JPH06100398B2 - Water vapor absorbing medium - Google Patents

Water vapor absorbing medium

Info

Publication number
JPH06100398B2
JPH06100398B2 JP63078392A JP7839288A JPH06100398B2 JP H06100398 B2 JPH06100398 B2 JP H06100398B2 JP 63078392 A JP63078392 A JP 63078392A JP 7839288 A JP7839288 A JP 7839288A JP H06100398 B2 JPH06100398 B2 JP H06100398B2
Authority
JP
Japan
Prior art keywords
nitrate
aqueous solution
water vapor
concentration
absorbing medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63078392A
Other languages
Japanese (ja)
Other versions
JPH01252875A (en
Inventor
岑雄 小坂
正 朝比奈
耕治 田尻
格 白柳
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP63078392A priority Critical patent/JPH06100398B2/en
Publication of JPH01252875A publication Critical patent/JPH01252875A/en
Publication of JPH06100398B2 publication Critical patent/JPH06100398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な水蒸気吸収用媒体に関するものである。
さらに詳しくいえば、本発明は、吸収式化学ヒートポン
プや同冷凍機などの作動媒体として好適に用いられる、
金属材料に対する腐食性が小さく、かつ良好な水蒸気吸
収能を有する水蒸気吸収用媒体に関するものである。
TECHNICAL FIELD The present invention relates to a novel water vapor absorbing medium.
More specifically, the present invention is preferably used as a working medium for absorption chemical heat pumps and refrigerators,
The present invention relates to a water vapor absorbing medium having a low corrosiveness to metal materials and having a good water vapor absorbing ability.

従来の技術 従来、吸収式化学ヒートポンプや同冷凍機などにおいて
は、水蒸気吸収のための作動媒体として、例えば臭化リ
チウム、塩化リチウム、硫酸、水酸化ナトリウムなどの
水溶液が用いられており、特に臭化リチウム水溶液が多
用されている。
2. Description of the Related Art Conventionally, in absorption chemical heat pumps and refrigerators, an aqueous solution of lithium bromide, lithium chloride, sulfuric acid, sodium hydroxide, etc. has been used as a working medium for absorbing water vapor. Lithium fluoride aqueous solution is often used.

しかしながら、これらの水溶液は、一般に金属材料に対
する腐食性が大きく、高温になると金属材料に応力腐食
割れをもたらすなどの欠点を有する上、特に多用されて
いる臭化リチウム水溶液においては、高温になると固相
を発生しやすく、適用温度の制限を免れず、しかもリチ
ウムや臭素は比較的高価な元素であるため経済的に有利
とはいえない。
However, these aqueous solutions are generally highly corrosive to metallic materials, and have the drawback of causing stress corrosion cracking in metallic materials at high temperatures, and especially in the widely used aqueous lithium bromide solution, they become solid at high temperatures. It is not economically advantageous because phases are likely to be generated, application temperature is unavoidable, and lithium and bromine are relatively expensive elements.

さらに、従来の作動媒体は、通常単一成分の水溶液であ
るため、水蒸気圧−温度−濃度の関係が1種類に固定さ
れ、したがって機器設計上不便を免れなかった。
Furthermore, since the conventional working medium is usually an aqueous solution of a single component, the relationship of water vapor pressure-temperature-concentration is fixed to one type, and therefore, inconvenience is inevitable in the design of equipment.

このため、より高温、例えば150℃以上においても金属
材料に対する腐食性が小さく、かつ水蒸気吸収性能に優
れる上に、操作上安定に使用しうる比較的安価な作動媒
体の開発が強く要望されていた。発明が解決しようとす
る課題 本発明は、このような従来の水蒸気吸収用媒体がもつ欠
点を克服し、150℃以上の高温においても金属材料に対
する腐食性が小さく、かつ良好な水蒸気吸収性能を有
し、しかも操作上安定に使用することができて、吸収式
化学ヒートポンプや同冷凍機などの作動媒体として好適
に使用しうる比較的安価な水蒸気吸収用媒体を提供する
ことを目的としてなされたものである。
Therefore, there has been a strong demand for the development of a relatively inexpensive working medium which is less corrosive to metallic materials even at higher temperatures, for example, 150 ° C. or higher, and has excellent water vapor absorption performance, and which can be stably used in operation. . DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention overcomes the drawbacks of the conventional water vapor absorbing medium, has low corrosiveness to metal materials even at a high temperature of 150 ° C. or higher, and has a good water vapor absorbing performance. In addition, it was made for the purpose of providing a relatively inexpensive vapor absorbing medium that can be stably used in operation and can be suitably used as a working medium of an absorption type chemical heat pump or the same refrigerator. Is.

課題を解決するための手段 本発明者らは、優れた性能を有する水蒸気吸収用媒体を
開発するために鋭意研究を重ねた結果、アルカリ金属硝
酸塩、アルカリ土類金属硝酸塩及びこれらの混合水溶液
が良好な水蒸気吸収性能を示し、しかも高温における金
属腐食性が小さいこと、また該混合水溶液は成分組成を
適宜選ぶことにより、水蒸気圧−温度−濃度の関係を幅
広く調節しうることを見い出し、この知見に基づいて本
発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to develop a medium for absorbing water vapor having excellent performance, the present inventors have found that alkali metal nitrates, alkaline earth metal nitrates and mixed aqueous solutions thereof are good. It has been found that the water vapor absorption performance is high, the metal corrosiveness at high temperature is small, and that the water vapor pressure-temperature-concentration relationship can be widely adjusted by appropriately selecting the component composition of the mixed aqueous solution. Based on this, the present invention has been completed.

すなわち、本発明は、アルカリ金属硝酸塩及びアルカリ
土類金属硝酸塩の中から選ばれた少なくとも2種以上を
含有する水蒸気吸収用媒体を提供するものである。
That is, the present invention provides a water vapor absorbing medium containing at least two selected from alkali metal nitrates and alkaline earth metal nitrates.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明の水蒸気吸収用媒体としては、アルカリ金属硝酸
塩とアルカリ土類金属硝酸塩との混合水溶液が用いられ
る。該アルカリ金属硝酸塩としては、例えば硝酸リチウ
ム、硝酸ナトリウム、硝酸カリウムなどが好ましく挙げ
られ、これらはそれぞれ単独で用いてもよいし、2種以
上を組み合わせて用いてもよい。また、アルカリ土類金
属硝酸塩としては、例えば硝酸カルシウム、硝酸マグネ
シウム、硝酸ストロンチウムなどが好ましく挙げられ、
これらはそれぞれ単独で用いてもよいし、2種以上を組
み合わせて用いてもよい。さらに、本発明においては、
1種以上のアルカリ金属硝酸塩と1種以上のアルカリ土
類金属硝酸塩とを混合して用いることもできる。
As the water vapor absorbing medium of the present invention, a mixed aqueous solution of an alkali metal nitrate and an alkaline earth metal nitrate is used. Preferred examples of the alkali metal nitrate include lithium nitrate, sodium nitrate, potassium nitrate and the like, and these may be used alone or in combination of two or more kinds. Further, as the alkaline earth metal nitrate, for example, calcium nitrate, magnesium nitrate, strontium nitrate and the like are preferably mentioned,
These may be used alone or in combination of two or more. Furthermore, in the present invention,
It is also possible to use a mixture of one or more kinds of alkali metal nitrates and one or more kinds of alkaline earth metal nitrates.

前記アルカリ金属硝酸塩及びアルカリ土類金属硝酸塩の
単一成分水溶液について、その水蒸気吸収性能を、同一
モル濃度、同一温度における水溶液の沸点上昇(水蒸気
圧降下)度でもって比較すると、K<Na<Li<Ca<Mgの
順であり、硝酸マグネシウムなどは、従来多用されてい
る臭化リチウムより、むしろ大きな水蒸気吸収性能を有
している。
Comparing the water vapor absorption performances of the single-component aqueous solutions of the alkali metal nitrate and the alkaline earth metal nitrate with the degree of boiling point increase (vapor pressure drop) of the aqueous solutions at the same molar concentration and the same temperature, K <Na <Li The order is <Ca <Mg, and magnesium nitrate and the like have a larger water vapor absorption performance than lithium bromide which has been widely used conventionally.

前記のアルカリ金属硝酸塩やアルカリ土類金属硝酸塩の
単一成分水溶液でも優れた水蒸気吸収性能を有するが、
単一成分の場合、水蒸気圧−温度−濃度の関係が固定的
で、該作動媒体を用いた機器を設計する際の設計自由度
が小さい。これに対し、2種以上の硝酸塩を含む多成分
系水溶液においては、その成分組成を適宜選ぶことによ
り、水蒸気圧−温度−濃度の関係を幅広く調節しうるの
で、機器設計における自由度を大きくとることができる
上、無水塩となった場合に、その融点が低下するので、
高温、高濃度における作動媒体中の固相の発生が有効に
防止されるなどのメリットがある。
Although it has excellent water vapor absorption performance even in a single-component aqueous solution of the above-mentioned alkali metal nitrate or alkaline earth metal nitrate,
In the case of a single component, the water vapor pressure-temperature-concentration relationship is fixed, and the degree of freedom in designing a device using the working medium is small. On the other hand, in a multi-component aqueous solution containing two or more kinds of nitrates, the composition of water vapor pressure-temperature-concentration can be widely adjusted by appropriately selecting the composition of the components, so that the degree of freedom in equipment design is increased. In addition, since the melting point of an anhydrous salt decreases,
There is a merit that the generation of a solid phase in the working medium at high temperature and high concentration is effectively prevented.

このような多成分系水溶液の好適な例を以下に示す。A suitable example of such a multi-component aqueous solution is shown below.

[0.5Li・0.5Mg]・硝酸塩水溶液 [(0.5Li・0.1Ca)・0.2Na・0.2K]・硝酸塩水溶液 [0.6Li・0.2Na・(0.1K・0.1Mg)]・硝酸塩水溶液 (数字はモル分率である) なお、前記[0.5Li・0.5Mg]硝酸塩水溶液の沸点上昇度
は臭化リチウム水溶液のそれとほぼ同等である。
[0.5Li ・ 0.5Mg] ・ Nitrate aqueous solution [(0.5Li ・ 0.1Ca) ・ 0.2Na ・ 0.2K] ・ Nitrate aqueous solution [0.6Li ・ 0.2Na ・ (0.1K ・ 0.1Mg)] ・ Nitrate aqueous solution The boiling point elevation of the [0.5Li · 0.5Mg] nitrate aqueous solution is almost the same as that of the lithium bromide aqueous solution.

このような単一成分水溶液又は多成分系水溶液は、作動
媒体として吸収式化学ヒートポンプや同冷凍機内部の水
蒸気発生領域に存在させて、所要の水蒸気を効率よく吸
収させたのち、再生器に送られ加熱、濃縮される。この
ように、該媒体の使用に当たっては、水蒸気の吸収と放
出(希釈と濃縮)が繰り返されるため、その濃度は常に
変動している。
Such a single-component aqueous solution or a multi-component aqueous solution is allowed to exist as a working medium in a steam generation region inside an absorption chemical heat pump or the same refrigerator to efficiently absorb required steam, and then sent to a regenerator. It is heated and concentrated. As described above, when the medium is used, absorption and release of water vapor (dilution and concentration) are repeated, so that the concentration thereof is constantly changing.

また、該単一成分水溶液や多成分系水溶液は、従来の作
動媒体に比べて金属材料に対する腐食性が小さく、特に
高温における腐食性が小さいことから化学ヒートポンプ
などの水蒸気吸収用媒体として150℃以上の温度にも適
用できる。
Further, the single-component aqueous solution or the multi-component aqueous solution has a lower corrosiveness to a metal material than a conventional working medium, and particularly has a low corrosiveness at a high temperature. It can be applied to any temperature.

発明の効果 本発明の水蒸気吸収用媒体は、アルカリ金属硝酸塩及び
アルカリ土類金属硝酸塩の中から選ばれた1種を含む単
一成分水溶液又は2種以上を含む多成分系水溶液であっ
て、良好な水蒸気吸収能を有する上に、従来のものに比
べて、金属材料に対する腐食性が極めて小さく、吸収式
の化学ヒートポンプや同冷凍機などにおける水蒸気吸収
用作動媒体として好適に用いられる。また、該水蒸気吸
収用媒体は高温においても金属材料に対する腐食性が小
さいことから、従来不可能とされていた150℃以上の加
熱を要する各種用途にも安定に利用可能であり、熱エネ
ルギーの経済的利用の面からも価値の高いものである。
EFFECTS OF THE INVENTION The water vapor absorbing medium of the present invention is a single-component aqueous solution containing one kind selected from alkali metal nitrates and alkaline earth metal nitrates, or a multi-component aqueous solution containing two or more kinds. In addition to having a high water vapor absorption ability, it is extremely less corrosive to metal materials than conventional ones, and is suitably used as a water vapor absorbing working medium in an absorption type chemical heat pump, the same refrigerator, and the like. In addition, since the water vapor absorbing medium has low corrosiveness against metallic materials even at high temperatures, it can be stably used for various applications requiring heating of 150 ° C. or higher, which has hitherto been impossible. It is also highly valuable in terms of effective use.

さらに、本発明の水蒸気吸収用媒体として、数種の硝酸
塩を含む多成分系水溶液を用いる場合、水蒸気圧−温度
−濃度の関係を従来のものより幅広く調節しうる上、極
端に濃縮された場合、無水塩の融点が低いことから、高
濃度でも固相が発生しにくいなどの利点がある。さら
に、高価な臭素は用いる必要がなく、また高価なリチウ
ムの使用量も相対的に減少しうるので、経済的にも有利
である。
Furthermore, when a multi-component aqueous solution containing several kinds of nitrates is used as the water vapor absorbing medium of the present invention, the water vapor pressure-temperature-concentration relationship can be adjusted more broadly than conventional ones, and when it is extremely concentrated. Since the melting point of the anhydrous salt is low, there is an advantage that a solid phase is unlikely to occur even at a high concentration. Further, since it is not necessary to use expensive bromine and the amount of expensive lithium used can be relatively reduced, it is economically advantageous.

実施例 次に実施例により本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to examples.

実施例 硝酸塩水溶液の水蒸気吸収性能を調べるために、次の組
成を有する各種の硝酸塩水溶液を調製し、その濃度と沸
点との関係を求め第1図〜第4図にグラフに示した。
Example In order to investigate the water vapor absorption performance of an aqueous nitrate solution, various aqueous nitrate solutions having the following compositions were prepared, and the relationship between the concentration and the boiling point was determined and shown in graphs in FIGS. 1 to 4.

(1)K硝酸塩水溶液 (2)Na硝酸塩水溶液 (3)Li硝酸塩水溶液 (4)Mg硝酸塩水溶液 (5)[0.6Li・0.2Na・0.2K]硝酸塩水溶液 (6)[(0.5Li・0.1Ca)・0.2Na・0.2K]硝酸塩水溶
液 (7)[(0.5Li・0.1Mg)・0.2Na・0.2K]硝酸塩水溶
液 (8)[0.6Li・0.2Na・(0.1K・0.1Ca)]硝酸塩水溶
液 (9)[0.6Li・0.2Na・(0.1K・0.1Mg)]硝酸塩水溶
液 (10)[0.5Li・0.5Mg]硝酸塩水溶液 (11)[0.4Li・0.3Ca・0.3Mg]硝酸塩水溶液 (12)[0.4Li・0.3Na・0.3K]硝酸塩水溶液 (13)[0.4Na・0.3Ca・0.3Mg]硝酸塩水溶液 (数字はモル分率である) 第1図は単一成分の硝酸塩を含む水溶液の場合であり、
図において横軸は溶液中のH2Oのモル分率、縦軸は各濃
度における沸点(cK)を示す。
(1) K nitrate aqueous solution (2) Na nitrate aqueous solution (3) Li nitrate aqueous solution (4) Mg nitrate aqueous solution (5) [0.6Li ・ 0.2Na ・ 0.2K] nitrate aqueous solution (6) [(0.5Li ・ 0.1Ca)・ 0.2Na ・ 0.2K] nitrate aqueous solution (7) [(0.5Li ・ 0.1Mg) ・ 0.2Na ・ 0.2K] nitrate aqueous solution (8) [0.6Li ・ 0.2Na ・ (0.1K ・ 0.1Ca)] nitrate aqueous solution ( 9) [0.6Li ・ 0.2Na ・ (0.1K ・ 0.1Mg)] Nitrate Aqueous Solution (10) [0.5Li ・ 0.5Mg] Nitrate Aqueous Solution (11) [0.4Li ・ 0.3Ca ・ 0.3Mg] Nitrate Aqueous Solution (12) [ 0.4Li ・ 0.3Na ・ 0.3K] Nitrate Aqueous Solution (13) [0.4Na ・ 0.3Ca ・ 0.3Mg] Nitrate Aqueous Solution (The numbers are mole fractions) Fig. 1 shows the case of an aqueous solution containing a single component of nitrate. Yes,
In the figure, the horizontal axis represents the molar fraction of H 2 O in the solution, and the vertical axis represents the boiling point ( c K) at each concentration.

この図から、硝酸塩を含む水溶液の沸点は、純粋な水の
沸点(x=1、100℃)よりもはるかに上昇しており、
相当分だけその水蒸気圧が低下していることが分かる。
また、同一濃度で比較すると沸点上昇(水蒸気圧降下)
効果はK<Na<Li<Mgの順で大きいことが分かる。さら
に、マグネシウム硝酸塩水溶液の沸点上昇は、従来多用
されている臭化リチウムのそれよりも大きいことが確認
された。
From this figure, the boiling point of the aqueous solution containing nitrate is much higher than the boiling point of pure water (x = 1, 100 ° C),
It can be seen that the water vapor pressure is reduced by a considerable amount.
In addition, boiling point rise (steam pressure drop) when compared at the same concentration
It can be seen that the effect is large in the order of K <Na <Li <Mg. Further, it was confirmed that the boiling point rise of the magnesium nitrate aqueous solution was larger than that of lithium bromide which has been frequently used conventionally.

第2図は、リチウム、ナトリウム及びカリウム硝酸塩の
3種を含む多成分系水溶液、及びこの水溶液中のリチウ
ム硝酸塩の一部をカルシウムとマグネシウム硝酸塩に置
換した水溶液の場合を示し、第3図は該多成分系水溶液
におけるカリウム硝酸塩の一部をカルシウムとマグネシ
ウム硝酸塩で置換した水溶液の場合を示す。これらの図
における横軸及び縦軸は第1図と同様の意味をもつ。
FIG. 2 shows a multi-component aqueous solution containing three kinds of lithium, sodium and potassium nitrate, and an aqueous solution in which a part of lithium nitrate in this aqueous solution is replaced with calcium and magnesium nitrate, and FIG. The case of an aqueous solution in which a part of potassium nitrate in the multi-component aqueous solution is replaced with calcium and magnesium nitrate is shown. The horizontal and vertical axes in these figures have the same meanings as in FIG.

第2図及び第3図から、リチウムやカリウム硝酸塩をカ
ルシウムやマグネシウム硝酸塩で置換することによっ
て、より大きな沸点上昇(水蒸気圧降下)効果をもたら
されることが分かる。
From FIG. 2 and FIG. 3, it can be seen that by substituting lithium or potassium nitrate with calcium or magnesium nitrate, a larger effect of increasing the boiling point (falling water vapor pressure) is brought about.

第4図は各種の多成分系水溶液における濃度と沸点との
関係を示す。この図における横軸及び縦軸は第1図と同
じ意味をもつ。この図から硝酸リチウムと硝酸マグネシ
ウムの当モル混合物を含む水溶液は、沸点上昇(水蒸気
圧降下)効果が大きいことが分かる。
FIG. 4 shows the relationship between the concentration and the boiling point in various multi-component aqueous solutions. The horizontal and vertical axes in this figure have the same meaning as in FIG. From this figure, it can be seen that the aqueous solution containing the equimolar mixture of lithium nitrate and magnesium nitrate has a large effect of increasing the boiling point (decreasing the water vapor pressure).

次に、硝酸塩水溶液の水蒸気圧降下を端的に示すため
に、前記実験結果からH2Oのモル分率と圧力比(p/P)と
の関係を第5図にグラフに示す。ここでpは各種溶液の
沸点における水蒸気圧、Pは同温度における純粋な水の
水蒸気圧である。第5図において(14)はラウール法則
による直線を示すが、各溶液(p/P)はそれよりも大き
く負に隔たっており、硝酸塩水溶液の水蒸気吸収能がか
なり大きいことが分かる。
Next, in order to directly show the decrease in water vapor pressure of the aqueous nitrate solution, the relationship between the molar fraction of H 2 O and the pressure ratio (p / P) is shown in the graph of FIG. 5 from the above experimental results. Here, p is the water vapor pressure at the boiling points of various solutions, and P is the water vapor pressure of pure water at the same temperature. In Fig. 5, (14) shows a straight line according to Raoul's law, but each solution (p / P) is separated by a larger amount than that, indicating that the water vapor absorption capacity of the nitrate aqueous solution is considerably large.

また、多成分系水溶液は、その無水物の融点が単一成分
の場合に比べて降下しているため、高温、高濃度になっ
ても固相が析出しにくい副次的効果が認められた。
In addition, since the melting point of the anhydride of the multi-component aqueous solution is lower than that of the single component, a secondary effect was observed that the solid phase was difficult to precipitate even at high temperature and high concentration. .

さらに、硝酸塩水溶液の金属材料に対する腐食性につい
て検討するため、150〜170℃の沸点を有する各種水溶液
中に、炭素鋼の小片を沸点下に長時間浸せきし、その重
量減から年間の腐食量を求めたところ、0.04mm/年であ
った。この値は、空気の存在しない実用条件下では、さ
らに低くなるものと思われる。比較のために、塩化リチ
ウム水溶液について同様の測定を行ったところ、年間腐
食量は1.2mm/年であった。
Furthermore, in order to investigate the corrosiveness of nitrate aqueous solutions to metallic materials, small pieces of carbon steel were immersed in various aqueous solutions having boiling points of 150 to 170 ° C for a long time at the boiling point. When asked, it was 0.04 mm / year. This value is expected to be even lower under practical conditions in the absence of air. For comparison, the same measurement was performed on the lithium chloride aqueous solution, and the annual corrosion amount was 1.2 mm / year.

このことから、硝酸塩水溶液の金属材料に対する腐食性
は極めて小さく、150℃以上の高温でも長時間安定的に
使用しうることが分かった。
From this, it was found that the corrosiveness of the aqueous nitrate solution to the metal material was extremely small, and the nitrate solution could be stably used for a long time even at a high temperature of 150 ° C or higher.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図及び第4図は、各種硝酸塩水溶
液における濃度(水のモル分率)と沸点との関係を示す
グラフ、第5図は各種硝酸塩水溶液における濃度(水の
モル分率)とp/Pとの関係を示すグラフである。
1, 2, 3, and 4 are graphs showing the relationship between the concentration (mol fraction of water) and boiling point in various nitrate aqueous solutions, and FIG. 5 is the concentration in various nitrate aqueous solutions (water It is a graph which shows the relationship between a mole fraction) and p / P.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−35933(JP,A) 特開 昭55−89662(JP,A) 特表 昭59−501750(JP,A) 特表 昭58−501180(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-55-35933 (JP, A) JP-A-55-89662 (JP, A) Special table Sho-59-501750 (JP, A) Special table Sho-58- 501180 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水とアルカリ金属硝酸塩よりなる溶液であ
つて、アルカリ金属硝酸塩として硝酸リチウムを0ない
し0.6モル分率、硝酸ナトリウムを0ないし0.2モル分
率、硝酸カリウムを0ないし0.2モル分率の範囲で含有
するとともに、アルカリ金属硝酸塩の一部を0.1ないし
0.5モル分率の範囲でアルカリ土類金属硝酸塩で置換し
たことを特徴とする水蒸気吸収用媒体。
1. A solution comprising water and an alkali metal nitrate, wherein the alkali metal nitrate has lithium nitrate of 0 to 0.6 mole fraction, sodium nitrate of 0 to 0.2 mole fraction, and potassium nitrate of 0 to 0.2 mole fraction. In addition to containing in the range, part of the alkali metal nitrate is 0.1 to
A water vapor absorbing medium characterized by being replaced with an alkaline earth metal nitrate within a range of 0.5 mole fraction.
JP63078392A 1988-03-31 1988-03-31 Water vapor absorbing medium Expired - Lifetime JPH06100398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078392A JPH06100398B2 (en) 1988-03-31 1988-03-31 Water vapor absorbing medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078392A JPH06100398B2 (en) 1988-03-31 1988-03-31 Water vapor absorbing medium

Publications (2)

Publication Number Publication Date
JPH01252875A JPH01252875A (en) 1989-10-09
JPH06100398B2 true JPH06100398B2 (en) 1994-12-12

Family

ID=13660743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078392A Expired - Lifetime JPH06100398B2 (en) 1988-03-31 1988-03-31 Water vapor absorbing medium

Country Status (1)

Country Link
JP (1) JPH06100398B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674415B2 (en) * 1989-05-01 1994-09-21 シーシーアイ株式会社 Coolant composition
CN102433104B (en) * 2011-09-26 2014-06-11 上海交通大学 Heat-transfer fluid, preparation method for same and use thereof
JP6895108B2 (en) * 2016-11-09 2021-06-30 富士電機株式会社 Moisture adsorbent
JP7064179B2 (en) * 2020-11-30 2022-05-10 富士電機株式会社 Moisture adsorbent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535933A (en) * 1978-09-05 1980-03-13 Kuraray Co Ltd Fixed absorbent for use in absorption type refrigerator
DE2855434A1 (en) * 1978-12-21 1980-06-26 Alefeld Georg SUBSTANCES FOR ABSORPTION HEAT PUMPS AND REFRIGERATORS

Also Published As

Publication number Publication date
JPH01252875A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US7588694B1 (en) Low-melting point inorganic nitrate salt heat transfer fluid
US7828990B1 (en) Low-melting point heat transfer fluid
JPH02149686A (en) Inhibitor for corrosion of steel
US4563295A (en) High temperature absorbent for water vapor
EP0120085A1 (en) Aqueous absorbent for absorption cycle heat pump.
JPH06100398B2 (en) Water vapor absorbing medium
US3458445A (en) Absorption refrigeration system containing solutions of monoethylamine with thiocyanates
EP0139829B1 (en) Reversible phase change composition for storing energy
JPS5840468A (en) Absorption type refrigerator
JPH0914784A (en) Absorbing liquid for absorption refrigerator
Crea et al. SIT parameters for 1: 2 electrolytes and correlation with Pitzer coefficients
EP0105831A1 (en) Refrigerant composition
US4801393A (en) High-temperature non-oxidizing water vapor absorbent
US3472745A (en) Fusible alkali-metal salt electrolyte
RU2813183C1 (en) Low-melting heat storage salt mixture
RU2116326C1 (en) Heat carrier as antifreeze
RU2799874C1 (en) Low-melting heat storage salt mixture
Lane The Science of Phase Change Materials
JPH01312368A (en) Absorptive type refrigerator, ammonia removing method, ammonia removing device and ammonia gas removing agent
KR100191799B1 (en) Heating medium composition for heat-pipe
JPH0660303B2 (en) Absorption liquid for absorption refrigerator
SU865883A1 (en) Working mixture for absorbtion cooling machine
SU1339116A1 (en) Brine for refrigerating units of fluoride productions
KR0149284B1 (en) Absorption refrigerator composition
KR20040050011A (en) Mg-Al alloy for heating element, heating element using Mg-Al alloy, method for preparing heating element, and heating process using heating element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term