JPH06100427B2 - NOx reduction method for plasma heating furnace - Google Patents

NOx reduction method for plasma heating furnace

Info

Publication number
JPH06100427B2
JPH06100427B2 JP1009684A JP968489A JPH06100427B2 JP H06100427 B2 JPH06100427 B2 JP H06100427B2 JP 1009684 A JP1009684 A JP 1009684A JP 968489 A JP968489 A JP 968489A JP H06100427 B2 JPH06100427 B2 JP H06100427B2
Authority
JP
Japan
Prior art keywords
furnace
plasma
heating furnace
reducing
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1009684A
Other languages
Japanese (ja)
Other versions
JPH02192591A (en
Inventor
林  昭彦
健利 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1009684A priority Critical patent/JPH06100427B2/en
Publication of JPH02192591A publication Critical patent/JPH02192591A/en
Publication of JPH06100427B2 publication Critical patent/JPH06100427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ加熱炉のNOx低減方法に関し、加熱、
溶融等の操作を必要とする分野において、その一方法で
ある空気を作動ガスとするプラズマを用いた際に、発生
するNOxを低減する方法に関するものである。
The present invention relates to a method for reducing NO x in a plasma heating furnace, and
The present invention relates to a method for reducing NO x generated when plasma using air as a working gas is used, which is one of the methods in a field requiring an operation such as melting.

〔従来の技術〕 従来、加熱、溶融操作の方法として安定したロングアー
クにより均一な加熱を行うプラズマジェットが実用化さ
れている。プラズマジェットには汎用性の観点から、プ
ラズマガスとして空気を用いることが多い。この場合、
高温かつ高活性のプラズマアーク内でNOxが多量に発生
し、排ガス処理が問題となる。
[Prior Art] Conventionally, a plasma jet that performs uniform heating by a stable long arc has been put into practical use as a method of heating and melting operation. From the viewpoint of versatility, air is often used as the plasma gas for the plasma jet. in this case,
A large amount of NO x is generated in a high-temperature and high-activity plasma arc, and exhaust gas treatment becomes a problem.

排ガス中のNOxの低減方法としては、触媒による接触還
元分解が一般的であるが、飛散ダストなどによる触媒の
劣化が問題である。これに対し、プラズマ加熱炉におい
て、触媒を用いることなく、コークス等の還元性物質を
炉内に供給して、炉内雰囲気を還元性とすることにより
NOxを低減する方法が開発されている(特願昭63−27319
3)。
As a method for reducing NO x in exhaust gas, catalytic reduction decomposition with a catalyst is generally used, but deterioration of the catalyst due to scattered dust is a problem. On the other hand, in a plasma heating furnace, a reducing substance such as coke is supplied into the furnace without using a catalyst to make the atmosphere in the furnace reducible.
A method for reducing NO x has been developed (Japanese Patent Application No. 63-27319).
3).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

この場合、炉内が均一に昇熱されていないとき、すなわ
ち運転開始後数時間は、還元性物質のガス化の反応領域
が狭いために十分な還元雰囲気を形成することができな
い場合があり、NOx低減を図ることが困難な場合があ
る。
In this case, when the inside of the furnace is not heated uniformly, that is, for several hours after the start of operation, it may not be possible to form a sufficient reducing atmosphere because the reaction region of gasification of the reducing substance is narrow. It may be difficult to reduce NO x .

本発明はプラズマ加熱炉に関するものであって、このよ
うな場合にもNOxの低減を図ることができる方法を提供
することを目的とする。
The present invention relates to a plasma heating furnace, and an object thereof is to provide a method capable of reducing NO x even in such a case.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、空気を作動ガスとするプラズマジェットを用
いる加熱において、炉内に還元性物質、例えばコークス
を供給すると共に、炉内が均一に昇熱されるまではこの
加熱炉の排ガスを炉内に還流して還元性物質と反応さ
せ、CO2+C2COの反応によりCOガスを生成させて不足す
るCOガスを補充しながらNOxを低減することを特徴とす
るプラズマ加熱炉のNOx低減方法である。
The present invention, in heating using a plasma jet using air as a working gas, supplies a reducing substance, for example, coke into the furnace, and discharges exhaust gas from the heating furnace into the furnace until the inside of the furnace is uniformly heated. A method for reducing NO x in a plasma heating furnace, which is characterized by refluxing and reacting with a reducing substance to generate CO gas by the reaction of CO 2 + C 2 CO, and reducing NO x while supplementing insufficient CO gas. .

還元性物質、例えばコークスのガス化反応が不十分な場
合には、プラズマ加熱炉内のCO濃度が低く、CO2の濃度
が高い。そこでCO2を含んだ高温の排ガスを炉内に還流
し、コークスと反応させ、 CO2+C→2CO の反応により不足しているCOを補い、これにより安定的
にNOxの低減をはかる。
When the gasification reaction of the reducing substance such as coke is insufficient, the CO concentration in the plasma heating furnace is low and the CO 2 concentration is high. Therefore, high-temperature exhaust gas containing CO 2 is recirculated into the furnace and reacted with coke to supplement the deficient CO by the reaction of CO 2 + C → 2CO, thereby stably reducing NO x .

〔作用〕[Action]

第1図、第2図に本発明方法の実施に用いる装置の例を
示した。加熱炉1には加熱用プラズマトーチ2が設けら
れており、加熱炉1の排ガスは集塵機5、冷却器6を経
てブロワ7に誘引されフレア8として排出される。
FIG. 1 and FIG. 2 show examples of the apparatus used for carrying out the method of the present invention. The heating furnace 1 is provided with a heating plasma torch 2, and the exhaust gas of the heating furnace 1 is attracted to the blower 7 via the dust collector 5 and the cooler 6 and is discharged as flares 8.

第1図、第2図に示すように、排ガスの一部はブロワ3
で炉側方からバルブ4を介して炉1内に還流する。還流
された排ガスは旋回流を形成しながら、炉1に供給され
た還元性物質10、例えばコークスと効率よく接触する。
As shown in FIGS. 1 and 2, part of the exhaust gas is blower 3
Then, the gas is recirculated into the furnace 1 from the side of the furnace through the valve 4. The recirculated exhaust gas efficiently contacts the reducing substance 10, for example, coke supplied to the furnace 1 while forming a swirling flow.

その際、 CO2+C→2CO ……(1) の反応により、COを生成し、炉内を還元性雰囲気に保
つ。
At that time, CO 2 is generated by the reaction of CO 2 + C → 2CO (1), and the furnace is kept in a reducing atmosphere.

実プラントにおいて、第1図に示すように常時排ガス中
のCO濃度をCO検出計9などによって検知し、CO濃度が低
下したときに排ガス還流バルブ4を開くように自動制御
を行う。
In an actual plant, the CO concentration in exhaust gas is constantly detected by a CO detector 9 as shown in FIG. 1, and automatic control is performed to open the exhaust gas recirculation valve 4 when the CO concentration decreases.

上記(1)式の反応はブーダー(Boudouard)反応とい
われ製銑分野で一般的である。高炉では羽口から吹き込
まれた熱風は、コークスと反応し、 C+O2→CO2 の燃焼を起こし、ついでこのCO2は上記(1)式の反応
により炉内に還元性雰囲気を形成する。
The reaction of the above formula (1) is called Boudouard reaction and is general in the field of pig iron making. In the blast furnace, the hot air blown from the tuyere reacts with coke to cause combustion of C + O 2 → CO 2 , and this CO 2 forms a reducing atmosphere in the furnace by the reaction of the above formula (1).

いま、上記(1)式の反応に関し、熱力学的平衡を考え
ると、 である。
Now, regarding the reaction of the above equation (1), considering thermodynamic equilibrium, Is.

ここで供給されるガス中のCO2の分圧を15%(排ガス分
析値より)として、この反応によるCO分圧を温度に対し
てプロットすると第3図のようになる。
The partial pressure of CO 2 in the gas supplied here is set to 15% (from the exhaust gas analysis value), and the CO partial pressure due to this reaction is plotted against temperature, as shown in FIG.

第3図よりCO分圧は600℃程度から増加し、800℃ではほ
ぼCO2が反応を完了することがわかる。従って、炉内温
度を1200〜1300℃まで上昇しなくても、排ガス温度程度
で十分なCO分圧を得ることができる。
It can be seen from Fig. 3 that the CO partial pressure increases from about 600 ° C, and that at 800 ° C, almost all the CO 2 completes the reaction. Therefore, a sufficient CO partial pressure can be obtained at about the exhaust gas temperature without raising the furnace temperature to 1200 to 1300 ° C.

〔実施例〕〔Example〕

第2図に示すようなプラズマ溶融実験炉において、約2
時間半のLPGバーナによる予熱後、炉内温度が450℃に達
してからプラズマを起動した。プラズマトーチ出力150K
W、プラズマガス20m3/h、コークス供給量2kg/20分(6kg
/h)、排ガス還流バルブ開度50%の条件で実験を行っ
た。第4図はこの実験のタイムチャートであり、横軸は
経過時間を示す。第4図に経過を示すようにプラズマ起
動から60分後のNOx濃度は100ppm以下であった。
In a plasma melting experimental furnace as shown in FIG.
After preheating with the LPG burner for half an hour, the plasma was started after the temperature in the furnace reached 450 ° C. Plasma torch output 150K
W, plasma gas 20 m 3 / h, coke supply 2 kg / 20 minutes (6 kg
/ h) and the exhaust gas recirculation valve opening was 50%. FIG. 4 is a time chart of this experiment, and the horizontal axis shows the elapsed time. As shown in the progress of FIG. 4, the NO x concentration 60 minutes after plasma startup was 100 ppm or less.

比較のため、排ガス還流バルブ4を閉じた状態で、同一
の実験を行ったところ、プラズマ起動後3時間でようや
くNOx100ppm以下に低下した。
For comparison, in the closed state of the exhaust gas recirculation valve 4, was subjected to the same experiment, it drops below finally NO x 100 ppm 3 hours after the plasma start.

〔発明の効果〕〔The invention's effect〕

プラズマ加熱炉において、炉内が均一に昇熱する以前に
おいても、その排ガスを炉内に還流することにより、供
給されている還元性物質、例えばコークスなどを効果的
にガス化して、プラズマ中より発生するNOxを還元し、
その低減をはかることができる。
In the plasma heating furnace, even before the temperature inside the furnace is raised uniformly, the exhaust gas is recirculated into the furnace to effectively gasify the reducing substances, such as coke, etc. Reduces NO x generated,
The reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の実施例の系統図、第3図はブ
ーダー反応の平衡を示すグラフ、第4図は実施例の経過
を示すタイムチャートである。 1……炉、2……プラズマトーチ 3……ブロワ、4……バルブ 5……集塵機、6……冷却器 7……ブロワ、8……フレア 9……CO検出計、10……還元性物質
1 and 2 are system diagrams of the examples of the present invention, FIG. 3 is a graph showing the equilibrium of the Bouder reaction, and FIG. 4 is a time chart showing the progress of the examples. 1 ... Furnace, 2 ... Plasma torch, 3 ... Blower, 4 ... Valve, 5 ... Dust collector, 6 ... Cooler, 7 ... Blower, 8 ... Flare, 9 ... CO detector, 10 ... Reducing property material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−231314(JP,A) 特開 昭62−190317(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-231314 (JP, A) JP-A-62-190317 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気を作動ガスとするプラズマジェットを
用いる加熱において、 炉内に還元性物質を供給すると共に、炉内が均一に昇熱
されるまでは該加熱炉の排ガスを炉内に還流して還元性
物質と反応させ、CO2+C→2COの反応によりCOガスを生
成させて不足するCOガスを補充しながらNOxを低減する
ことを特徴とするプラズマ加熱炉のNOx低減方法。
1. In heating using a plasma jet using air as a working gas, a reducing substance is supplied into the furnace, and exhaust gas from the heating furnace is recirculated into the furnace until the inside of the furnace is uniformly heated. is reacted with a reducing substance Te, CO 2 + C → 2CO NO x reduction method of a plasma furnace, characterized in that to reduce NO x while replenishing the CO gas quantity is insufficient to produce a CO gas by the reaction.
JP1009684A 1989-01-20 1989-01-20 NOx reduction method for plasma heating furnace Expired - Fee Related JPH06100427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009684A JPH06100427B2 (en) 1989-01-20 1989-01-20 NOx reduction method for plasma heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009684A JPH06100427B2 (en) 1989-01-20 1989-01-20 NOx reduction method for plasma heating furnace

Publications (2)

Publication Number Publication Date
JPH02192591A JPH02192591A (en) 1990-07-30
JPH06100427B2 true JPH06100427B2 (en) 1994-12-12

Family

ID=11727037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009684A Expired - Fee Related JPH06100427B2 (en) 1989-01-20 1989-01-20 NOx reduction method for plasma heating furnace

Country Status (1)

Country Link
JP (1) JPH06100427B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127812A (en) * 1993-11-02 1995-05-16 Tadashi Mochizai Method for igniting hydrogen carbide with production of active oxygen species
CN113280353A (en) * 2021-05-28 2021-08-20 上海交通大学 Sludge treatment and coal-fired NOx emission reduction integrated device and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231314A (en) * 1985-04-05 1986-10-15 Hitachi Zosen Corp Method of feeding pulverized coal and air into boiler furnace
JPS62190317A (en) * 1986-02-14 1987-08-20 Agency Of Ind Science & Technol Combustion furnace

Also Published As

Publication number Publication date
JPH02192591A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
CN101608294B (en) Method and device for thermal treatment of metallic materials
JPS6227509A (en) Method for operating blast furnace
CS225806B1 (en) The manufacturing process of the steel
TWI227738B (en) Process and plant for the gas reduction of particulate oxide-containing ores
UA46829C2 (en) INSTALLATION AND METHOD OF PRODUCING IRON AND / OR SPONGE IRON
US6251162B1 (en) Process for the production of liquid pig iron or liquid intermediate products of steel
JPS60116706A (en) Manufacture of carbon-containing molten iron from sponge iron
RU2220209C2 (en) Method of direct reduction of iron
JP3441464B2 (en) Method for producing sponge iron and plant for carrying out the method
US4256466A (en) Process for off-gas recovery
GB1241715A (en) Improvements in or relating to the production of sponge iron
JPH06100427B2 (en) NOx reduction method for plasma heating furnace
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
US4690387A (en) Metallurgical plant for producing a mixed gas
JPH0961059A (en) Device for drying iron manufacturing raw material
JP2902062B2 (en) Smelting reduction method
JP3359639B2 (en) Direct reduction of iron oxide-containing materials
JP2002257480A (en) Low-co2 exhausting type burning apparatus and method for using the same
JPS63171807A (en) Operation method for oxygen blast furnace
JPH0461913A (en) Method and apparatus for decomposing carbon dioxide
JPH06346126A (en) Metallurgic method and equipment
GB1269841A (en) Method of and apparatus for reducing iron oxide to metallic iron
JPH02132183A (en) Recycling system for by-product gas in dry coke extinguishing equipment
JPS63176407A (en) Production of molten iron
JPH09279263A (en) Reduction treatment of iron-making dust

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees