JPH06101036A - Ion assist control type sputtering method - Google Patents

Ion assist control type sputtering method

Info

Publication number
JPH06101036A
JPH06101036A JP9037192A JP9037192A JPH06101036A JP H06101036 A JPH06101036 A JP H06101036A JP 9037192 A JP9037192 A JP 9037192A JP 9037192 A JP9037192 A JP 9037192A JP H06101036 A JPH06101036 A JP H06101036A
Authority
JP
Japan
Prior art keywords
current density
sputtering
bias voltage
film
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9037192A
Other languages
Japanese (ja)
Inventor
Yukiharu Osada
幸晴 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9037192A priority Critical patent/JPH06101036A/en
Publication of JPH06101036A publication Critical patent/JPH06101036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the state of film formation practically free from peeling and increased in hardness. CONSTITUTION:An ion assist control type sputtering device is used, and, at the beginning of the initiation of sputtering, the negative numerical value of the coil exciting current of a magnetic polar body 6 on the rear of a target 2 and/or substrate bias voltage is decreased to decrease the negative numerical value of ionic current density. With the lapse of time, sputtering is done so that the negative numerical value of ionic current density is increased by performing sputtering while increasing the negative numerical value of coil exciting current and/or substrate bias voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,コイル励磁電流や基板
バイアス電圧を変え得るイオンアシスト制御式のスパッ
タリング方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion assist control type sputtering method capable of changing a coil exciting current and a substrate bias voltage.

【0002】[0002]

【従来の技術】従来より,ターゲット裏面にコイル励磁
電流を変え得る磁極体を配置し,ターゲットに対向して
基板バイアス電圧を変え得る基板保持具に基板を保持し
たイオンアシスト制御式スパッタリング装置は,本出願
人等によって開発されている。
2. Description of the Related Art Conventionally, an ion assist control type sputtering apparatus in which a magnetic pole body capable of changing a coil exciting current is arranged on the back surface of a target and a substrate is held by a substrate holder capable of changing a substrate bias voltage facing a target, It is developed by the present applicants.

【0003】[0003]

【発明が解決しようとする課題】ところで,いろいろ実
験した結果,コイル励磁電流の大小およびまたは基板バ
イアス電圧の負の数値の大小を変えるとイオン電流密度
の負の数値の大小およびイオンフラックス比の大小が変
わり,その結果,基板上に成膜される膜の硬度の大小が
変わることがわかった。したがって,成膜した基板を切
削工具の材料として使用する場合は,膜の硬度を大きく
するために,イオン電流密度の負の数値が大きくなるよ
うにすれば良いが,イオン電流密度の負の数値が大きく
なると,一般的な傾向として,逆に,膜の付着力が小さ
くなり,膜が剥れやすくなることがわかった。これで
は,切削工具としての役目をはたすことはできない。し
たがって,剥れることがないような付着力の大きな成膜
状態を有し,かつ,膜の硬度も大きい成膜状態を得るこ
とを課題とした。
By the way, as a result of various experiments, when the magnitude of the coil exciting current and / or the negative value of the substrate bias voltage is changed, the negative value of the ion current density and the magnitude of the ion flux ratio are changed. It was found that the hardness of the film formed on the substrate changed as a result. Therefore, when using the formed substrate as a material for a cutting tool, the negative value of the ion current density should be increased in order to increase the hardness of the film. It was found that, as a general tendency, the adhesive force of the film was decreased and the film was easily peeled off, as a general tendency. With this, it cannot serve as a cutting tool. Therefore, it was an object to obtain a film formation state in which the film has a strong adhesive force such that it does not come off and the film hardness is also large.

【0004】[0004]

【課題を解決するための手段】本発明においては,ター
ゲット裏面にコイル励磁電流を変え得る磁極体を配置
し,ターゲットに対向して基板バイアス電圧を変え得る
基板保持部に基板を保持したイオンアシスト制御式スパ
ッタリング装置を用い,スパッタリングを開始した当初
はコイル励磁電流およびまたは基板バイアス電圧の負の
数値を小さくしてイオン電流密度の負の数値を小さく
し,後になるに従ってコイル励磁電流およびまたは基板
バイアス電圧の負の数値を大きくして行ってイオン電流
密度の負の数値が大きくなるようにスパッタリングを行
うようにした。
In the present invention, an ion assist is provided in which a magnetic pole body capable of changing a coil exciting current is arranged on the back surface of a target, and a substrate is held by a substrate holding portion which can face a target and can change a substrate bias voltage. At the beginning of sputtering, the negative value of the coil exciting current and / or the substrate bias voltage was reduced to decrease the negative value of the ion current density using a controlled sputtering device. The negative value of the voltage was increased and the sputtering was performed so that the negative value of the ion current density was increased.

【0005】[0005]

【作用】スパッタリングを開始した当初は,コイル励磁
電流を小さくするなどしてイオン電流密度の負の数値を
小さくして,膜の硬度は比較的小さいが膜の付着力は極
めて大きくなるようにし,膜を剥れにくい状態で成膜す
る。その後,徐々にまたは段階的にイオン電流密度の負
の数値を大きくしていき,最後には,イオン電流密度の
負の数値が大きい状態で保ち,表面および表面付近に硬
度の大きい膜を成膜する。
[Operation] At the beginning of sputtering, the negative value of the ion current density is reduced by decreasing the coil exciting current so that the hardness of the film is relatively small but the adhesive force of the film is extremely large. The film is formed in a state where it is hard to peel off. After that, the negative value of the ion current density is gradually increased or gradually increased, and finally, the negative value of the ion current density is kept large, and a film with high hardness is formed on the surface and near the surface. To do.

【0006】[0006]

【実施例】図1はイオンアシスト制御式のスパッタリン
グ装置を示すもので,1は真空室,2はターゲット,3
はターゲット保持部,4はターゲット2と対向して配し
た基板,5は基板保持部,6はターゲット2の裏面に設
けた磁極体で,磁極体6は内周磁極7,ヨーク8,外周
磁極9からなっており,コイル励磁電流を適宜変え得る
ようになっている。10はコイル励磁電流および基板バ
イアス電圧を変え得る制御装置である。勿論,制御装置
10にはコイル励磁電流および基板バイアス電圧用の電
源を備えている。
EXAMPLE FIG. 1 shows an ion-assisted control type sputtering apparatus, in which 1 is a vacuum chamber, 2 is a target, and 3 is a target.
Is a target holder, 4 is a substrate facing the target 2, 5 is a substrate holder, 6 is a magnetic pole body provided on the back surface of the target 2, and the magnetic pole body 6 is an inner magnetic pole 7, a yoke 8, an outer magnetic pole. The coil exciting current can be changed appropriately. Reference numeral 10 is a control device that can change the coil exciting current and the substrate bias voltage. Of course, the control device 10 is equipped with a power supply for the coil exciting current and the substrate bias voltage.

【0007】この装置を用い,コイル励磁電流およびま
たは基板バイアス電圧の負の数値の大小を変えれば,そ
れに応じてイオン電流密度の負の数値の大小が変わる。
また,イオン電流密度の負の数値の大小に応じて,膜の
硬度の大小が変わる。ただし,膜の硬度の大小に応じて
膜の付着力の大小が変わる。すなわち,イオン電流密度
の負の数値が大きければ,膜の硬度は大きくなり,膜の
付着力は小さくなり,逆に,イオン電流密度の負の数値
が小さければ,膜の硬度は小さくなり,膜の付着力は大
きくなる。
When the magnitude of the negative numerical value of the coil exciting current and / or the substrate bias voltage is changed using this apparatus, the magnitude of the negative numerical value of the ion current density changes accordingly.
Also, the hardness of the film changes depending on the negative value of the ion current density. However, the magnitude of the adhesive force of the film changes depending on the hardness of the film. That is, if the negative value of the ion current density is large, the hardness of the film is large and the adhesive force of the film is small. Conversely, if the negative value of the ion current density is small, the hardness of the film is small and the film hardness is small. The adhesive force of is increased.

【0008】つぎに,実験例を示す。まず,コイル励磁
電流,基板バイアス電圧と,イオン電流密度ないしはイ
オンフラックス比との関係を確かめたら,図2に示すよ
うになることがわかった。ただし,この場合,最初,コ
イル励磁電流を0Aとしているとき,磁極体6のS極と
N極の励磁強さを等しくして,磁力線が全部N極からS
極に行く閉じた系にしておき,後で,コイル励磁電流を
例えば10Aのように大きくすると,S極の励磁強さが
N極の励磁強さより大きくなり,弱い磁力線はN極から
S極へ全て行くが,残った磁力線はS極から基板4があ
る上の方へ行くようにした装置を用いた。この図2か
ら,コイル励磁電流が0Aから16Aへと段階的に大き
くなれば,イオン電流密度の負の数値が例えば約1から
約7へと大きくなることがわかる。(実際は,イオン電
流密度は−1から−7へと小さくなっている。)また,
基板バイアス電圧の負の数値が大きくなれば,イオン電
流密度の負の数値がほぼ比例して若干大きくなることが
わかる。
Next, an experimental example will be shown. First, when the relationship between the coil exciting current and the substrate bias voltage and the ion current density or the ion flux ratio was confirmed, it was found that the result was as shown in FIG. However, in this case, when the coil exciting current is initially set to 0 A, the exciting strengths of the S pole and the N pole of the magnetic pole body 6 are made equal, and the magnetic force lines are all from the N pole to the S pole.
If the coil excitation current is increased to, for example, 10 A after making a closed system that goes to the pole, the excitation strength of the S pole becomes larger than the excitation strength of the N pole, and the weak magnetic field line changes from the N pole to the S pole. An apparatus was used in which all the magnetic field lines went, but the remaining magnetic field lines went from the S pole to the upper side where the substrate 4 was located. It can be seen from FIG. 2 that the negative value of the ion current density increases from about 1 to about 7 when the coil exciting current increases stepwise from 0A to 16A. (Actually, the ion current density decreases from -1 to -7.) Also,
It can be seen that as the negative value of the substrate bias voltage increases, the negative value of the ion current density increases slightly in proportion.

【0009】また,イオン電流密度と膜の硬度との関係
は,基板バイアス電圧の大小によっても多少異なるが,
例えば図3に示すようになっていることがわかった。こ
の図3から,イオン電流密度の負の数が大きくなるに従
って,膜の硬度がほぼ直線的に大きくなることがわか
る。
Further, the relationship between the ion current density and the hardness of the film is somewhat different depending on the magnitude of the substrate bias voltage,
For example, it turned out that it is as shown in FIG. It can be seen from FIG. 3 that the hardness of the film increases almost linearly as the negative number of the ion current density increases.

【0010】成膜するときは,図2,図3等で得られた
関係を利用して,例えば,図4に示すような方法で成膜
する。すなわち,スパッタリングを開始した当初は,コ
イル励磁電流を小さくすることによってイオン電流密度
の負の数を小さくしておき,時間の経過とともに,コイ
ル励磁電流を徐々にまたは段階的に大きくしていくこと
によってイオン電流密度の負の数を実線で3つの例を示
すように徐々にまたは点線で示すように段階的に大きく
していく。一定時間経過後は,コイル励磁電流を一定に
保った状態でスパッタリングを行う。このようにする
と,当初はイオン電流密度が比較的に小さいので,膜の
強度は若干落ちるが,膜の付着力は大きくなっていて剥
れにくくなる。また,最後は,イオン電流密度を大きく
してスパッタリングを行うので,成膜された膜の表面で
は所望の硬度が充分に得られた。その結果,全体として
は,剥れにくく,かつ,硬度も充分な成膜状態が得られ
た。
When forming a film, the relationship obtained in FIGS. 2 and 3 is used to form the film, for example, as shown in FIG. That is, at the beginning of the sputtering, the negative value of the ion current density is reduced by decreasing the coil exciting current, and the coil exciting current is gradually or gradually increased over time. The negative number of the ion current density is gradually increased as shown by the three solid lines or gradually increased as shown by the dotted lines. After a certain period of time, sputtering is performed with the coil exciting current kept constant. In this case, since the ion current density is relatively small at the beginning, the strength of the film is slightly decreased, but the adhesive force of the film is increased and the film is less likely to come off. Finally, since the ion current density is increased and the sputtering is performed, the desired hardness is sufficiently obtained on the surface of the formed film. As a result, as a whole, a film-forming state was obtained in which peeling was difficult and the hardness was sufficient.

【0011】なお,コイル励磁電流やイオン電流密度の
制御具合は,図4において実線または点線で示した状態
に限ることはなく,当初急な勾配で上げ,途中からゆる
やかな勾配にするなど,適宜選択することができる。ま
た,真空室1内に投入するアルゴンガス等のスパッタガ
スおよび窒素ガス酸素ガス等の反応性ガスの流量を適宜
変えて,膜の硬度を制御することもできる。
The control of the coil exciting current and the ion current density is not limited to the state shown by the solid line or the dotted line in FIG. 4, but may be increased by a steep gradient at the beginning, and a gentle gradient from the middle. You can choose. Further, the hardness of the film can be controlled by appropriately changing the flow rates of the sputtering gas such as argon gas and the reactive gas such as nitrogen gas and oxygen gas, which are introduced into the vacuum chamber 1.

【0012】[0012]

【発明の効果】このように,本発明においては,ターゲ
ット裏面にコイル励磁電流を変え得る磁極体を配置し,
ターゲットに対向して基板バイアス電圧を変え得る基板
保持部に基板を保持したイオンアシスト制御式スパッタ
リング装置を用い,スパッタリングを開始した当初はコ
イル励磁電流およびまたは基板バイアス電圧の負の数値
を小さくしてイオン電流密度の負の数値を小さくし,後
になるに従ってコイル励磁電流およびまたは基板バイア
ス電圧の負の数値を大きくして行ってイオン電流密度の
負の数値が大きくなるようにスパッタリングを行うの
で,付着力が大きくて剥れにくく,かつ,表面は硬度の
大きい膜を確実容易に得ることができる。
As described above, in the present invention, the magnetic pole body capable of changing the coil exciting current is arranged on the back surface of the target,
Using an ion-assisted control type sputtering device that holds the substrate in the substrate holding part that can change the substrate bias voltage facing the target, reduce the negative values of the coil exciting current and / or the substrate bias voltage at the beginning of sputtering. Since the negative value of the ion current density is made smaller and the negative value of the coil excitation current and / or the substrate bias voltage is made larger later, the sputtering is performed so that the negative value of the ion current density becomes larger. It is possible to easily and easily obtain a film that has a large adhesion force, is hard to peel off, and has a high hardness on the surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の1実施例を示す
概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing one embodiment of an apparatus for carrying out the present invention.

【図2】基板バイアス電圧とイオン電流密度の関係例を
示す線図である。
FIG. 2 is a diagram showing an example of a relationship between a substrate bias voltage and an ion current density.

【図3】イオン電流密度と膜の硬度の関係例を示す線図
である。
FIG. 3 is a diagram showing an example of the relationship between ion current density and film hardness.

【図4】成膜時間とイオン電流密度および膜の硬度の関
係例を示す線図である。
FIG. 4 is a diagram showing an example of the relationship between film formation time, ion current density, and film hardness.

【符号の説明】[Explanation of symbols]

1 真空室 2 ターゲット 4 基板 5 基板保持具 6 磁極体 7 内周磁極 9 外周磁極 10 制御装置 1 vacuum chamber 2 target 4 substrate 5 substrate holder 6 magnetic pole body 7 inner peripheral magnetic pole 9 outer peripheral magnetic pole 10 controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ターゲット裏面にコイル励磁電流を変え
得る磁極体を配置し,ターゲットに対向して基板バイア
ス電圧を変え得る基板保持部に基板を保持したイオンア
シスト制御式スパッタリング装置を用い,スパッタリン
グを開始した当初はコイル励磁電流およびまたは基板バ
イアス電圧の負の数値を小さくしてイオン電流密度の負
の数値を小さくし,後になるに従ってコイル励磁電流お
よびまたは基板バイアス電圧の負の数値を大きくして行
ってイオン電流密度の負の数値が大きくなるようにスパ
ッタリングを行うイオンアシスト制御式スパッタリング
方法。
1. Sputtering is performed using an ion-assisted control type sputtering apparatus in which a magnetic pole body capable of changing a coil exciting current is arranged on the back surface of a target, and a substrate is held at a substrate holding portion capable of changing a substrate bias voltage facing a target. At the beginning of the operation, the negative values of the coil exciting current and / or the substrate bias voltage were reduced to decrease the negative values of the ion current density, and the negative values of the coil exciting current and / or the substrate bias voltage were increased later. An ion assisted control type sputtering method in which sputtering is performed so that the negative value of the ion current density is increased.
JP9037192A 1992-02-28 1992-02-28 Ion assist control type sputtering method Pending JPH06101036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9037192A JPH06101036A (en) 1992-02-28 1992-02-28 Ion assist control type sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9037192A JPH06101036A (en) 1992-02-28 1992-02-28 Ion assist control type sputtering method

Publications (1)

Publication Number Publication Date
JPH06101036A true JPH06101036A (en) 1994-04-12

Family

ID=13996706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037192A Pending JPH06101036A (en) 1992-02-28 1992-02-28 Ion assist control type sputtering method

Country Status (1)

Country Link
JP (1) JPH06101036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298599B1 (en) * 1998-12-09 2001-11-22 신현준 Titanium Compound Coating
KR20060086988A (en) * 1996-11-21 2006-08-02 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for improving side wall coverage during sputtering in chambers with inductively coupled plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060086988A (en) * 1996-11-21 2006-08-02 어플라이드 머티어리얼스, 인코포레이티드 Method and apparatus for improving side wall coverage during sputtering in chambers with inductively coupled plasma
KR100298599B1 (en) * 1998-12-09 2001-11-22 신현준 Titanium Compound Coating

Similar Documents

Publication Publication Date Title
US5000834A (en) Facing targets sputtering device
WO2000058953A3 (en) Reactive ion beam etching method and a thin film head fabricated using the method
US5492606A (en) Method for self-stabilizing deposition of a stoichiometric compound by reactive sputtering
JPH0450653B2 (en)
JPH06101036A (en) Ion assist control type sputtering method
JPH05209263A (en) Manufacture of sputtered alloy film and apparatus therefor
JPH05295542A (en) Ion-assisted control type sputtering method
JPS634062A (en) Bias sputtering device
JPH024674B2 (en)
JPH02185967A (en) Method and device for bias sputtering
JP3045421B2 (en) Sputtering method and apparatus for forming magnetic thin film
JPS61578A (en) Magnetron sputtering target
JPH0225988B2 (en)
JPS6188511A (en) Manufacture of magnetic thin film
JPH0888176A (en) Sputtering equipment
JPH02294476A (en) Cathode for magnetron sputtering
JPH05186869A (en) Method and device for forming sendust film
JPH0373632B2 (en)
JPS6428362A (en) Method and device for forming thin insulating film
JPS60221563A (en) Bias sputtering device
JPS62294171A (en) Method and apparatus for controlling sputtering
JPS62216228A (en) Growing method for film
JP2001164363A (en) Sputtering apparatus
JPH11193468A (en) Thin film forming device
JPH0364447A (en) Formation of multiple film