JPH06101090A - Production of heat-resistant structural body - Google Patents

Production of heat-resistant structural body

Info

Publication number
JPH06101090A
JPH06101090A JP27804892A JP27804892A JPH06101090A JP H06101090 A JPH06101090 A JP H06101090A JP 27804892 A JP27804892 A JP 27804892A JP 27804892 A JP27804892 A JP 27804892A JP H06101090 A JPH06101090 A JP H06101090A
Authority
JP
Japan
Prior art keywords
heat
resistant
metal
resistant surface
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27804892A
Other languages
Japanese (ja)
Inventor
Shinya Akama
信也 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP27804892A priority Critical patent/JPH06101090A/en
Publication of JPH06101090A publication Critical patent/JPH06101090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a large-size gradient functional material without causing deformation or thermal stress by adhering supporting metal layers to a heat- resistant structural body consisting of ceramic blocks, where their projecting parts are combinedly engaged with their recessed parts. CONSTITUTION:Lots of heat-resistance surface-structural members 1 consisting of ceramic are joined at projected connecting parts 2 and recessed connecting parts 3, or fitted at connecting parts 5 and recessed connecting parts 6 in a such manner that all the ceramic surfaces E are in one side to constitute a heat-resistant body 7. The metal surface F of the heat-resistant body 7 is adhered to nickel by electroforming to form a supporting metal layer 8 so that the metal layer 8 can be firmly adhered to the heat-resistant body 8. Thereby, the heat-resistant body 7 formed of a joined structure consisting of lots of heat-resistant surface structural members 1 is surely supported by the supporting metal layer 8, so that no deformation due to differences of thermal expansion between the metal and the ceramic is caused in the heat-resistant surface structural member 1 during processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱構造体の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat resistant structure.

【0002】[0002]

【従来の技術】近年、従来の単純な張り合わせ材料とは
異なる材料、即ち表と裏との性質が全く異なり、しかも
表から裏に向かうにしたがって性質が連続的に変化する
傾斜機能材料が開発されている。
2. Description of the Related Art In recent years, a material different from the conventional simple bonding material, that is, a functionally graded material having completely different properties between the front and the back and continuously changing from the front to the back has been developed. ing.

【0003】傾斜機能材料の一例としては、一側がセラ
ミックス等の耐熱部材により、また、他側が金属等の強
度部材により形成され、この耐熱部材と強度部材との間
に、組成がセラミックスから金属に連続的に変化する中
間層(傾斜組成制御層)を設けたものがある。
As an example of the functionally gradient material, one side is formed of a heat-resistant member such as ceramics and the other side is formed of a strength member such as metal. Between the heat-resistant member and the strength member, the composition changes from ceramics to metal. Some have an intermediate layer (gradient composition control layer) that continuously changes.

【0004】このような構成を有する傾斜機能材料は、
例えば、宇宙往還機や核融合炉等に用いられる構成部材
のように、一側に高い耐熱性を要求され且つ部材全体と
しての強度を要求される耐熱構造体に適用することが検
討されている。
The functionally graded material having such a structure is
For example, application to heat-resistant structures that require high heat resistance on one side and strength as a whole member, such as constituent members used in space shuttles and fusion reactors, is being considered. .

【0005】現在、上述した傾斜機能材料は、粉末材料
をヒップ焼結(熱間等方圧下成形)、あるいはプラズマ
溶射により形成させているが、その単体の大きさは、ヒ
ップ焼結に用いられる圧力容器の大きさやプラズマ溶射
装置の機能的限界によって5〜30cm角程度である。
At present, the above-mentioned functionally graded material is formed by hip sintering (hot isostatic pressing) or plasma spraying of a powder material. The size of the simple substance is used for hip sintering. It is about 5 to 30 cm square depending on the size of the pressure vessel and the functional limit of the plasma spraying apparatus.

【0006】このため、宇宙往還機の燃焼器のように、
耐熱部の面積が大きい部材に前記の傾斜機能材料を適用
する場合には、別途に形成した金属部材に多数の傾斜機
能材料の金属側の面をろう接(ろう付け法)等の手段に
よって固着して耐熱面の面積が大きな部材を形成する必
要がある。
Therefore, like the combustor of a space shuttle,
When the functionally graded material is applied to a member having a large heat-resistant area, the metal-side surface of a large number of functionally graded materials is fixed to a separately formed metal member by means such as brazing (brazing). Therefore, it is necessary to form a member having a large heat-resistant surface area.

【0007】[0007]

【発明が解決しようとする課題】常温状態において変形
の生じていない傾斜機能材料が高温度に略均一に加熱さ
れると、金属のほうがセラミックスに比べて熱膨張が大
きいため、金属とセラミックスとの熱膨張差によるバイ
メタル現象が生じて湾曲してしまう。
When a functionally graded material that is not deformed at room temperature is heated to a high temperature substantially uniformly, the metal has a larger thermal expansion than the ceramics, and therefore the metal and the ceramics have a large thermal expansion coefficient. A bimetal phenomenon occurs due to a difference in thermal expansion, resulting in bending.

【0008】このため、傾斜機能材料を他の金属部材に
対してろう接により固着しようとすると、ろう接作業中
に傾斜機能材料が略均一に高温度に加熱されることによ
る変形(湾曲)が生じて、傾斜機能材料と金属部材とを
完全に密着した状態でろう接することは困難である。
Therefore, when the functionally graded material is to be fixed to another metal member by brazing, the functionally graded material is deformed (curved) by being heated to a high temperature substantially uniformly during the brazing operation. As a result, it is difficult to braze the functionally graded material and the metal member in a state where they are in complete contact.

【0009】また、両側より荷重を負荷してろう接した
としても、常温まで冷却し、除荷した時に、発生する大
きな残留応力のために変形や割れが生ずることが多い。
Even when brazing is performed by applying a load from both sides, deformation and cracking often occur due to the large residual stress that occurs when cooling to normal temperature and unloading.

【0010】従ってろう接では傾斜機能材料の大型化を
図ることができない。
Therefore, brazing cannot increase the size of the functionally gradient material.

【0011】本発明は上述した実情に鑑みなしたもの
で、耐熱面の面積が大きい耐熱構造体を変形や熱応力の
発生が無い状態で製造できるようにすることを目的とし
ている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to manufacture a heat-resistant structure having a large heat-resistant surface area without deformation or thermal stress.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の耐熱構造体の製造方法においては、傾斜機
能材料よりなる複数の耐熱面構成部材を、各耐熱面構成
部材のセラミックス面が一側に、また金属面が他側に位
置し且つ隣接する耐熱面構成部材の周縁部が互いに密着
するように配設し、各耐熱面構成部材の金属面に電鋳に
より金属を一体的に付着させて支持金属層を形成する。
In order to achieve the above object, in the method for manufacturing a heat-resistant structure of the present invention, a plurality of heat-resistant surface constituting members made of a functionally graded material are used, and the ceramic surface of each heat-resistant surface constituting member is The heat-resistant surface constituting members are arranged on one side so that the peripheral surfaces of the adjacent heat-resistant surface constituting members are in close contact with each other and the metal surface is located on the other side. Deposit to form a support metal layer.

【0013】また、上記の手段において、各耐熱面構成
部材の周縁部に凸状連結部あるいは凹状連結部を設け、
各耐熱面構成部材のセラミックス面が一側に、また金属
面が他側に位置し且つ隣接する耐熱面構成部材の周縁部
が互いに密着するように前記の凸状連結部と凹状連結部
とを互いに嵌合させて板状の耐熱面本体を形成し、該耐
熱面本体の金属面に電鋳により金属を付着させて支持金
属層を形成する。
Further, in the above means, a convex connecting portion or a concave connecting portion is provided on the peripheral portion of each heat resistant surface constituting member,
The convex connecting portion and the concave connecting portion are formed so that the ceramic surface of each heat resistant surface constituting member is located on one side and the metal surface is located on the other side and the peripheral portions of the adjacent heat resistant surface constituting members are in close contact with each other. The heat resistant surface body is formed into a plate-like shape by fitting them together, and a metal is adhered to the metal surface of the heat resistant surface body by electroforming to form a supporting metal layer.

【0014】[0014]

【作用】本発明の耐熱構造体の製造方法では、複数の耐
熱面構成部材をセラミックス面が同一側に位置するよう
に配設しているので、面積が大きい耐熱面を得ることが
できる。
In the method for manufacturing a heat-resistant structure of the present invention, since the plurality of heat-resistant surface constituting members are arranged so that the ceramic surfaces are located on the same side, a heat-resistant surface having a large area can be obtained.

【0015】また、複数の耐熱面構成部材の金属面に電
鋳によって金属を付着させることにより支持金属層を形
成するので、該支持金属層が各耐熱面構成部材に対して
強固に付着する。
Further, since the supporting metal layer is formed by depositing a metal on the metal surface of the plurality of heat resistant surface constituting members by electroforming, the supporting metal layer is firmly adhered to each heat resistant surface constituting member.

【0016】よって、各耐熱面構成部材を同一の支持金
属層によって確実に支持することができるとともに、加
工時に各耐熱面構成部材に金属とセラミックスとの熱膨
張差による変形が生じない。
Therefore, each heat-resistant surface constituent member can be reliably supported by the same supporting metal layer, and at the time of processing, each heat-resistant surface constituent member is not deformed due to the difference in thermal expansion between metal and ceramics.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の耐熱構造体の製造方法に基
づいて形成した耐熱構造部材の一例を示すもので、1は
耐熱部材となるセラミックス(ジルコニア)と強度部材
となる金属(ステンレス鋼)との間に、組成がセラミッ
クスから金属に連続的に変化する中間層(傾斜組成制御
層)を設けた傾斜機能材料よりなる耐熱面構成部材であ
り、該耐熱面構成部材1は略矩形の平面形状を有し、セ
ラミックス面Eと金属面Fとがそれぞれ略平坦に形成さ
れている。
FIG. 1 shows an example of a heat-resistant structural member formed according to the method of manufacturing a heat-resistant structure of the present invention. Reference numeral 1 denotes ceramics (zirconia) which is a heat-resistant member and metal (stainless steel) which is a strength member. Is a heat-resistant surface constituting member made of a functionally gradient material having an intermediate layer (gradient composition control layer) whose composition continuously changes from ceramics to metal, and the heat-resistant surface constituting member 1 is a substantially rectangular flat surface. It has a shape, and the ceramic surface E and the metal surface F are formed substantially flat.

【0019】7は多数の耐熱面構成部材1を連結するこ
とにより形成された略板状の耐熱面本体であり、各耐熱
面構成部材1は、セラミックス面Eが一側に、また金属
面Fが他側にそれぞれ位置するように連結されている。
Reference numeral 7 denotes a substantially plate-shaped heat-resistant surface main body formed by connecting a number of heat-resistant surface constituent members 1. Each heat-resistant surface constituent member 1 has a ceramic surface E on one side and a metal surface F. Are connected so that they are located on the other side, respectively.

【0020】8は前記耐熱面本体7の金属面Fに電鋳に
よってニッケルを付着させることにより形成した支持金
属層であり、該支持金属層8と耐熱面本体7とにより上
記の耐熱構造部材を形成している。
Reference numeral 8 denotes a supporting metal layer formed by depositing nickel on the metal surface F of the heat-resistant surface main body 7 by electroforming, and the support metal layer 8 and the heat-resistant surface main body 7 form the above heat-resistant structural member. Is forming.

【0021】以下、図1から図5により図に示す耐熱構
造部材の製造手順について述べる。
The manufacturing procedure of the heat-resistant structural member shown in FIGS. 1 to 5 will be described below with reference to FIGS.

【0022】多数の耐熱面構成部材1を用意し、各耐熱
面構成部材1の一端面Aに耐熱面構成部材1のセラミッ
クス面Eと金属面Fとに対して略平行に延びるありほぞ
形状の凸状連結部2を、また、前記端面Aに対して平行
な各耐熱面構成部材1の他の端面Bにセラミックス面E
と金属面Fとに対して略平行に延びる前記凸状連結部2
と嵌合可能なあり穴形状の凹状連結部3をそれぞれ設け
(図2参照)、各耐熱面構成部材1のセラミックス面E
が一側に、また金属面Fが他側にそれぞれ位置し且つ隣
接する各耐熱面構成部材1の端面Aと端面Bとが互いに
密着するように前記の凸状連結部2と凹状連結部3とを
嵌合して、多数の耐熱面構成部材1を棒状に連結した耐
熱面構成部材連結体4を複数形成する(図3参照)。
A large number of heat-resistant surface-constituting members 1 are prepared, and one end surface A of each heat-resistant surface-constituting member 1 has a dovetail-shaped shape extending substantially parallel to the ceramic surface E and the metal surface F of the heat-resistant surface-constituting member 1. A ceramic surface E is provided on the convex connecting portion 2 and on the other end surface B of each heat resistant surface constituting member 1 parallel to the end surface A.
And the convex connecting portion 2 extending substantially parallel to the metal surface F.
Each of the heat-resistant surface constituting members 1 has a ceramic surface E which is provided with a dovetail-shaped concave connecting portion 3 which can be fitted with (see FIG. 2).
Is located on one side and the metal surface F is located on the other side, and the end surfaces A and B of the adjacent heat-resistant surface constituting members 1 are in close contact with each other. Are fitted to form a plurality of heat-resistant surface component connecting bodies 4 in which a large number of heat-resistant surface components 1 are connected in a rod shape (see FIG. 3).

【0023】各耐熱面構成部材連結体4の一方の長手端
面Cに該長手端面Cに沿って延びるありほぞ形状の凸状
連結部5を、前記長手端面Cに対して平行な各耐熱面構
成部材連結体4の他の長手端面Dに前記凸状連結部5と
嵌合可能なあり穴形状の凹状連結部6をそれぞれ設け
(図4参照)、各耐熱面構成部材連結体4のセラミック
ス面Eが一側に、また金属面Fが他側にそれぞれ位置し
且つ隣接する各耐熱面構成部材連結体4の長手端面Cと
長手端面Dとが互いに密着するように前記の凸状連結部
5と凹状連結部6とを嵌合して、多数の耐熱面構成部材
連結体4を板状に連結した耐熱面本体7を形成する(図
5参照)。
On each one longitudinal end face C of each heat-resistant surface component connecting body 4, there is formed a dovetail-shaped convex connecting portion 5 extending along the longitudinal end face C, and each heat-resistant face structure parallel to the longitudinal end face C. The other longitudinal end surface D of the member connecting body 4 is provided with a dovetail-shaped concave connecting portion 6 capable of fitting with the convex connecting portion 5 (see FIG. 4), and the ceramic surface of each heat resistant surface constituting member connecting body 4 is provided. E is located on one side, and metal surface F is located on the other side. Adjacent heat-resistant surface component connecting members 4 are connected so that the longitudinal end faces C and D are in close contact with each other. The heat-resistant surface main body 7 in which a large number of the heat-resistant surface component connecting bodies 4 are connected in a plate shape is formed by fitting the heat-resistant surface main body 7 (see FIG. 5).

【0024】耐熱面本体7の金属面Fに研掃処理、脱脂
処理等の前処理を、また耐熱面本体7のセラミックス面
E及び周縁部にマスキングを施した後、耐熱面本体7を
ニッケル電鋳槽に入れて電鋳を行い、耐熱面本体7の金
属面Fに電鋳によってニッケルを付着させることにより
支持金属層8を形成する(図1参照)。
After the metal surface F of the heat-resistant surface main body 7 is subjected to pretreatment such as scouring treatment and degreasing treatment, and the ceramic surface E and the peripheral edge portion of the heat-resistant surface main body 7 are masked, the heat-resistant surface main body 7 is subjected to nickel electroplating. The supporting metal layer 8 is formed by performing electroforming in a casting tank and depositing nickel on the metal surface F of the heat resistant surface body 7 by electroforming (see FIG. 1).

【0025】支持金属層8が形成されたならば、耐熱面
本体7をニッケル電鋳槽より取出し、水洗い洗浄処理を
した後、熱処理を行い、次いで、支持金属層8の表面を
機械加工により平坦に成形する。
After the supporting metal layer 8 is formed, the heat-resistant surface main body 7 is taken out from the nickel electroforming tank, washed with water and then heat-treated, and then the surface of the supporting metal layer 8 is flattened by machining. To mold.

【0026】このように、本実施例においては、多数の
耐熱面構成部材1を、凸状連結部2と凹状連結部3、あ
るいは凸状連結部5と凹状連結部6を嵌合させることに
よりセラミックス面Eが同一側に位置するように互いに
連結して耐熱面本体7を形成するので、従来の単体の傾
斜機能材料に比べて面積が大きい耐熱面を得ることがで
きる。
As described above, in this embodiment, a large number of heat-resistant surface constituting members 1 are fitted to the convex connecting portions 2 and the concave connecting portions 3 or the convex connecting portions 5 and the concave connecting portions 6 by fitting them. Since the ceramic surfaces E are connected to each other so that the ceramic surfaces E are located on the same side to form the heat-resistant surface body 7, a heat-resistant surface having a larger area than that of the conventional single functionally gradient material can be obtained.

【0027】また、耐熱面本体7の金属面Fに電鋳によ
ってニッケルを付着させることにより支持金属層8を形
成するので、該支持金属層8が前記の耐熱面本体7に対
して強固に付着し、多数の耐熱面構成部材1を連結した
構造の耐熱面本体7を確実に支持することができるとと
もに、加工時に各耐熱面構成部材1に金属とセラミック
スとの熱膨張差による変形が生じない。
Since the supporting metal layer 8 is formed by depositing nickel on the metal surface F of the heat resistant surface body 7 by electroforming, the support metal layer 8 is firmly adhered to the heat resistant surface body 7. In addition, the heat-resistant surface main body 7 having a structure in which a large number of heat-resistant surface constituent members 1 are connected can be reliably supported, and at the time of processing, each heat-resistant surface constituent member 1 is not deformed due to a difference in thermal expansion between metal and ceramics. .

【0028】なお、本発明の耐熱構造体の製造方法は、
上述した実施例にのみ限定されるものではなく、各耐熱
面構成部材に凸状連結部並びに凹状連結部を設けること
なく、治具等の手段によって多数の耐熱面構成部材を略
板状に支持し、各耐熱面構成部材の金属面に電鋳により
金属を一体的に付着させて支持金属層を形成させるよう
にすること、耐熱構造体の用途により耐熱面構成部材及
び支持金属層の組成を適宜変更すること、その他、本発
明の要旨を逸脱しない範囲内において種々変更を加え得
ることは勿論である。
The manufacturing method of the heat resistant structure of the present invention is as follows.
The present invention is not limited to the above-described embodiments, and a large number of heat-resistant surface constituent members are supported in a substantially plate-like shape by means of a jig or the like without providing each heat-resistant surface constituent member with a convex connecting portion and a concave connecting portion. Then, a metal is integrally attached to the metal surface of each heat resistant surface forming member by electroforming to form a supporting metal layer, and the composition of the heat resistant surface forming member and the supporting metal layer is changed depending on the use of the heat resistant structure. It goes without saying that appropriate changes can be made and various changes can be made without departing from the scope of the present invention.

【0029】[0029]

【発明の効果】以上述べたように、本発明の耐熱構造体
の製造方法によれば、下記のような優れた効果を奏し得
る。
As described above, according to the method for manufacturing a heat resistant structure of the present invention, the following excellent effects can be obtained.

【0030】(1)本発明の請求項1、請求項2に記載
した耐熱構造体の製造方法のいずれにおいても、複数の
耐熱面構成部材をセラミックス面が同一側に位置するよ
うに配設するので、面積が大きい耐熱面を得ることがで
きる。
(1) In any of the methods for manufacturing a heat-resistant structure according to the first and second aspects of the present invention, a plurality of heat-resistant surface constituting members are arranged so that the ceramic surfaces are located on the same side. Therefore, a heat resistant surface having a large area can be obtained.

【0031】(2)本発明の請求項1、請求項2に記載
した耐熱構造体の製造方法のいずれにおいても、複数の
耐熱面構成部材の金属面に電鋳によって金属を付着させ
ることにより支持金属層を形成するので、該支持金属層
が各耐熱面構成部材に対して強固に付着し、各耐熱面構
成部材を同一の支持金属層によって確実に支持すること
ができる。
(2) In any of the methods for manufacturing a heat resistant structure according to the first and second aspects of the present invention, the metal surfaces of a plurality of heat resistant surface constituent members are supported by electroforming metal. Since the metal layer is formed, the supporting metal layer is firmly attached to each heat-resistant surface constituent member, and each heat-resistant surface constituent member can be reliably supported by the same support metal layer.

【0032】(3)本発明の請求項1、請求項2に記載
した耐熱構造体の製造方法のいずれにおいても、支持金
属層を電鋳により形成させるので、加工時に各耐熱面構
成部材に金属とセラミックスとの熱膨張差による変形が
生じない。
(3) In any of the methods for producing a heat resistant structure according to the first and second aspects of the present invention, since the supporting metal layer is formed by electroforming, the metal for each heat resistant surface constituting member is formed at the time of processing. Does not deform due to the difference in thermal expansion between the ceramics and the ceramics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐熱構造体の製造方法に基づいて形成
した耐熱構造部材の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a heat resistant structural member formed based on a method for manufacturing a heat resistant structure of the present invention.

【図2】本発明の耐熱構造体の製造方法に基づく耐熱構
造部材の製造手順の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a procedure for manufacturing a heat resistant structural member based on the method for manufacturing a heat resistant structure of the present invention.

【図3】本発明の耐熱構造体の製造方法に基づく耐熱構
造部材の製造手順の一例を示す部分切断斜視図である。
FIG. 3 is a partially cut perspective view showing an example of a procedure for manufacturing a heat resistant structural member based on the method for manufacturing a heat resistant structure of the present invention.

【図4】本発明の耐熱構造体の製造方法に基づく耐熱構
造部材の製造手順の一例を示す部分切断斜視図である。
FIG. 4 is a partially cut perspective view showing an example of a manufacturing procedure of a heat resistant structural member based on the method for manufacturing a heat resistant structure of the present invention.

【図5】本発明の耐熱構造体の製造方法に基づく耐熱構
造部材の製造手順の一例を示す部分切断斜視図である。
FIG. 5 is a partially cut perspective view showing an example of a manufacturing procedure of a heat resistant structural member based on the method for manufacturing a heat resistant structure of the present invention.

【符号の説明】[Explanation of symbols]

1 耐熱面構成部材 2,5 凸状連結部 3,6 凹状連結部 7 耐熱面本体 8 支持金属層 E セラミックス面 F 金属面 DESCRIPTION OF SYMBOLS 1 Heat-resistant surface constituent member 2,5 Convex connecting part 3,6 Concave connecting part 7 Heat-resistant surface main body 8 Supporting metal layer E Ceramic surface F Metal surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 傾斜機能材料よりなる複数の耐熱面構成
部材を、各耐熱面構成部材のセラミックス面が一側に、
また金属面が他側に位置し且つ隣接する耐熱面構成部材
の周縁部が互いに密着するように配設し、各耐熱面構成
部材の金属面に電鋳により金属を一体的に付着させて支
持金属層を形成することを特徴とする耐熱構造体の製造
方法。
1. A plurality of heat-resistant surface constituting members made of a functionally graded material, wherein the ceramic surface of each heat-resistant surface constituting member faces one side.
Further, the metal surface is located on the other side and the peripheral portions of the adjacent heat-resistant surface constituting members are arranged so as to be in close contact with each other, and the metal is integrally attached to the metal surface of each heat-resistant surface constituting member by electroforming to support it. A method of manufacturing a heat-resistant structure, which comprises forming a metal layer.
【請求項2】 傾斜機能材料よりなる複数の耐熱面構成
部材の周縁部に凸状連結部あるいは凹状連結部を設け、
各耐熱面構成部材のセラミックス面が一側に、また金属
面が他側に位置し且つ隣接する耐熱面構成部材の周縁部
が互いに密着するように前記の凸状連結部と凹状連結部
とを互いに嵌合させて板状の耐熱面本体を形成し、該耐
熱面本体の金属面に電鋳により金属を付着させて支持金
属層を形成することを特徴とする耐熱構造体の製造方
法。
2. A convex connecting portion or a concave connecting portion is provided on a peripheral portion of a plurality of heat resistant surface constituting members made of a functionally graded material,
The convex connecting portion and the concave connecting portion are formed so that the ceramic surface of each heat resistant surface constituting member is located on one side and the metal surface is located on the other side and the peripheral portions of the adjacent heat resistant surface constituting members are in close contact with each other. A method for manufacturing a heat-resistant structure, characterized in that the heat-resistant surface body is formed into a plate-like shape by fitting them together, and a metal is attached to the metal surface of the heat-resistant surface body by electroforming to form a supporting metal layer.
JP27804892A 1992-09-22 1992-09-22 Production of heat-resistant structural body Pending JPH06101090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27804892A JPH06101090A (en) 1992-09-22 1992-09-22 Production of heat-resistant structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27804892A JPH06101090A (en) 1992-09-22 1992-09-22 Production of heat-resistant structural body

Publications (1)

Publication Number Publication Date
JPH06101090A true JPH06101090A (en) 1994-04-12

Family

ID=17591931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27804892A Pending JPH06101090A (en) 1992-09-22 1992-09-22 Production of heat-resistant structural body

Country Status (1)

Country Link
JP (1) JPH06101090A (en)

Similar Documents

Publication Publication Date Title
US4522859A (en) Method of manufacture of honeycomb noise attenuation structure for high temperature applications
JP4991529B2 (en) Method for soldering composite parts
KR100681534B1 (en) Tool for structural part by diffusion bonding of multi-sheet metal and Method of manufacturing the same and Structural part by the method
US4703159A (en) Method of manufacturing lightweight thermo-barrier material
US5683028A (en) Bonding of silicon carbide components
GB2062115A (en) Method of constructing a turbine shroud
CN109562472B (en) Method for joining materials and material composite structure
EP0287266A2 (en) Joined structure comprising members of different coefficients of thermal expansion and joining method thereof
US4918281A (en) Method of manufacturing lightweight thermo-barrier material
GB2095291A (en) Fabrication of gas turbine nozzles
US5058993A (en) Lightweight optical bench and method of fabricating same
JPH06101090A (en) Production of heat-resistant structural body
JP2003035162A (en) Method for producing sandwich structure between metal and nonmetallic materials
JPH0627881B2 (en) Optical mirror and manufacturing method thereof
US3964667A (en) Diffusion bonding
GB2164665A (en) Spacers for use in brazing
US4596628A (en) Method for manufacturing components of complex wall construction
JPH067875A (en) Molybdenum of molybdenum alloy wire net and manufacture of same
JPS58199855A (en) Surface treatment of tuyere
JPH0492871A (en) Ceramic-metal binding body and production thereof
CN114309640B (en) Method for forming (near) zero-expansion multi-cell structure by aluminum droplet jetting/titanium alloy micro-rod interactive deposition
CN115302207B (en) Composite base manufacturing method and composite base
JPH0355232B2 (en)
US4313749A (en) Method for making lightweight mirror facesheets
JP2553865B2 (en) Method for producing metal-ceramic laminated body