条件のもとで、処理物質として
り、P、 G、を送入したとき、その送入量と排ガス中
のNOx、0□濃度の関係を第4図に示した。
Example 3 Under the second furnace operation conditions shown in Table 1, when P and G are fed as treatment substances, the relationship between the amount of feed and the NOx, 0□ concentration in the exhaust gas is calculated. It is shown in Figure 4.

このときも、いずれの位置から送入してもり、P、G、
の送入量の増加とともに排ガス中のNOx。
At this time as well, it can be fed from any position, P, G,
NOx in the exhaust gas increases with the increase in the amount of NOx fed into the exhaust gas.

0□濃度は減少しているが、同−送入量では、送入点温
度が高い方がNOx濃度の減少量は大きいことがわかる
Although the 0□ concentration has decreased, it can be seen that at the same feed rate, the higher the feed point temperature is, the greater the decrease in the NOx concentration is.

送入点温度が最も高い溶融槽から送入したとき、NOx
濃度は約750ppmから200ppmに減少している
When feeding from the melting tank with the highest feeding point temperature, NOx
The concentration has been reduced from about 750 ppm to 200 ppm.

実施例4 表−1の第2回目の操炉条件のもとで、処理物質として
エチルアルコールを用い、水冷装置をもつ特殊なバーナ
ーによって送入した。
Example 4 Under the second furnace operation conditions shown in Table 1, ethyl alcohol was used as the treatment substance and was fed through a special burner equipped with a water cooling device.

測定結果を表−3に示す。The measurement results are shown in Table-3.

この結果によれば、エチルアルコールもNOx濃度の減
少に有効であることがわかる。
According to these results, it can be seen that ethyl alcohol is also effective in reducing NOx concentration.

実施例5(比較例) 表−1の第1回目の操炉条件のもとで、処理物質として
CO,NH3を送入したときの結果を表−4、表−5に
それぞれ示した。
Example 5 (Comparative Example) Tables 4 and 5 show the results when CO and NH3 were introduced as treatment substances under the first furnace operation conditions shown in Table 1.

1これらの結果によれば、NH3,
COを送入すると、処理後の排ガス中の02濃度は減少
しているにもかかわらずNOx濃度は逆に増加しており
、NOx低減の処理物質とならないことを示している。
1 According to these results, NH3,
When CO is introduced, the NOx concentration increases even though the 02 concentration in the exhaust gas after treatment decreases, indicating that it is not a treated substance for NOx reduction.

また表−4中には、比較のため、L、P、G、を溶融槽
から送入フし、処理後の排ガス中の0□濃度がCO送入
時と同じような値としたが、処理後の排ガス中のNOx
濃度は減少している。
Table 4 also shows that for comparison, L, P, and G were fed from the melting tank, and the 0□ concentration in the exhaust gas after treatment was set to the same value as when CO was fed. NOx in exhaust gas after treatment
Concentrations are decreasing.

これらの処理物質の送入によって、送入点附近の温度が
上昇することが確認されたことから送入:した処理物質
が燃焼していることは明らかである。
Since it was confirmed that the temperature near the feeding point increased due to the feeding of these treated substances, it is clear that the fed treated substances were combusted.

しかしながらN H3及びCOではNOx減少効果は全
く認められず、本発明処理物質と処理温度との組合せが
著効を示すものであることが理解されよう。
However, with N 2 H3 and CO, no NOx reduction effect was observed at all, and it can be seen that the combination of the treatment substance of the present invention and the treatment temperature exhibits a remarkable effect.

実施例 6 実施例のエチルアルコールを灯油に変え、表−6の条件
下で同様に実施した結果を表−6に示す。
Example 6 The same procedure as in Example 6 was carried out under the conditions shown in Table 6 except that kerosene was used instead of ethyl alcohol. The results are shown in Table 6.

本実験はガラス溶融炉、およびこれに附属した蓄熱室に
おいて行っているが、通常の高温反応炉と比較して、特
別に変った耐火物を用いてなく、また溶融ガラスはすで
に別の炉で溶融したガラスカレットを予め炉内に投入し
であるだけで、原料ダストは全く飛散しない状態である
ので、特殊な条件は全くなく、これらの結果は高温反応
炉一般に適用しうろことは容易に理解されよう。
This experiment was conducted in a glass melting furnace and a heat storage chamber attached to it, but compared to ordinary high-temperature reactors, no special refractories were used, and the molten glass was already in another furnace. Since the molten glass cullet is simply put into the furnace in advance and no raw material dust is scattered, there are no special conditions required, and it is easy to understand that these results can be applied to high-temperature reactors in general. It will be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実験に使用した小型のガラス溶融タンク炉の概
略図、第2図は処理物質として都市ガスを使用し、送入
点が溶融槽内、および蓄熱室天井のときの、都市ガス送
大量と排ガス中のNOx、 O□の濃度変化の関係を示
す線図、第3図は第2図において、送入点が蓄熱室であ
るときの線図、第4図は処理物質として、L、P、G、
を使用したときの送入量と排ガス中のNOX、 02濃
度変化の関係を示す線図である。 1・・・・・・溶融炉、2・・・・・・蓄熱室、3・・
・・・・煙道部、4・・・・・・吹出部、5・・・・・
・溶融ガラス、6・・・・・・燃焼室、7・・・・・・
バーナー、8・・・・・・レンガ、9・・・・・・煙道
出口、10、11.12.13.14・・・・・・処理
物質の供給位置、10・・・・・・溶融槽端部の吹出附
近、11・・・・・・蓄熱室天井附近、15・・・・・
・排ガス採取位置(煙道出口附近)。
Figure 1 is a schematic diagram of the small glass melting tank furnace used in the experiment, and Figure 2 shows the city gas flow when city gas is used as the processing substance and the feeding point is inside the melting tank and at the ceiling of the regenerator. Figure 3 is a diagram showing the relationship between the amount of NOx and O□ concentration changes in exhaust gas. ,P.G.
FIG. 2 is a diagram showing the relationship between the feed amount and the change in NOX and 02 concentration in the exhaust gas when using the same. 1... Melting furnace, 2... Heat storage chamber, 3...
...Flue section, 4...Blowout section, 5...
- Molten glass, 6... Combustion chamber, 7...
Burner, 8... Brick, 9... Flue outlet, 10, 11.12.13.14... Processing substance supply position, 10... Near the blowout at the end of the melting tank, 11... Near the ceiling of the heat storage chamber, 15...
- Exhaust gas sampling location (near the flue exit).

Claims (1)

【特許請求の範囲】 1 高温炉からの燃焼ガスが1100℃以上の温度域に
ある間に、別途空気又は酸素を導入することなく、炭化
水素またはその含酸素誘導体またはこれらを含む物質を
前記炭化水素またはその含酸素誘導体またはこれらを含
む物質が不完全燃焼しない量的範囲内で系に導入して、
前記燃焼ガスと接触せしめることを特徴とする高温炉か
らの燃焼ガス中のNOx減少方法。 2 高温炉が工業窯炉である特許請求の範囲第1項記載
の方法。 3 燃焼室から煙道出口までの間または熱回収装置を有
する炉にあっては、該装置内に炭化水素またはその含酸
素誘導体またはこれらを含む物質を導入し、燃焼ガスと
接触せしめる特許請求の範囲第2項記載の方法。 4 高温炉がガラス溶融炉である特許請求の範囲第1項
記載の方法。 5 溶融槽端部のボート附近、蓄熱室内部、換熱室内部
または煙道部のいずれかの位置に炭化水素またはその含
酸素誘導体またはこれらを含む物質を導入し燃焼ガスと
接触せしめる特許請求の範囲第4項記載の方法。
[Claims] 1. While the combustion gas from the high-temperature furnace is in a temperature range of 1100° C. or higher, the hydrocarbons, oxygen-containing derivatives thereof, or substances containing these are carbonized without separately introducing air or oxygen. Hydrogen, its oxygen-containing derivatives, or substances containing them are introduced into the system within a quantitative range that does not cause incomplete combustion,
A method for reducing NOx in combustion gas from a high-temperature furnace, the method comprising bringing the combustion gas into contact with the combustion gas. 2. The method according to claim 1, wherein the high temperature furnace is an industrial kiln. 3. In the case of a furnace having a heat recovery device between the combustion chamber and the flue outlet or a heat recovery device, a patent claim that introduces hydrocarbons, oxygen-containing derivatives thereof, or substances containing these into the device and contacts the combustion gas. The method described in Scope No. 2. 4. The method according to claim 1, wherein the high temperature furnace is a glass melting furnace. 5. A patent claim in which hydrocarbons, oxygen-containing derivatives thereof, or substances containing these are introduced into the vicinity of the boat at the end of the melting tank, inside the heat storage chamber, inside the heat exchanger chamber, or in the flue section and brought into contact with combustion gas. The method described in Scope No. 4.
JP51083200A 1976-07-12 1976-07-12 Method for reducing NOx in combustion gas from a high-temperature furnace Expired JPS5948134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51083200A JPS5948134B2 (en) 1976-07-12 1976-07-12 Method for reducing NOx in combustion gas from a high-temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51083200A JPS5948134B2 (en) 1976-07-12 1976-07-12 Method for reducing NOx in combustion gas from a high-temperature furnace

Publications (2)

Publication Number Publication Date
JPS538361A JPS538361A (en) 1978-01-25
JPS5948134B2 true JPS5948134B2 (en) 1984-11-24

Family

ID=13795671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51083200A Expired JPS5948134B2 (en) 1976-07-12 1976-07-12 Method for reducing NOx in combustion gas from a high-temperature furnace

Country Status (1)

Country Link
JP (1) JPS5948134B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330979A (en) * 1976-09-03 1978-03-23 Kobe Steel Ltd Restraining method for nitrogen oxides exhaustion from boiler or heating furnace etc.
JPS5911274Y2 (en) * 1979-02-15 1984-04-06 日立造船株式会社 Bend pipe for powder transfer pipe
GB9224852D0 (en) * 1992-11-27 1993-01-13 Pilkington Glass Ltd Flat glass furnaces
AU667977B2 (en) * 1992-11-27 1996-04-18 Pilkington Glass Limited Glass furnaces
JP5635285B2 (en) * 2010-03-19 2014-12-03 大陽日酸株式会社 Glass melting furnace and method for treating exhaust gas in glass melting furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867507A (en) * 1972-04-24 1975-02-18 Exxon Research Engineering Co Method for removing the oxides of nitrogen as air contaminants

Also Published As

Publication number Publication date
JPS538361A (en) 1978-01-25

Similar Documents

Publication Publication Date Title
CA1304914C (en) Reduction of nitrogen- and carbon-based pollutants through the use of urea solutions
Dong et al. Experimental study of NO reduction over biomass char
RU2299758C2 (en) Device and the method of control over nitrogen dioxide ejections from the boilers burning the carbonic fuels without usage of the external reactant
EP1971417B1 (en) Reduction of co and nox in regenerator flue gas
JP2693101B2 (en) A method for reducing the amount of nitrogen oxides generated during combustion
JPS63502087A (en) Reduction of nitrogen-based pollutants using urea solutions containing oxygenated hydrocarbon solvents
JP4247204B2 (en) Decomposition method of low concentration methane
JPH06239618A (en) Method for operating crossfire regenerative glass furnace, method for reducing releasing amount of co and method for reducing amount of nox contained in crossfire regenerative glass furnace and in waste gas
JPH03105111A (en) Selective and non-contacting reduction method of harmful materials discharged from petroleum combustion boiler
KR20150145717A (en) Exhaust gas treatment apparatus
JP2006507124A (en) Selective non-catalytic reduction of NOx
CN103868080B (en) Big flow low-heat value harmful waste gas incineration treatment technology
CN109248562A (en) The selective-catalytic-reduction denitrified method of flue gas
JPS5948134B2 (en) Method for reducing NOx in combustion gas from a high-temperature furnace
JP5640120B1 (en) Simultaneous reduction method of nitrogen oxide and nitrous oxide by multistage reaction in fluidized bed combustion furnace
CN106362552B (en) A kind of processing method and processing device of high-concentration organic waste gas
JPH026961B2 (en)
US4878442A (en) Nox control for high nitric oxide concentration flows through combustion-driven reduction
RU2403081C1 (en) Method of uncatalysed flue gas purification of nitrogen oxides
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JPH0130044B2 (en)
KR101910122B1 (en) Low nitrogen monoxide scrubber and method for reducing nitrogen monoxide using the same
JPS6230804B2 (en)
JPS5817363B2 (en) Nitrogen oxide reduction method
Zhang et al. An experimental study on N2O reduction over circulating ashes of CFB boilers