JPH0610050A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH0610050A
JPH0610050A JP16965492A JP16965492A JPH0610050A JP H0610050 A JPH0610050 A JP H0610050A JP 16965492 A JP16965492 A JP 16965492A JP 16965492 A JP16965492 A JP 16965492A JP H0610050 A JPH0610050 A JP H0610050A
Authority
JP
Japan
Prior art keywords
annealing
dry
steel sheet
silicon steel
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16965492A
Other languages
Japanese (ja)
Inventor
Katsuo Iwamoto
勝生 岩本
Hideo Yamagami
日出雄 山上
Ujihiro Nishiike
氏裕 西池
Takahiro Suga
孝宏 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16965492A priority Critical patent/JPH0610050A/en
Publication of JPH0610050A publication Critical patent/JPH0610050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in magnetic properties by subjecting the rolled sheet of a silicon steel containing specific amounts of C, Si, Mn, S, and Se to decarburizing annealing, specific heat treatment, secondary recrystallization treatment, and purification annealing. CONSTITUTION:A slab of a silicon steel having a composition containing, by weight, 0.020-0.080% C, 2.5-4.0% Si, 0.03-0.15% Mn, and 0.008-0.100% S and/or Se is hot-rolled, cold-rolled once or cold-rolled twice while process-annealed between the cold rolling stages, and finished to the final sheet thickness. Then decarburizing annealing is applied to the steel sheet and a separation agent at annealing, composed essentially of MgO, is applied, and secondary recrystallization treatment is carried out at 800-920 deg.C. Subsequently purification annealing is applied to the steel sheet, by which a grain-oriented steel sheet is obtained. At this time, prior to the secondary recrystallization treatment, the steel sheet is held at 650-800 deg.C for 5-20hr in an atmosphere consisting of 25-75% dry H2 and the balance N2. By this method, Goss-oriented secondary- recrystallized grains can be increased in the integration degree and refined, and iron loss value can be remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主として電力用トラ
ンスの鉄心に用いて好適な、低い鉄損値と高い磁束密度
とを有する一方向性けい素鋼板の製造方法を提案しよう
とするものである。一般に鉄損を低減させる手段として
は、Si含有量を高めること、製品板厚を薄くすることな
どの外、2次再結晶粒中の(110)〔001〕方位す
なわちゴス方位の結晶粒集積度を高めることや2次再結
晶粒を小さくすること等が知られている。上記のうち、
特にゴス方位の2次再結晶粒の集積度を高めることは、
磁束密度の向上にも有意義であって、有効な手段であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to propose a method for producing a grain-oriented silicon steel sheet having a low iron loss value and a high magnetic flux density, which is suitable mainly for an iron core of a power transformer. is there. Generally, as a means for reducing iron loss, in addition to increasing the Si content, reducing the product plate thickness, etc., the crystal grain integration degree of the (110) [001] orientation in the secondary recrystallized grains, that is, the Goss orientation It is known to increase the grain size and to reduce the secondary recrystallized grains. Of the above,
In particular, to increase the degree of accumulation of secondary recrystallized grains in the Goss direction,
It is also effective and effective in improving the magnetic flux density.

【0002】[0002]

【従来の技術】ゴス方位の2次再結晶粒の集積度を高め
たけい素鋼板の製造方法として、特公昭51−1346
9号公報には、最終冷間圧延を経て脱炭焼鈍後に行われ
る、2次再結晶や純化等を目的とした最終仕上焼鈍にお
いて、800 ℃〜920 ℃の温度範囲で2次再結晶粒を十分
に成長させることにより、優れた磁気特性のけい素鋼板
を得る方法が開示されている。しかしながらこの方法
は、ゴス方位の2次再結晶粒の集積度を高める効果が確
かに見られるが、この2次再結晶粒が粗大化して目的と
する低鉄損値が得られないという欠点がある。
2. Description of the Related Art As a method for producing a silicon steel sheet having a high degree of accumulation of secondary recrystallized grains of Goss orientation, Japanese Patent Publication No. 51-1346.
No. 9 discloses a final finish annealing for the purpose of secondary recrystallization, purification, etc. performed after decarburization annealing after final cold rolling, in which secondary recrystallized grains are formed in a temperature range of 800 ° C. to 920 ° C. A method for obtaining a silicon steel sheet having excellent magnetic properties by sufficiently growing it is disclosed. However, this method certainly has the effect of increasing the degree of accumulation of the secondary recrystallized grains in the Goss orientation, but has the disadvantage that the secondary recrystallized grains become coarse and the target low iron loss value cannot be obtained. is there.

【0003】また、特開昭60−67625号公報に
は、最終冷間圧延を経て脱炭焼鈍後に行われる最終仕上
焼鈍において、2次再結晶処理までに不足する鋼中のイ
ンヒビター機能を補う目的で、特に焼鈍分離剤中に予め
SもしくはSeまたはそれらの化合物を添加し、さらに2
次再結晶焼鈍の雰囲気を不活性ガスにする方法の開示が
ある。この方法は、鋼中のインヒビター機能を十分に発
揮させることが狙いであって、2次再結晶不良の鋼板の
場合にはある程度の磁気特性の回復が望めるものの、イ
ンヒビターによる抑制力が十分な鋼板の場合には2次再
結晶粒が著しく粗大化して、かえって鉄損値が劣化する
欠点がある。
Further, in Japanese Patent Laid-Open No. 60-67625, the purpose is to supplement the inhibitor function in the steel which is insufficient before the secondary recrystallization treatment in the final finish annealing performed after decarburization annealing after the final cold rolling. In particular, S or Se or a compound thereof is added to the annealing separator in advance, and further 2
There is a disclosure of a method in which the atmosphere of the secondary recrystallization annealing is changed to an inert gas. This method aims at sufficiently exhibiting the inhibitor function in the steel, and although it is expected that the magnetic properties will be recovered to some extent in the case of a steel sheet with a poor secondary recrystallization, a steel sheet with a sufficient inhibitory force by the inhibitor is obtained. In this case, the secondary recrystallized grains are remarkably coarsened, and the iron loss value is rather deteriorated.

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記従来
技術の欠点、すなわち2次再結晶粒の粗大化により鉄損
値を劣化させる不利を抜本的に改善し、これによってゴ
ス方位2次再結晶粒の集積度をより一層高め、さらに2
次再結晶粒を微細化させて、鉄損値を著しく低減させる
ことを可能にした一方向性けい素鋼板の製造方法を提案
することを目的とする。
SUMMARY OF THE INVENTION The present invention drastically improves the disadvantage of the above-mentioned prior art, that is, the disadvantage that the iron loss value is deteriorated due to the coarsening of the secondary recrystallized grains. Further increase the degree of crystal grain accumulation, and further 2
It is an object of the present invention to propose a method for producing a unidirectional silicon steel sheet which makes it possible to reduce the iron loss value remarkably by refining the secondary recrystallized grains.

【0005】[0005]

【課題を解決するための手段】発明者らは、従来技術の
欠点が2次再結晶粒の粗大化にあることに着目し、この
2次再結晶粒の粗大化を抑制するための方法について種
々検討した結果、2次再結晶焼鈍前に、予備処理を実施
する方法の有用性を見出した。つまり、2次再結晶焼鈍
前に先立ち650 ℃〜800 ℃間をH2:25〜75%、残部はN2
の雰囲気で5〜20h 保持、あるいは650 〜800 ℃間を
H2:25〜75%、残部はN2の雰囲気で3〜20℃/hの昇熱速
度で加熱することにより、鋼中のMnS, MnSe といったイ
ンヒビターの機能を低下させることなく容易にゴス方位
の集積度を高め、2次再結晶粒を微細化することが可能
となり、磁気特性の優れた一方向性けい素鋼板を製造す
ることができることを見出したのである。この発明は、
上記の知見に立脚するものである。
The inventors of the present invention have noticed that the drawback of the prior art lies in the coarsening of the secondary recrystallized grains, and a method for suppressing the coarsening of the secondary recrystallized grains. As a result of various studies, the usefulness of the method of performing the pretreatment before the secondary recrystallization annealing was found. That is, before the secondary recrystallization annealing, H 2 : 25 to 75% between 650 ℃ and 800 ℃, the balance is N 2 before
Atmosphere for 5 to 20 hours, or between 650 and 800 ° C
H 2: 25~75%, the balance by heating at Noborinetsu rate of 3 to 20 ° C. / h in an atmosphere of N 2, easily Goss orientation without lowering the function of the inhibitor MnS, such MnSe in the steel It has been found that it is possible to increase the degree of integration and refine the secondary recrystallized grains, and to manufacture a unidirectional silicon steel sheet having excellent magnetic properties. This invention
It is based on the above findings.

【0006】すなわち、この発明は、C:0.020 〜0.08
0 wt%、Si:2.5 〜4.0 wt%、Mn:0.03〜0.15wt%を含
み、かつS及びSeの1種又は2種を0.008 〜0.100 wt%
含有するけい素鋼スラブを熱間圧延し、次いで1回の冷
間圧延又は中間焼鈍を挟む2回の冷間圧延を施して最終
板厚に仕上げた後、脱炭焼鈍を施し、次いでMgO を主成
分とする焼鈍分離剤を塗布後に、800 ℃〜920 ℃の温度
範囲で2次再結晶処理を施した後、純化焼鈍を施す一方
向性けい素鋼板の製造方法において、上記2次再結晶処
理に先立ち、ドライH2:25〜75%、残部N2の雰囲気で、
650 〜800 ℃の範囲の温度に5〜20時間保持することを
特徴とする磁気特性の優れた一方向性けい素鋼板の製造
方法(第1発明)である。
That is, the present invention is C: 0.020 to 0.08.
0 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15 wt%, and 0.008 to 0.100 wt% of one or two of S and Se.
The contained silicon steel slab is hot-rolled, then cold-rolled once or cold-rolled twice with intermediate annealing to finish to the final thickness, then decarburized and annealed. In the method for producing a unidirectional silicon steel sheet, after applying an annealing separator as a main component, performing a secondary recrystallization treatment in a temperature range of 800 ° C to 920 ° C, and then performing a purification annealing, the above secondary recrystallization prior to treatment, a dry H 2: 25 to 75%, in an atmosphere of balance N 2,
This is a method (first invention) for producing a unidirectional silicon steel sheet having excellent magnetic properties, which is characterized by holding at a temperature in the range of 650 to 800 ° C for 5 to 20 hours.

【0007】また この発明は、C:0.020 〜0.080 wt
%、Si:2.5 〜4.0 wt%、Mn:0.03〜0.15wt%を含み、
かつS及びSeの1種又は2種を0.008 〜0.100 wt%含有
するけい素鋼スラブを熱間圧延し、次いで1回の冷間圧
延又は中間焼鈍を挟む2回の冷間圧延を施して最終板厚
に仕上げた後、脱炭焼鈍を施し、次いでMgO を主成分と
する焼鈍分離剤を塗布後に、800 ℃〜920 ℃の温度範囲
で2次再結晶処理を施した後、純化焼鈍を施す一方向性
けい素鋼板の製造方法において、上記2次再結晶処理に
先立ち、ドライH2:25〜75%、残部N2の雰囲気で、650
℃〜800 ℃の温度範囲を3〜20℃/hの昇熱速度で加熱す
ることを特徴とする磁気特性の優れた一方向性けい素鋼
板の製造方法(第2発明)である。
The present invention also provides C: 0.020 to 0.080 wt.
%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15 wt%,
And a silicon steel slab containing 0.008 to 0.100 wt% of one or two of S and Se is hot-rolled, and then subjected to one cold rolling or two cold rolling with intermediate annealing, and finally. After finishing the plate thickness, decarburization annealing is applied, then an annealing separator containing MgO as a main component is applied, and then secondary recrystallization treatment is performed in the temperature range of 800 ° C to 920 ° C, followed by purification annealing. In the method for producing a unidirectional silicon steel sheet, prior to the secondary recrystallization treatment, dry H 2 : 25 to 75%, the balance of N 2 is 650
A method for producing a unidirectional silicon steel sheet having excellent magnetic properties (second invention), which comprises heating a temperature range of ℃ to 800 ℃ at a heating rate of 3 to 20 ℃ / h.

【0008】[0008]

【作用】以下実験結果に基づきこの発明を具体的に説明
する。実験材は同一組成の鋼を用い、スラブ圧延から脱
炭焼鈍までは次に示す同一条件の処理を施した。C:0.
045 wt%、Si:3.30wt%、Mn:0.087 wt%、S:0.026
wt%を含有する組成のけい素鋼よりなる200mm 厚スラブ
を、1380℃の温度で1時間加熱後、熱間圧延して厚み2.
0mm の熱延板とした。次いでこの熱延板に900 ℃で2分
間の焼鈍を施した後、酸洗、次いで冷間圧延を施して厚
み0.60mmとし、さらに950 ℃の温度で2分間の中間焼鈍
を施した後、最終冷間圧延を行って0.23mm厚に仕上げ
た。この冷延板を脱脂し、次いで湿水素雰囲気中で830
℃、3分間の脱炭焼鈍後、MgO を主成分とする焼鈍分離
剤を塗布した。
The present invention will be described in detail below based on the experimental results. As the test material, steels having the same composition were used, and the processes under the same conditions described below were performed from slab rolling to decarburization annealing. C: 0.
045 wt%, Si: 3.30 wt%, Mn: 0.087 wt%, S: 0.026
A 200 mm thick slab made of silicon steel with a composition containing wt% is heated at a temperature of 1380 ° C for 1 hour and then hot rolled to a thickness of 2.
A 0 mm hot rolled sheet was used. Then, this hot-rolled sheet is annealed at 900 ° C for 2 minutes, then pickled and then cold-rolled to a thickness of 0.60 mm, and further subjected to an intermediate annealing at a temperature of 950 ° C for 2 minutes, and finally. Cold rolling was performed to a thickness of 0.23 mm. The cold-rolled sheet was degreased and then 830 in a wet hydrogen atmosphere.
After decarburization annealing at 3 ° C. for 3 minutes, an annealing separator containing MgO 2 as a main component was applied.

【0009】この焼鈍分離剤を塗布した試料を用い、1
つの試料については従来工程として、仕上焼鈍において
通常の840 ℃、40 hドライ N2 雰囲気中での2次再結晶
保定処理後、ドライ H2 に切替え1200℃、5h の純化焼
鈍を施した。また他の試料については、2次再結晶保定
処理に先立ち、500 ℃〜850 ℃間の種々の温度を均熱時
間:3h 、5h 、10h 、20h 及び30h で、いずれもドラ
イH2:50%、ドライN2:50%の雰囲気の保定処理をし、
しかる後に840 ℃、40h のドライ N2 雰囲気中の2次再
結晶保定処理後、ドライ H2 に切替えて1200℃、5hの
純化焼鈍を施した。
Using a sample coated with this annealing separator, 1
As a conventional process, one sample was subjected to a secondary annealing treatment in a dry N 2 atmosphere at 840 ° C. for 40 h in a conventional finish annealing process, then switched to dry H 2 and subjected to purification annealing at 1200 ° C. for 5 h. For other samples, prior to the secondary recrystallization retention treatment, various temperatures between 500 ℃ and 850 ℃ were soaked for 3 hours, 5 hours, 10 hours, 20 hours, and 30 hours, and dry H 2 : 50%. , Dry N 2 : 50% atmosphere retention treatment,
Then, after the secondary recrystallization retention treatment in a dry N 2 atmosphere at 840 ° C. for 40 hours, it was switched to dry H 2 and subjected to purification annealing at 1200 ° C. for 5 hours.

【0010】以上の各条件の処理を施した各試料につ
き、磁気特性を調べた結果を図1に、従来工程(◎印)
及び2次再結晶焼鈍に先立つ保定温度との関係で、3h
均熱(▽印)、5h 均熱(△印)、10h 均熱(○印)、
20h 均熱(□印)、30h 均熱(◇印)の場合で示す。
The results of examining the magnetic characteristics of the respective samples subjected to the above-mentioned respective conditions are shown in FIG.
And 3 hours in relation to the retention temperature prior to the secondary recrystallization annealing
Soaking (▽ mark), 5h soaking (△ mark), 10h soaking (○ mark),
Shown for 20 h soaking (□) and 30 h soaking (◇).

【0011】図1から明らかなように、従来工程に比較
してこの発明の方法を適用して650℃〜800 ℃間をドラ
イH2:50%で5〜20h 保定した条件の磁気特性が著しく
改善されていて、しかも保定温度が低い場合は均熱時間
が長く、高い場合は均熱時間が短かい処理が好適で、な
かでも750 ℃、10 hの条件で最も好適な磁気特性が得ら
れた。
As is apparent from FIG. 1, the magnetic properties are remarkably high under the condition that the method of the present invention is applied and dry H 2 : 50% is maintained for 5 to 20 hours between 650 ° C. and 800 ° C. as compared with the conventional process. When the holding temperature is improved and the holding temperature is low, the soaking time is long, and when it is high, the soaking time is short, and the most suitable magnetic properties are obtained under the conditions of 750 ° C and 10 h. It was

【0012】次に、2次再結晶焼鈍前の650 ℃〜800 ℃
間を種々の昇温速度で加熱した例につき、同処理中の雰
囲気をドライ H2 の割合を変化させた実験結果について
述べる。上記実験と成分及び焼鈍分離剤を塗布するまで
の一連の工程を同一条件で行った試料を用い、1つの試
料には従来工程として仕上焼鈍において通常の840 ℃、
40h ドライN2雰囲気中の2次再結晶保定処理後、ドライ
H2 に切替え1200℃、5h の純化焼鈍を施した。また、
他の試料については、2次再結晶保定処理に先立ち650
〜800 ℃間を1.5 ℃/h〜40℃/hの種々の昇熱速度で加熱
し、その間の雰囲気をドライ H2 、ドライ H2 25%
−ドライ N2 75%、ドライ H2 50%−ドライ N2 50
%、ドライ H2 75%−ドライ N225 %及びドライ N
2 の各雰囲気でそれぞれ処理し、その後に840 ℃、40h
ドライ N2 中で2次再結晶保定処理により2次再結晶を
完了させた後、ドライ H2 に切替え、1200℃、5h の純
化焼鈍を施した。
Next, 650 ° C. to 800 ° C. before secondary recrystallization annealing
The results of experiments in which the ratio of dry H 2 was changed in the atmosphere during the same treatment will be described for examples in which the heating was performed at various heating rates. Using a sample that was subjected to the above-mentioned experiment and a series of steps until the components and the annealing separator were applied under the same conditions, one sample was used as a conventional step in the normal annealing at finish 840 ℃,
40h Dry after dry recrystallization retention treatment in N 2 atmosphere
It was switched to H 2 and subjected to purification annealing at 1200 ° C for 5 hours. Also,
For other samples, 650 prior to secondary recrystallization retention treatment
Heat up to 800 ℃ at various heating rates of 1.5 ℃ / h to 40 ℃ / h and change the atmosphere between dry H 2 and dry H 2 25%.
-Dry N 2 75%, Dry H 2 50% -Dry N 2 50
%, Dry H 2 75% -Dry N 2 25% and Dry N
Treatment in each atmosphere of 2 and then 840 ℃, 40h
After the secondary recrystallization was completed by the secondary recrystallization retention treatment in dry N 2 , it was switched to dry H 2 and subjected to purification annealing at 1200 ° C. for 5 hours.

【0013】以上の各条件の処理を施した各試料につ
き、磁気特性を調べた結果を図2に、従来工程(◎印)
及び2次再結晶焼鈍に先立つ昇温速度との関係で、ドラ
イ H2雰囲気(▽印)、ドライ H2 25%−ドライ N2 75
%雰囲気(△印)、ドライ H250%−ドライ N2 50%雰
囲気(○印)、ドライ H2 75%−ドライ N225 %雰囲気
(□印)及びドライ N2 雰囲気(◇印)の場合で示す。
The results of examining the magnetic characteristics of the respective samples subjected to the above-mentioned respective conditions are shown in FIG.
And, in relation to the temperature rising rate prior to the secondary recrystallization annealing, dry H 2 atmosphere (▽ mark), dry H 2 25% -dry N 2 75
% Atmosphere (△ mark), dry H 2 50% -dry N 2 50% atmosphere (○ mark), dry H 2 75% -dry N 2 25% atmosphere (□ mark) and dry N 2 atmosphere (◇ mark) Show in case.

【0014】図2から明らかなように、従来工程の磁気
特性に比べて、650 ℃〜800 ℃間の昇熱速度を本発明の
条件である3〜20℃/sの範囲で、更に雰囲気をドライ H
225〜75%、残部はドライ N2 の条件で処理した場合に
従来工程より良好な磁気特性が得られ、なかでも最も好
適な条件は650 ℃〜800 ℃間を12.5℃/hの昇熱、ドライ
H250 %、ドライ N250 %の雰囲気の処理である。な
お、図1で示した保定処理の実験例よりは磁気特性のレ
ベルは若干低下する傾向が見られるが、従来工程に比べ
て格段に磁気特性が改善されている。
As is apparent from FIG. 2, the temperature rising rate between 650 ° C. and 800 ° C. is within the range of 3-20 ° C./s, which is the condition of the present invention, and the atmosphere is further increased, as compared with the magnetic characteristics in the conventional process. Dry H
2 25 to 75%, the remainder being good magnetic characteristics can be obtained than the conventional process when treated under the condition of dry N 2, Noborinetsu among them the most preferred conditions are 650 ° C. to 800 ° C. between the 12.5 ° C. / h ,dry
This is a treatment in an atmosphere of H 2 50% and dry N 2 50%. It should be noted that although the level of magnetic characteristics tends to be slightly lower than that of the experimental example of the retention treatment shown in FIG. 1, the magnetic characteristics are significantly improved as compared with the conventional process.

【0015】以上のようなこの発明にかかる2次再結晶
処理に先立つ予備処理によって、磁気特性が改善する理
由を詳細に調査すべく、図1に示した実験において、従
来工程の試料と、本発明の好適条件であるドライ H250
%−ドライ N250 %雰囲気で750 ℃、10h の保定処理を
施した試料について、それぞれ2次再結晶処理直前で取
り出し、MgO を除去後に試料表面をEPMAで分析した。こ
のEPMAでの調査結果を表1に示す。
In order to investigate in detail the reason why the magnetic properties are improved by the pretreatment prior to the secondary recrystallization treatment according to the present invention as described above, in the experiment shown in FIG. Dry H 2 50, which is the preferred condition of the invention
Samples that had been subjected to the retention treatment at 750 ° C. for 10 hours in a% -dry N 2 50% atmosphere were taken out just before the secondary recrystallization treatment, and the sample surface was analyzed by EPMA after removing MgO. The results of this EPMA survey are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、従来工程で処理
した試料には、Mn, S及びSi、酸素の各成分がこの発明
の条件で処理した試料より大量に含有されていて、した
がってこの発明の試料は表面のMn, S及びSi、酸素が従
来工程の試料に比べて低減していることが明確である。
As is apparent from Table 1, the sample treated in the conventional process contains a larger amount of each of Mn, S, Si and oxygen than the sample treated under the conditions of the present invention. It is clear that the sample No. 1 has reduced Mn, S, Si, and oxygen on the surface compared with the sample in the conventional process.

【0018】上記の実験から、従来工程条件のものは、
方向性けい素鋼の製造工程において、脱炭焼鈍後、MgO
をスラリー状態で塗布乾燥後に仕上焼鈍する過程で、仕
上焼鈍初期の300 〜600 ℃間ではMgO 中からの脱水が起
こって著しく酸化性が高くなることから、SiO2, Fe2SiO
4 を主成分とする鋼板表層の酸化層を介して鋼中のMn,
Sのインヒビター成分がサブスケール表層に濃化し、そ
の結果、鋼中での抑制力が著しく低減するものと考えら
れる。これに対して本発明の条件で処理したものは、表
層の酸化が抑制されることによって、Mn, Sのインヒビ
ター成分の濃化も抑制されて磁気特性が向上したものと
考えられる。
From the above experiment, the conventional process conditions are as follows:
After decarburization annealing in the manufacturing process of grain-oriented silicon steel, MgO
With the process of the final annealing after coating and drying a slurry state, since significantly oxidizing increases going dehydration of MgO in the inter finish annealing initial 300 ~600 ℃, SiO 2, Fe 2 SiO
4 through the oxide layer of the steel sheet surface layer composed mainly of Mn in the steel,
It is considered that the inhibitor component of S is concentrated on the sub-scale surface layer, and as a result, the inhibitory force in steel is significantly reduced. On the other hand, it is considered that those treated under the conditions of the present invention are improved in magnetic properties by suppressing the oxidation of the surface layer and thus suppressing the concentration of the inhibitor component of Mn and S.

【0019】この発明で、650 ℃〜800 ℃の範囲で5〜
20h 保持、あるいは650 ℃〜800 ℃の範囲を3〜20℃/h
の加熱を、ドライ H2 25〜75%、残部はN2の雰囲気で行
うことに限定したのは、実験事実に基づくものである
が、次のとおりである。
According to the present invention, in the range of 650 ° C to 800 ° C,
Hold for 20 hours, or 3 to 20 ℃ / h in the range of 650 ℃ to 800 ℃.
Based on experimental facts, the reason for limiting the heating to a dry H 2 atmosphere of 25 to 75% and the balance N 2 is as follows.

【0020】まず650 ℃未満で上記処理を施すと、MgO
の脱水が完了していないため、酸化促進の不具合を生
じ、また、800 ℃を超える温度では、かえってインヒビ
ターの粗大化を助長させるためにやはり不具合を生じる
ためである。
First, when the above treatment is performed at less than 650 ° C., MgO
This is because the dehydration of (3) is not completed, which causes a problem of acceleration of oxidation, and at a temperature of more than 800 ° C, the problem also occurs because it rather promotes coarsening of the inhibitor.

【0021】また650 ℃〜800 ℃間の保持時間が5 h未
満と短い場合は、Mn, Sの表層濃化抑制効果が低く、20
h を超える長時間の場合は、インヒビターの粗大化を助
長するとともに、Mn, Sの表層濃化が進行する不都合を
生じるために、5〜20h の範囲に限定した。
When the holding time between 650 ° C. and 800 ° C. is as short as less than 5 h, the effect of suppressing the surface layer concentration of Mn, S is low, and
When the time is longer than h, the inhibitor is coarsened and the concentration of Mn and S in the surface layer is disadvantageously increased. Therefore, the range is limited to 5 to 20 h.

【0022】昇熱速度については、3℃/h未満の徐熱で
あれば、650 ℃〜800 ℃内の滞留時間が著しく長くなっ
て、鋼中インヒビターの粗大化や、Mn, Sの表面濃化を
生じ易く、20℃/hより速い、比較的急熱の場合は、短時
間均熱した場合と同様に、Mn, Sの表層濃化抑制効果が
低く効果が薄いので3〜30℃/hの範囲に限定した。
Regarding the rate of temperature rise, if the heating is slower than 3 ° C./h, the residence time within 650 ° C. to 800 ° C. will be remarkably long, and the inhibitor in steel will become coarse and the surface concentration of Mn and S will increase. In the case of relatively rapid heating that is liable to occur and is faster than 20 ° C / h, the effect of suppressing the surface layer concentration of Mn and S is low and the effect is thin, as in the case of soaking for a short time. Limited to h range.

【0023】また雰囲気をドライH2 25 %〜75%、残部
ドライN2としたのは、75%を超えるN2−H2雰囲気の場合
は、表面のMn, S,Si及び酸素成分の濃化を更に助長
し、またH275%を超える場合も脱S,Seを助長し、イン
ヒビター機能を阻害するため、ドライ H225 〜75%、残
部ドライ N2 雰囲気に限定した。
Further, the atmosphere was defined as dry H 2 25% to 75% and the balance dry N 2 is that in the case of N 2 —H 2 atmosphere exceeding 75%, the concentration of Mn, S, Si and oxygen components on the surface is high. In order to further promote chemical conversion, and also to promote de-S and Se even when H 2 exceeds 75% and inhibit the inhibitor function, the atmosphere was limited to dry H 2 25 to 75% and the balance dry N 2 atmosphere.

【0024】つぎにこの発明における鋼成分組成につい
て説明する。 C:Cが 0.020wt%に満たないと、脱炭焼鈍後における
集合組織が損なわれて磁気特性の劣化を招き、一方 0.0
80wt%を超えて多量に含まれると連続焼鈍による脱炭が
困難になり、やはり最終製品の磁気特性を劣化させるの
で、C量は0.020 〜0.080 wt%に限定した。 Si:Siが、 2.5wt%より少ないとこの発明で所期したほ
どの低い鉄損を得ることが難しく、一方 4.0wt%よりも
多いと脆くなって冷間加工性の劣化を招き通常の工業的
圧延が困難になるので、Si量は 2.5〜4.0 wt%の範囲に
限定した。 Mn:Mnは、SやSeと化合してMnSやMnSeのインヒビター
を形成し、2次再結晶過程において(110) 001 方位以外
の方位の結晶粒の成長を抑制して(110) 001 方位の2次
再結晶粒を十分に発達させるのに必要な元素であるが、
含有量が0.03wt%未満では上記インヒビターの形成量と
して十分ではなく、一方0.15wt%を超えるとMnSやMnSe
の解離固溶温度が著しく高くなり、工業的に可能なスラ
ブ加熱条件でこれらをインヒビターとして好ましい状態
に分散せしめることが難しくなるので、Mnは0.03〜0.15
wt%の範囲に限定した。 S及び/又はSe:S及びSeはいずれも、インヒビターと
して2次再結晶粒を発達させる上で有用な成分である
が、上記の適正範囲を外れると十分な効果が得られな
い。従ってS及びSeは単独使用又は併用いずれの場合に
おいても 0.008〜0.100 wt%の範囲で含有させる必要が
ある。なお,その他インヒビター効果の助勢成分とし
て、Sb、As、Bi、PbおよびSnなどの粒界偏析型元素の添
加も効果がある。これらはいずれも、0.010 wt%未満で
は添加効果がなく、又、0.200 wt%を超えると磁気特性
を劣化させ、冷延性を阻害するので、これら各成分は単
独および併用いずれの場合も0.010 〜0.200 wt%の範囲
が好適である。
Next, the steel component composition in the present invention will be explained. C: When C is less than 0.020 wt%, the texture after decarburization annealing is damaged and the magnetic properties are deteriorated.
If it is contained in a large amount exceeding 80 wt%, decarburization by continuous annealing becomes difficult and the magnetic properties of the final product are deteriorated. Therefore, the C content is limited to 0.020 to 0.080 wt%. Si: When Si is less than 2.5 wt%, it is difficult to obtain the iron loss as low as expected in the present invention, while when it is more than 4.0 wt%, it becomes brittle and deteriorates cold workability, which causes deterioration of cold workability. Since it becomes difficult to perform dynamic rolling, the Si content was limited to the range of 2.5 to 4.0 wt%. Mn: Mn combines with S and Se to form an inhibitor of MnS and MnSe, and suppresses the growth of grains other than the (110) 001 orientation in the secondary recrystallization process. Although it is an element necessary to sufficiently develop secondary recrystallized grains,
If the content is less than 0.03 wt%, the above inhibitor formation amount is not sufficient, while if it exceeds 0.15 wt%, MnS and MnSe are formed.
Mn is 0.03 to 0.15 because it becomes difficult to disperse them in a preferable state as an inhibitor under industrially possible slab heating conditions.
It was limited to the wt% range. S and / or Se: Both S and Se are useful components for developing secondary recrystallized grains as an inhibitor, but if they are out of the above-mentioned proper ranges, sufficient effects cannot be obtained. Therefore, S and Se must be contained in the range of 0.008 to 0.100 wt% whether used alone or in combination. It should be noted that addition of grain boundary segregation type elements such as Sb, As, Bi, Pb and Sn is also effective as a component for assisting the inhibitor effect. All of them have no addition effect at less than 0.010 wt%, and deteriorate the magnetic properties and impair cold rolling at more than 0.200 wt%. Therefore, each of these components alone or in combination has a content of 0.010 to 0.200. A wt% range is preferred.

【0025】つぎに、この発明の製造方法を工程順に説
明する。上記の成分組成に調整したけい素鋼素材を、通
常1250℃以上の高温に加熱したのち、公知の方法によっ
て、板厚1.2 〜4.5mm 程度の熱延母板とする。必要に応
じて800 〜1100℃の温度範囲で焼鈍を施し、酸洗したの
ち、1回の冷間圧延、または750 〜1100℃の温度範囲で
焼鈍を挟む2回以上の冷間圧延によって、最終板厚0.15
〜0.35mm程度の冷延板に仕上げるが、この冷間圧延で最
終板厚に仕上げる際の冷延率は40〜80%の範囲が望まし
い。この最終冷延板は脱脂したのち、湿水素雰囲気中で
750 〜900 ℃の温度範囲で脱炭焼鈍してC量を 0.003wt
%以下にする。その後MgO を主成分とする焼鈍分離剤を
塗布した後、仕上焼鈍において650 〜800 ℃間をドライ
H225 〜75%残部ドライ N2 雰囲気で5〜20h 保定又は
3〜20℃/hの昇熱速度で処理後ドライ N2 中で800 〜92
0 ℃の温度範囲で2次再結晶を完了させた後、ドライ H
2に切替え1000℃以上の高温で、純化焼鈍を行う。そし
て最後に絶縁コーティングを施して一方向性けい素鋼板
製品とする。
Next, the manufacturing method of the present invention will be described in the order of steps. The silicon steel material adjusted to the above component composition is usually heated to a high temperature of 1250 ° C. or higher, and then a hot rolled mother board having a plate thickness of 1.2 to 4.5 mm is prepared by a known method. If necessary, perform annealing in the temperature range of 800 to 1100 ° C, pickle it, and then perform one cold rolling, or perform two or more cold rollings with annealing in the temperature range of 750 to 1100 ° C to obtain the final product. Thickness 0.15
A cold rolled sheet of about 0.35 mm is finished, but the cold rolling rate when finishing to the final sheet thickness by this cold rolling is preferably in the range of 40 to 80%. After degreasing this final cold-rolled sheet, in a wet hydrogen atmosphere
Decarburization annealing is performed in the temperature range of 750 to 900 ℃ and the amount of C is 0.003wt.
% Or less. After that, apply an annealing separator containing MgO as the main component, and then dry at 650 to 800 ° C in finish annealing.
H 2 25 to 75% balance Dry 5 to 20 hours in N 2 atmosphere or treated at a heating rate of 3 to 20 ° C / h and then 800 to 92 in dry N 2
After completing the secondary recrystallization in the temperature range of 0 ° C, dry H
Switch to 2 and perform purification annealing at a high temperature of 1000 ° C or higher. Finally, an insulating coating is applied to obtain a unidirectional silicon steel sheet product.

【0026】このような処理工程で製造することにより
新たに設備投資を必要とせず連続的に磁気特性の優れた
一方向性けい素鋼板を安定して安価に製造することがで
きるようになった。なお、この発明では、2次再結晶焼
鈍に先立つ650 〜800 ℃間を、ドライ H225 〜75%残部
ドライ N2 雰囲気で、5〜20h の保定処理と3〜20℃/h
の昇熱処理とを組み合わせて行ってもよい。
By manufacturing by such a treatment process, it becomes possible to stably manufacture a unidirectional silicon steel sheet having excellent magnetic properties stably at a low cost without newly requiring capital investment. . In the present invention, the temperature is maintained between 650 and 800 ° C prior to the secondary recrystallization annealing in a dry H 2 25 to 75% balance dry N 2 atmosphere for 5 to 20 hours, and 3 to 20 ° C / h.
It may be performed in combination with the heat treatment.

【0027】[0027]

【実施例】実施例1 C:0.04wt%、Si:3.29wt%、Mn:0.082 wt%、Se:0.
027 wt%を含有する組成とした、200mm 厚のけい素鋼ス
ラブを1380℃の温度で1時間の加熱後、2.0mm厚に熱間
圧延し、920 ℃の温度で3分間の焼鈍後、酸洗し、0.60
mm厚に冷間圧延後、950 ℃の温度で2分間の中間焼鈍を
して、0.23mm厚に最終冷間圧延したのち、脱脂し、湿水
素中で830 ℃の温度で3分間の脱炭焼鈍を施した。うち
1コイルは、従来方法による比較例として、脱炭焼鈍後
にMgO を主成分とする焼鈍分離剤を塗布し、ドライ N2
中で845 ℃の温度で35時間の保定に引き続きドライ H2
に切替えて1200℃の温度で10時間保定の仕上焼鈍を施し
た。他の1コイルは、この発明方法による適合例とし
て、脱炭焼鈍後にMgO を主成分とする焼鈍分離剤を塗布
後、仕上焼鈍において750 ℃、10h 、ドライ H250 %−
ドライ N250 %中で処理後、ドライ N2 に切替えて、84
5 ℃の温度で35時間の保定に引続き、ドライ H2 に切替
えて1200℃の温度で10時間保定の仕上焼鈍を施した。こ
れらの製品の磁気特性を表2に示す。
EXAMPLES Example 1 C: 0.04 wt%, Si: 3.29 wt%, Mn: 0.082 wt%, Se: 0.
A 200 mm thick silicon steel slab having a composition containing 027 wt% was heated at a temperature of 1380 ° C for 1 hour, hot-rolled to a thickness of 2.0 mm, annealed at a temperature of 920 ° C for 3 minutes, and then acid-treated. Washed, 0.60
After cold rolling to mm thickness, intermediate annealing at 950 ℃ for 2 minutes, final cold rolling to 0.23 mm thickness, degreasing and decarburization in wet hydrogen at 830 ℃ for 3 minutes. It was annealed. As a comparative example of the conventional method, one coil was dry N 2 coated with an annealing separator containing MgO as a main component after decarburization annealing.
35 hours at 845 ° C followed by dry H 2
After that, the product was annealed for 10 hours at a temperature of 1200 ° C. The other one coil is a suitable example according to the method of the present invention. After decarburization annealing, an annealing separating agent containing MgO as a main component is applied, and then finish annealing is performed at 750 ° C. for 10 hours and dry H 2 50%-
After treatment in a dry N 2 50%, switching to dry N 2, 84
Following a 35 hour hold at a temperature of 5 ° C, the finish was annealed by switching to dry H 2 and holding at a temperature of 1200 ° C for 10 hours. The magnetic properties of these products are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】この表から明らかなように本発明適合例の
磁気特性が著しく優れていることが判る。
As is apparent from this table, it is understood that the magnetic properties of the examples of the present invention are remarkably excellent.

【0030】実施例2 C:0.048 wt%、Si:3.37wt%、Mn:0.085 wt%、Se:
0.023 wt%、S:0.023 wt%、Sb:0.030 wt%を含有す
る組成とした200mm 厚のけい素鋼のスラブを1380℃の温
度で1時間加熱後、1.8mm 厚に熱間圧延し、900 ℃の温
度で3分間の焼鈍後、酸洗し、0.58mm厚に冷間圧延後、
970 ℃の温度で2分間の中間焼鈍をして、0.18mm厚に最
終冷間圧延したのち、脱脂し、湿水素中で820 ℃の温度
で3分間の脱炭焼鈍を施した。うち1コイルは、従来方
法による比較例として、脱炭焼鈍後MgO を主成分とする
焼鈍分離剤を塗布し、ドライ N2 中で850 ℃の温度で35
時間の保定に引き続きドライ H2 に切替えて1200℃の温
度で10時間保定の仕上焼鈍を施した。他の1コイルは、
この発明方法による適合例として、脱炭焼鈍後MgO を主
成分とする焼鈍分離剤を塗布後、仕上焼鈍において650
℃〜800 ℃間を12.5℃/hの昇熱速度でドライ H250 %−
ドライ N250 %の雰囲気中で処理した後、ドライ N2
切替えて、850 ℃の温度で35時間の保定に引続き、ドラ
イ H2 に切替えて1200℃の温度で10時間保定の仕上焼鈍
を施した。これらの製品の磁気特性を表3に示す。
Example 2 C: 0.048 wt%, Si: 3.37 wt%, Mn: 0.085 wt%, Se:
A 200 mm thick slab of silicon steel with a composition containing 0.023 wt%, S: 0.023 wt% and Sb: 0.030 wt% was heated at a temperature of 1380 ° C for 1 hour, and then hot rolled to a thickness of 1.8 mm, and 900 After annealing at a temperature of ℃ for 3 minutes, pickling, cold rolling to 0.58 mm thickness,
After intermediate annealing for 2 minutes at a temperature of 970 ° C., final cold rolling to a thickness of 0.18 mm, degreasing, and decarburization annealing for 3 minutes at a temperature of 820 ° C. in wet hydrogen. One of the coils, as a comparative example by the conventional method, was coated with an annealing separation agent containing MgO as the main component after decarburization annealing, and was subjected to 35 at a temperature of 850 ° C in dry N 2.
Subsequent to the time retention, switching to dry H 2 was performed and the final annealing was performed at a temperature of 1200 ° C for 10 hours retention. The other one coil is
As a suitable example according to the method of the present invention, after the decarburization annealing, after applying the annealing separating agent containing MgO as a main component, in the finish annealing, 650
Dry H 2 50% -at a heating rate of 12.5 ° C / h between ℃ and 800 ° C
After processing in an atmosphere of dry N 2 50%, switch to dry N 2 and hold for 35 hours at a temperature of 850 ℃, then switch to dry H 2 and finish annealing with a hold for 10 hours at a temperature of 1200 ℃. gave. The magnetic properties of these products are shown in Table 3.

【0031】[0031]

【表3】 [Table 3]

【0032】この表から明らかなように本発明の適合例
の磁気特性が著しく優れていることがわかる。
As is apparent from this table, the magnetic properties of the conforming example of the present invention are remarkably excellent.

【0033】実施例3 C:0.045 wt%、Si:3.28wt%、Mn:0.082 wt%、S:
0.028 wt%、As:0.022 wt%を含有する組成とした200m
m 厚のけい素鋼スラブを1380℃の温度で1時間の加熱
後、3.0mm 厚に熱間圧延して950 ℃の温度で2分間焼鈍
後に酸洗し、1.00mm厚に冷間圧延後、910 ℃の温度で3
分間の中間焼鈍をして、0.30mm厚に最終冷間圧延したの
ち、脱脂し、湿水素中で820 ℃の温度で3分間の脱炭焼
鈍を施した。うち1コイルは、従来方法による比較例と
して、脱炭焼鈍後MgO を主成分とする分離剤を塗布し、
ドライ N2 中で830 ℃の温度で50時間の保定に引き続き
ドライ H2 に切替えて1200℃の温度で10時間保定の仕上
焼鈍を施した。他の1コイルは、この発明方法による適
合例として、脱炭焼鈍後MgO を主成分とする焼鈍分離剤
を塗布した後、仕上焼鈍において700 ℃、12.5 h、ドラ
イ H235%−ドライ N265 %で処理後、ドライ N2 に切
替えて、830 ℃の温度で50時間の保定に引続き、ドライ
H2 に切替えて1200℃の温度で10時間保定の仕上焼鈍を
施した。これらの製品の磁気特性を表4に示す。
Example 3 C: 0.045 wt%, Si: 3.28 wt%, Mn: 0.082 wt%, S:
200m with composition containing 0.028 wt% and As: 0.022 wt%
After heating a m-thick silicon steel slab at a temperature of 1380 ° C for 1 hour, hot rolling it to a thickness of 3.0 mm, annealing it at a temperature of 950 ° C for 2 minutes, pickling it, and cold rolling it to a thickness of 1.00 mm, 3 at a temperature of 910 ° C
After intermediate annealing for 1 minute, final cold rolling to a thickness of 0.30 mm, degreasing, and decarburizing annealing in wet hydrogen at a temperature of 820 ° C. for 3 minutes. As a comparative example of the conventional method, one coil was coated with a separating agent containing MgO as a main component after decarburization annealing,
After holding for 50 hours at a temperature of 830 ° C in dry N 2 , the temperature was switched to dry H 2 and finish annealing was performed for 10 hours at a temperature of 1200 ° C. As another example of conformity with the method of the present invention, the other one coil is applied with an annealing separating agent containing MgO as a main component after decarburization annealing, and then subjected to finish annealing at 700 ° C. for 12.5 h, dry H 2 35% -dry N 2 After treatment at 65%, switch to dry N 2 and continue to dry at 50 ° C for 50 hours.
It was switched to H 2 and subjected to a finish annealing that was held for 10 hours at a temperature of 1200 ° C. The magnetic properties of these products are shown in Table 4.

【0034】[0034]

【表4】 [Table 4]

【0035】この表から明らかなように本発明の適合例
の磁気特性が著しく優れていることがわかる。
As is apparent from this table, the magnetic properties of the conforming example of the present invention are remarkably excellent.

【0036】実施例4 C:0.045 wt%、Si:3.29wt%、Mn:0.082 wt%、S:
0.021 wt%、Sb:0.026 wt%、Bi:0.015 wt% を含有す
る組成とした200mm 厚のけい素鋼スラブを1380℃の温度
で1時間の加熱後、2.7mm 厚に熱間圧延し、1000℃の温
度で2分間焼鈍して酸洗し、直ちに0.27mm厚に最終冷間
圧延したのち、脱脂し、湿水素中で820℃の温度で3分
間の脱炭焼鈍を施した。うち1コイルは、従来方法によ
る比較例として、脱炭焼鈍後MgO を主成分とする焼鈍分
離剤を塗布した後ドライ N2 中で840 ℃の温度で40時間
の保定に引続きドライ H2 に切替えて1200℃の温度で10
時間保定の仕上焼鈍を施した。他の1コイルは、この発
明方法の適合例として、脱炭焼鈍後MgO を主成分とする
焼鈍分離剤を塗布した後、仕上焼鈍において650 ℃〜80
0 ℃間を15℃/hの昇熱速度でドライ H260 %−ドライ N
240 %の雰囲気で処理後、ドライ N2 中で840℃の温度
で40時間の保定に引続きドライ H2 に切替えて1200℃の
温度で10時間保定の仕上焼鈍を施した。これらの製品の
磁気特性を表5に示す。
Example 4 C: 0.045 wt%, Si: 3.29 wt%, Mn: 0.082 wt%, S:
A 200 mm thick silicon steel slab having a composition containing 0.021 wt%, Sb: 0.026 wt%, Bi: 0.015 wt% was heated at a temperature of 1380 ° C for 1 hour, and then hot rolled to a thickness of 2.7 mm, and 1000 It was annealed at a temperature of 0 ° C for 2 minutes, pickled, immediately cold-rolled to a final thickness of 0.27 mm, degreased, and then decarburized and annealed at a temperature of 820 ° C for 3 minutes in wet hydrogen. One of the coils, as a comparative example by the conventional method, was decarburized and annealed with a MgO-based annealing separator, and then switched to dry H 2 for 40 hours at 840 ° C in dry N 2. 10 at 1200 ℃
Finish annealing of time retention was given. The other one coil is, as a conforming example of the method of the present invention, after decarburization annealing, after applying an annealing separating agent containing MgO as a main component, in finishing annealing, 650 ° C to 80 ° C.
Dry H 2 60% -Dry N at a heating rate of 15 ° C / h between 0 ° C
After treatment with 2 40% atmosphere, it was subjected to finish annealing temperature at 10 hours retention of subsequently 1200 ° C. is switched to a dry H 2 to retention of 40 hours at a temperature of 840 ° C. in a dry N 2. Table 5 shows the magnetic properties of these products.

【0037】[0037]

【表5】 [Table 5]

【0038】この表から明らかなように本発明の適合例
の磁気特性が著しく優れていることがわかる。
As is apparent from this table, the magnetic properties of the conforming example of the present invention are remarkably excellent.

【0039】実施例5 C:0.045 wt%、Si:3.25wt%、Mn:0.080 wt%、S:
0.022 wt%、Se:0.020 wt%、Sb:0.031 wt% 、Pb:0.
025 wt% を含有する組成とした200mm 厚のけい素鋼スラ
ブを1415℃の温度で20分間の加熱後、2.2mm 厚に熱間圧
延し、1000℃で1分間の焼鈍後酸洗して0.64mm厚に中間
冷延した後、950 ℃に1.5 分間焼鈍後0.23mm厚に仕上冷
延したのち脱脂し、湿水素中で830 ℃で2分間の脱炭焼
鈍を施した。うち1コイルは従来方法による比較例とし
て、脱炭焼鈍後MgO を主成分とする焼鈍分離剤を塗布し
たのちドライ N2 中で845 ℃の温度で40時間の2次再結
晶焼鈍後、ドライ H2 に切替えて1200℃の温度で10時間
保定の仕上焼鈍を施した。他の1コイルは、本発明方法
の適合例として脱炭焼鈍後MgO を主成分とする焼鈍分離
剤を塗布した後、仕上焼鈍において775 ℃の温度で7.5
時間ドライ H2 35%−ドライ N2 65%の雰囲気で焼鈍
後、ドライ N2 に切替えて845 ℃の温度で40時間保定に
よる2次再結晶焼鈍後ドライ H2 に切替えて1200℃の温
度で10時間の純化焼鈍を施した。これらの製品の磁気特
性を表6に示す。
Example 5 C: 0.045 wt%, Si: 3.25 wt%, Mn: 0.080 wt%, S:
0.022 wt%, Se: 0.020 wt%, Sb: 0.031 wt%, Pb: 0.
A 200 mm thick silicon steel slab with a composition containing 025 wt% was heated at a temperature of 1415 ° C for 20 minutes, hot-rolled to a thickness of 2.2 mm, annealed at 1000 ° C for 1 minute, and then pickled to 0.64. After intermediate cold rolling to a thickness of mm, annealing at 950 ° C. for 1.5 minutes, finishing cold rolling to a thickness of 0.23 mm, degreasing, and decarburization annealing at 830 ° C. for 2 minutes in wet hydrogen. As a comparative example of the conventional method, one coil was applied with an annealing separator containing MgO as a main component after decarburization annealing, and then subjected to secondary recrystallization annealing in dry N 2 at a temperature of 845 ° C. for 40 hours, followed by dry H After switching to 2 , the product was annealed for 10 hours at a temperature of 1200 ° C. As another example of the application of the method of the present invention, another coil was subjected to decarburization annealing, and after applying an annealing separating agent containing MgO as a main component, it was subjected to finish annealing at a temperature of 775 ° C. for 7.5 seconds.
Time Dry H 2 35% -Dry N 2 65% After annealing in an atmosphere, switch to dry N 2 at a temperature of 845 ° C and hold for 40 hours to maintain secondary recrystallization, then switch to dry H 2 at a temperature of 1200 ° C. Purification annealing was performed for 10 hours. Table 6 shows the magnetic properties of these products.

【0040】[0040]

【表6】 [Table 6]

【0041】この表から明らかなように本発明の適合例
の磁気特性が著しく改善していることがわかる。
As is apparent from this table, the magnetic properties of the conforming example of the present invention are remarkably improved.

【0042】[0042]

【発明の効果】以上説明したように、この発明によれ
ば、一方向性けい素鋼板の製造工程において、800 〜92
0 ℃の温度範囲で2次再結晶を完了させる2次再結晶処
理に先立ち、650 〜800 ℃間をドライ H225 %〜75%、
残部N2雰囲気中で5〜20h 保定するか或いは3〜20℃/h
の昇熱速度で処理することよって、良好な磁気特性を有
する一方向性けい素鋼板を得ることができるもので省エ
ネ、省資源のニーズの高まりから工業的価値は非常に大
きい。
As described above, according to the present invention, 800 to 92 in the manufacturing process of the grain-oriented silicon steel sheet.
Prior to the secondary recrystallization treatment that completes the secondary recrystallization in the temperature range of 0 ° C, dry H 2 25% to 75% at 650 to 800 ° C,
Rest for 5 to 20 hours in N 2 atmosphere or 3 to 20 ℃ / h
It is possible to obtain a unidirectional silicon steel sheet having good magnetic properties by processing at a heating rate of 1, and the industrial value is very large because of the growing need for energy saving and resource saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来方法で製造した従来工程と、2次再結晶前
処理温度500 ℃〜850 ℃の範囲でドライ H250 %−ドラ
イ N250 %の雰囲気中で3h 、5h 、10h 、20h 、30h
にそれぞれ保定した例とで磁気特性を比較して示すグラ
フである。
FIG. 1 shows a conventional process manufactured by a conventional method and a secondary recrystallization pretreatment temperature range of 500 ° C. to 850 ° C. in an atmosphere of dry H 2 50% -dry N 2 50% for 3 hours, 5 hours, 10 hours, and 20 hours. , 30h
7 is a graph showing the magnetic characteristics of the examples retained in FIG.

【図2】従来方法で製造した従来工程と、2次再結晶前
処理温度650 〜800 ℃間を1.5〜40℃/hの昇熱速度で、
その間の処理雰囲気をドライ H2 、ドライ H225 %:ド
ライ N275 %、ドライ H250 %:ドライ N250 %、ドラ
イ H275 %:ドライ N225 %及びドライ N2 でそれぞれ
処理した例とで磁気特性を比較して示すグラフである。
FIG. 2 shows a conventional process produced by a conventional method and a secondary recrystallization pretreatment temperature of 650 to 800 ° C. at a heating rate of 1.5 to 40 ° C./h.
Therebetween treatment atmosphere dry H 2, dry H 2 25%: Dry N 2 75%, dry H 2 50%: Dry N 2 50%, dry H 2 75%: each a dry N 2 25% and a dry N 2 It is a graph which shows and compares a magnetic property with the processed example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西池 氏裕 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 菅 孝宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mr. Hiroshi Nishiike, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd. Technical Research Division (72) Inventor Takahiro Suga 1 Kawasaki-cho, Chuo-ku, Chiba-shi Address: Kawasaki Steel Corporation Technical Research Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.020 〜0.080 wt%、Si:2.5 〜4.
0 wt%、Mn:0.03〜0.15wt%を含み、かつS及びSeの1
種又は2種を0.008 〜0.100 wt%含有するけい素鋼スラ
ブを熱間圧延し、次いで1回の冷間圧延又は中間焼鈍を
挟む2回の冷間圧延を施して最終板厚に仕上げた後、脱
炭焼鈍を施し、次いでMgO を主成分とする焼鈍分離剤を
塗布後に、800 ℃〜920 ℃の温度範囲で2次再結晶処理
を施した後、純化焼鈍を施す一方向性けい素鋼板の製造
方法において、 上記2次再結晶処理に先立ち、ドライH2:25〜75%、残
部N2の雰囲気で、650〜800 ℃の範囲の温度に5〜20時
間保持することを特徴とする磁気特性の優れた一方向性
けい素鋼板の製造方法。
1. C: 0.020 to 0.080 wt%, Si: 2.5 to 4.
0 wt%, Mn: 0.03 to 0.15 wt%, and 1 of S and Se
After hot rolling a silicon steel slab containing 0.008 to 0.100 wt% of one or two kinds, and then performing one cold rolling or two cold rolling with intermediate annealing between them to finish the final plate thickness. , Decarburization annealing, then applying an annealing separator containing MgO as a main component, and then performing secondary recrystallization treatment in the temperature range of 800 ° C to 920 ° C, followed by purification annealing. Prior to the secondary recrystallization treatment described above, the method is characterized by holding in a temperature range of 650 to 800 ° C. for 5 to 20 hours in an atmosphere of dry H 2 : 25 to 75% and the balance of N 2. A method for manufacturing a unidirectional silicon steel sheet having excellent magnetic properties.
【請求項2】 C:0.020 〜0.080 wt%、Si:2.5 〜4.
0 wt%、Mn:0.03〜0.15wt%を含み、かつS及びSeの1
種又は2種を0.008 〜0.100 wt%含有するけい素鋼スラ
ブを熱間圧延し、次いで1回の冷間圧延又は中間焼鈍を
挟む2回の冷間圧延を施して最終板厚に仕上げた後、脱
炭焼鈍を施し、次いでMgO を主成分とする焼鈍分離剤を
塗布後に、800 ℃〜920 ℃の温度範囲で2次再結晶処理
を施した後、純化焼鈍を施す一方向性けい素鋼板の製造
方法において、 上記2次再結晶処理に先立ち、ドライH2:25〜75%、残
部N2の雰囲気で、650℃〜800 ℃の温度範囲を3〜20℃/
hの昇熱速度で加熱することを特徴とする磁気特性の優
れた一方向性けい素鋼板の製造方法。
2. C: 0.020 to 0.080 wt%, Si: 2.5 to 4.
0 wt%, Mn: 0.03 to 0.15 wt%, and 1 of S and Se
After hot rolling a silicon steel slab containing 0.008 to 0.100 wt% of one or two kinds, and then performing one cold rolling or two cold rolling with intermediate annealing between them to finish the final plate thickness. , Decarburization annealing, then applying an annealing separator containing MgO as a main component, and then performing secondary recrystallization treatment in the temperature range of 800 ° C to 920 ° C, followed by purification annealing. Prior to the secondary recrystallization treatment described above, the temperature range of 650 ° C to 800 ° C is 3 to 20 ° C in an atmosphere of dry H 2 : 25 to 75% and the balance of N 2.
A method of manufacturing a unidirectional silicon steel sheet having excellent magnetic properties, which comprises heating at a heating rate of h.
JP16965492A 1992-06-26 1992-06-26 Production of grain-oriented silicon steel sheet excellent in magnetic property Pending JPH0610050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16965492A JPH0610050A (en) 1992-06-26 1992-06-26 Production of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16965492A JPH0610050A (en) 1992-06-26 1992-06-26 Production of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH0610050A true JPH0610050A (en) 1994-01-18

Family

ID=15890475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16965492A Pending JPH0610050A (en) 1992-06-26 1992-06-26 Production of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH0610050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053107A1 (en) * 1998-04-09 1999-10-21 Koenigbauer Georg Method for producing a forsterite insulating film on a surface of grain-oriented anisotropic electrotechnical steel sheets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053107A1 (en) * 1998-04-09 1999-10-21 Koenigbauer Georg Method for producing a forsterite insulating film on a surface of grain-oriented anisotropic electrotechnical steel sheets

Similar Documents

Publication Publication Date Title
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0610050A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2888324B2 (en) Manufacturing method of grain-oriented electromagnetic steel sheet with high magnetic flux density
JP2000038616A (en) Production of grain oriented silicon steel sheet with less side distortion
JP2735929B2 (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07252531A (en) Production of grain oriented silicon steel sheet
JP2831923B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties and insulating coating quality
JPH06264145A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH04235225A (en) Production of grain-oriented silicon steel sheet
JP3253111B2 (en) Manufacturing method of unidirectional silicon steel sheet
JPH06184707A (en) Grain-oriented silicon steel sheet and its production
JPH07188773A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH11152516A (en) Manufacture of grain oriented silicon steel sheet
JPH03153822A (en) Production of grain-oriented silicon steel sheet