JPH06100309A - Production of carbon of molecular sieve - Google Patents

Production of carbon of molecular sieve

Info

Publication number
JPH06100309A
JPH06100309A JP4253097A JP25309792A JPH06100309A JP H06100309 A JPH06100309 A JP H06100309A JP 4253097 A JP4253097 A JP 4253097A JP 25309792 A JP25309792 A JP 25309792A JP H06100309 A JPH06100309 A JP H06100309A
Authority
JP
Japan
Prior art keywords
carbon
inert gas
molecular sieving
base material
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4253097A
Other languages
Japanese (ja)
Other versions
JP3310348B2 (en
Inventor
Seiji Hanatani
谷 誠 二 花
Masayuki Sumi
誠 之 角
Fumihiro Miyoshi
好 史 洋 三
Yukihiro Osugi
杉 幸 広 大
Yoshio Nakano
野 義 夫 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25309792A priority Critical patent/JP3310348B2/en
Publication of JPH06100309A publication Critical patent/JPH06100309A/en
Application granted granted Critical
Publication of JP3310348B2 publication Critical patent/JP3310348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties

Abstract

PURPOSE:To obtain high-performance molecular sieve carbon having excellent equilibrium separation type molecular sieve to methane, etc., by heating optically isotropic pitch in an inert gas containing an aromatic hydrocarbon, etc., and depositing thermally decomposed carbon on microholes of a porous carbon base material in a given condition. CONSTITUTION:Optically isotropic pitch having >=150 deg.C softening temperature and <=5,000ppm ash content is infusibilized, activated in an inert gas atmosphere containing a carbon dioxide gas and/or steam to give porous carbon (carbonaceous base material) having 300-1,000 specific surface area. Then in a treating furnace heated to 650-850 deg.C, an inert gas containing an aromatic hydrocarbon and/or an alicyclic hydrocarbon is supplied to the carbon base material having 5.5-12A average micropore diameter and thermally decomposed carbon is deposited on the micropores. After the completion of the deposition treatment, the carbon base material is successively maintained in an inert gas atmosphere at the deposition temperature to 1,100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PSA手法による空気
分離、オフガス等からの水素精製、発酵ガス中からのメ
タンの分離等、ガス分離技術に用いられる分子ふるい炭
素の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing molecular sieving carbon used in gas separation technology such as air separation by PSA method, hydrogen purification from off-gas, separation of methane from fermentation gas and the like. .

【0002】[0002]

【従来の技術】近年、各種混合ガス中から特定の成分を
分離、精製する技術開発が盛んである。中でもPSAと
称される手法は、装置がコンパクトでランニングコスト
が低いため、多くの用途への展開が期待されている。特
に、疎水性の分子ふるい炭素を用いて、空気から窒素を
分離、回収する空気分離は、窒素需要の増大に伴って、
急激な市場拡大が見込まれる。分子ふるい炭素の特徴
は、通常の活性炭が10〜30Åのミクロ孔を持つのに
対し、3〜5Åという小さく、かつ狭い分布のミクロ孔
を持っていることにある。分子ふるい炭素の製造方法に
関しては、種々の方法が提案されているが、その中に熱
分解炭素蒸着法がある。
2. Description of the Related Art In recent years, technological development for separating and refining specific components from various mixed gases has been active. Among them, the method called PSA is expected to be applied to many applications because the device is compact and the running cost is low. In particular, air separation that separates and recovers nitrogen from air using hydrophobic molecular sieving carbon is accompanied by an increase in the demand for nitrogen.
Rapid market expansion is expected. The characteristic of molecular sieving carbon is that ordinary activated carbon has micropores of 10 to 30Å, whereas micropores have a small and narrow distribution of 3 to 5Å. Various methods have been proposed as a method for producing molecular sieving carbon, and a pyrolytic carbon vapor deposition method is one of them.

【0003】この熱分解炭素蒸着法は、炭素質基材と炭
化水素ガスを高温で接触させ、炭化水素から放出される
熱分解炭素を炭素質基材のミクロ孔の入り口付近に蒸着
させることで、炭素質基材のミクロ孔を調節する方法で
あり、従来よりこの方法に関する各種の提案がある。
In this pyrolytic carbon deposition method, a carbonaceous base material and a hydrocarbon gas are brought into contact with each other at a high temperature, and the pyrolytic carbon released from the hydrocarbon is deposited near the entrance of the micropores of the carbonaceous base material. , A method for controlling micropores in a carbonaceous substrate, and there have been various proposals for this method.

【0004】特公昭52−18675号明細書に於いて
は、揮発性成分の少ないコークスを炭素質基材として用
い、熱分解により炭素を放出する炭化水素(例えばベン
ゼン、トルエン、エタン、ヘキサン、メタノールなど)
を添加して600〜900℃の温度で1〜60分間また
はそれ以上の時間処理することによって、放出された炭
素を該コースの細孔中に沈着させることにより、約4Å
以下の小さい分子寸法をもつガスの分離に使用される炭
素含有分子ふるいの製法が提案されている。
In Japanese Patent Publication No. 52-18675, a coke having a low volatile component is used as a carbonaceous base material, and a hydrocarbon (for example, benzene, toluene, ethane, hexane, methanol) which releases carbon by thermal decomposition. Such)
Is added and treated at a temperature of 600 to 900 ° C. for 1 to 60 minutes or longer to deposit the released carbon in the pores of the course, thereby obtaining about 4Å
The following methods of making carbon-containing molecular sieves have been proposed for use in the separation of gases with small molecular dimensions.

【0005】この提案は、小さい分子を分離するための
炭素分子ふるいの製法を始めて提案した点で画期的であ
り評価されるが、再現性良く優れた高品質の炭素分子ふ
るいを得るためにさらなる改善が必要である。
This proposal is epoch-making and highly evaluated in that it first proposed a method for producing a carbon molecular sieve for separating small molecules, but in order to obtain a high-quality carbon molecular sieve excellent in reproducibility. Further improvement is needed.

【0006】また、特表平1−502743号明細書に
於いては、揮発性成分の少ない乾留物を800〜900
℃の温度で、5〜30分間、向流で20〜95容量%の
水蒸気濃度を有する不活性ガスが供給される振動炉中に
導入して、弱く活性化を施した後、向流で5〜12容量
%のベンゼン濃度を有する不活性ガスが供給される振動
炉に導入することにより、酸素および窒素の分離能に優
れ、均一な品質を有する分子ふるいの製造方法を開示し
ている。
Further, in the specification of Japanese Patent Publication No. 1-502743, a dry distillate containing a small amount of volatile components is 800 to 900.
The mixture was introduced into a vibrating furnace, which was supplied with an inert gas having a water vapor concentration of 20 to 95% by volume in countercurrent at a temperature of ℃ for 5 to 30 minutes, and was weakly activated, and then 5 in countercurrent. Disclosed is a method for producing a molecular sieve having an excellent ability to separate oxygen and nitrogen and having a uniform quality by introducing the same into a vibrating furnace to which an inert gas having a benzene concentration of ˜12% by volume is supplied.

【0007】この提案はより均一な品質の製品が得られ
る点に於いて優れるが、向流で接触する方式であるた
め、若干プロセスが複雑になり、また、使用する乾留物
によっては高品質のものが得られない場合がある。
This proposal is excellent in that a product having a more uniform quality can be obtained, but the method of contacting in a countercurrent makes the process a little complicated, and depending on the dry distillate used, a high quality product is obtained. You may not get things.

【0008】別の提案として、特開昭60−17121
2号明細書に於いて、(i)高温(800〜900℃)
で炭素基材を脱ガスする工程、(ii)脱ガス後の炭素基
材を300〜500℃の温度まで冷却し、気相の炭化水
素と接触させて、この炭化水素を内部に吸着させる工
程、(iii) 吸着後の炭素基材を減圧下に脱ガスして物理
的に保持された炭化水素を除去する工程および(iv)炭
素基材の細孔に固着した炭化水素を高温(800〜90
0℃)で分解して細孔に炭素を沈着させる工程、以上
(i)〜(iv)の工程の組合わせからなる分子ふるい炭
素の製法が提案されており、炭素基材に吸着される炭化
水素としてプロピレンを用いた場合について開示を行
い、プロピレンの最低寸法から、0.5〜0.55nm
(5〜5.5Å)の細孔を有する炭素基材の処理に最も
適しているとしている。
As another proposal, Japanese Patent Laid-Open No. 60-17121
In the specification No. 2, (i) high temperature (800 to 900 ° C)
Degassing the carbon substrate with (ii) cooling the degassed carbon substrate to a temperature of 300 to 500 ° C., bringing it into contact with a gas phase hydrocarbon, and adsorbing this hydrocarbon inside , (Iii) a step of degassing the adsorbed carbon base material under reduced pressure to remove physically retained hydrocarbons, and (iv) heating the hydrocarbons adhering to the pores of the carbon base material at a high temperature (800 to 90
A method for producing molecular sieving carbon has been proposed which comprises a combination of the steps of (i) to (iv), which is a step of decomposing at 0 ° C. to deposit carbon in pores, and carbonization to be adsorbed on a carbon substrate. A case of using propylene as hydrogen is disclosed, and the minimum dimension of propylene is 0.5 to 0.55 nm.
It is said that it is most suitable for treating a carbon base material having pores of (5-5.5Å).

【0009】この提案によれば炭素基材の開口部のみに
熱分解炭素が沈着し、細孔構造が制御された分子ふるい
炭素を製造することができるが、全体として製造工程は
複雑かつ煩雑となる。
According to this proposal, pyrolytic carbon is deposited only in the openings of the carbon substrate, and molecular sieving carbon having a controlled pore structure can be produced, but the production process is complicated and complicated as a whole. Become.

【0010】[0010]

【発明が解決しようとする課題】本発明は、このような
熱分解炭素蒸着法による分子ふるい炭素の改善された製
造方法の提供を目的とする。より具体的には、高性能の
分子ふるい炭素を簡便に、安価に、再現性良く製造する
方法の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved method for producing molecular sieving carbon by such a pyrolytic carbon deposition method. More specifically, it is an object of the present invention to provide a method for producing a high-performance molecular sieving carbon easily, inexpensively and with good reproducibility.

【0011】[0011]

【課題を解決するための手段】本発明者らは、ピッチを
出発原料として炭素質基材のミクロ孔径と熱分解炭素の
発生源である炭化水素の種類との関係につき鋭意研究を
行った処、平均ミクロ孔径が5.5〜12Åの炭素質基
材を用い、炭化水素として芳香族炭化水素、または脂環
式炭化水素を用いると極めて簡便なプロセスで高性能の
分子ふるい炭素を再現性良く製造することができること
を見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the relationship between the micropore size of a carbonaceous substrate and the kind of a hydrocarbon that is a source of pyrolytic carbon, using pitch as a starting material. , A carbonaceous base material with an average micropore diameter of 5.5 to 12Å and aromatic hydrocarbons or alicyclic hydrocarbons as hydrocarbons are used, a high-performance molecular sieving carbon can be reproducibly produced by a very simple process. They have found that they can be manufactured, and have completed the present invention.

【0012】すなわち、本発明の包括的概念によれば、
5.5〜12Åの平均ミクロ孔径を有する炭素質基材
を、650〜850℃に加熱した処理炉中で、芳香族炭
化水素および/または脂環式炭化水素を含む不活性ガス
を供給して熱分解炭素をミクロ孔に蒸着することを特徴
とする分子ふるい炭素の製造方法が提供される。
That is, according to the general concept of the present invention,
A carbonaceous substrate having an average micropore diameter of 5.5 to 12Å is heated to 650 to 850 ° C., and an inert gas containing aromatic hydrocarbons and / or alicyclic hydrocarbons is supplied in the treatment furnace. Provided is a method for producing molecular sieving carbon, which comprises depositing pyrolytic carbon in micropores.

【0013】また、不活性ガス雰囲気下で650〜85
0℃に加熱され、5.5〜12Åの平均ミクロ孔径を有
する炭素質基材を、650〜850℃に加熱された処理
炉中で、該反応炉に芳香族炭化水素および/または脂環
式炭化水素を含む不活性ガスを供給して蒸着処理するこ
とを特徴とする分子ふるい炭素の製造方法が提供され
る。
Also, in an inert gas atmosphere, 650-85
A carbonaceous substrate heated to 0 ° C. and having an average micropore diameter of 5.5 to 12 Å is heated in a treatment furnace heated to 650 to 850 ° C. in an aromatic hydrocarbon and / or alicyclic system. Provided is a method for producing molecular sieving carbon, which comprises supplying an inert gas containing a hydrocarbon to perform a vapor deposition process.

【0014】ここで、前記炭素質基材が、軟化点150
℃以上、灰分5000ppm以下の光学的等方性ピッチ
を原料として製造され、軟化点150℃以上、灰分50
00ppm以下の光学的等方性ピッチを、粉砕ないしは
繊維とし、これを不融化し、次いで成型し、さらに炭酸
ガスおよび/または水蒸気を含む不活性ガス雰囲気下で
賦活処理を施して比表面積300〜1000m2 /gの
多孔性炭素とし、これを前記炭素質基材として使用する
のが好ましい。
Here, the carbonaceous substrate has a softening point of 150.
Manufactured using optical isotropic pitch having a ash content of 5000 ° C or more and an ash content of 5000 ppm or less as a raw material, a softening point of 150 ° C or more and an ash content of 50
Optically isotropic pitch of 00 ppm or less is crushed or made into fibers, made infusible, then molded, and further activated in an inert gas atmosphere containing carbon dioxide and / or steam to give a specific surface area of 300 to It is preferable to use 1000 m 2 / g of porous carbon and use this as the carbonaceous substrate.

【0015】さらに、前記蒸着処理終了後、引き続き不
活性ガス雰囲気下に蒸着処理温度以上1100℃以下の
温度で保持するのが好ましい。
Further, after the completion of the vapor deposition process, it is preferable that the temperature is continuously maintained at a temperature of the vapor deposition process temperature or more and 1100 ° C. or less in an inert gas atmosphere.

【0016】[0016]

【構成】以下、本発明の構成を詳述するが、より好まし
い態様およびそれに基づく利点が自ずと明らかになろ
う。
[Structure] The structure of the present invention will be described in detail below, but more preferable embodiments and advantages based thereon will be apparent.

【0017】炭素質基材 本発明で使用する炭素質基材の平均ミクロ孔径は5.5
〜12Åの範囲であり、好ましくは5.5〜9Å、特に
は5.5〜8Åである。炭素質基材のミクロ孔径の分布
が狭いと得られる分子ふるい炭素のミクロ孔径の分布も
狭くなり、好適な結果を得る。平均ミクロ孔径が5.5
Å未満の炭素質基材の場合、芳香族炭化水素の熱分解に
より発生した炭素で蒸着処理する際に、ミクロ孔径が狭
くなる速度(ミクロ孔径の経時変化)が早すぎるため、
ミクロ孔の径の制御が困難となり適切でない。また、平
均径が12Åを越えると蒸着処理の際にミクロ孔自体が
閉塞されやすくなるので適切でない。
Carbonaceous Substrate The average micropore size of the carbonaceous substrate used in the present invention is 5.5.
It is in the range of 12 to 12Å, preferably 5.5 to 9Å, particularly 5.5 to 8Å. When the distribution of the micropore size of the carbonaceous substrate is narrow, the distribution of the micropore size of the obtained molecular sieving carbon is also narrowed, and a suitable result is obtained. Average micropore size is 5.5
In the case of a carbonaceous substrate of less than Å, the rate of narrowing the micropore size (change of the micropore size with time) is too fast during vapor deposition treatment with carbon generated by thermal decomposition of aromatic hydrocarbons.
It is not appropriate because it is difficult to control the diameter of the micropores. Further, if the average diameter exceeds 12Å, the micropores themselves are likely to be blocked during the vapor deposition process, which is not suitable.

【0018】なお、本発明におけるミクロ孔とは、20
Å以下の細孔を示す。また、平均ミクロ孔径とはミクロ
孔径の分布曲線に於いてミクロ孔容積の50%平均径を
意味する。5.5〜12Åの範囲内の平均ミクロ孔径を
有する炭素質基材は、石炭系または石油系のピッチを出
発原料として以下に詳述する方法に従い極めて容易に得
ることができる。
The term "micropore" used in the present invention means 20
Å The following pores are shown. The average micropore diameter means the 50% average diameter of the micropore volume in the distribution curve of the micropore diameter. A carbonaceous base material having an average micropore diameter within the range of 5.5 to 12Å can be extremely easily obtained by using a coal-based or petroleum-based pitch as a starting material according to the method described in detail below.

【0019】以下、炭素質基材の取得方法について述べ
る。軟化点が150℃以上、好ましくは150〜250
℃で、灰分が5000ppm以下、好ましくは500p
pm以下の、光学的に等方性のピッチを機械的に粉砕し
て微粉状とする。または光学的に等方性のピッチを加熱
して、溶融紡糸の手法で繊維状とする。
The method for obtaining the carbonaceous substrate will be described below. Softening point is 150 ° C. or higher, preferably 150-250
Ash content is less than 5000ppm, preferably 500p
Optically isotropic pitches of pm or less are mechanically pulverized into fine powder. Alternatively, an optically isotropic pitch is heated to form a fiber by a melt spinning method.

【0020】軟化点が150℃以下のピッチは、不融化
に多大の時間を要するため、出発原料としては適切でな
い。また、灰分が5000ppm以上のピッチは、灰分
が触媒として作用するため、後述する賦活反応を暴走さ
せる、あるいは得られる炭素質基材の平均ミクロ孔径が
12Åを超えやすい、等の点から出発原料として適切で
ない。この微粉状ピッチあるいは繊維状ピッチを空気等
の酸化性雰囲気下で300℃まで昇温して不融化する。
A pitch having a softening point of 150 ° C. or lower is not suitable as a starting material because it takes a long time to infusibilize. Further, pitch having an ash content of 5000 ppm or more, as the ash content acts as a catalyst, causes the activation reaction described below to run away, or the average micropore diameter of the resulting carbonaceous base material easily exceeds 12Å as a starting material. not appropriate. This fine powdery pitch or fibrous pitch is heated to 300 ° C. in an oxidizing atmosphere such as air to make it infusible.

【0021】不融化した微粉状物あるいは繊維状物はバ
インダーと混合して、成型する。ここでバインダーとは
微粉状物あるいは繊維状物同士を結合せしめ成型された
形状を保持する機能を有するものであり、軟化点が80
〜120℃程度のピッチ、フェノール樹脂、フラン樹
脂、エポキシ樹脂などを例示できる。バインダーの使用
割合は残留炭素分として不融化した微粉状物および繊維
状物100重量部に対して2重量部以上30重量部以下
が好ましい。30重量部より大きいと、賦活処理が容易
ではなくなり、細孔分布が広がり分子ふるい炭素の原料
とて好ましくなくなる。2重量部未満の場合前記のバイ
ンダーとしての効果が発現しない。
The infusible fine powder or fibrous material is mixed with a binder and molded. Here, the binder has a function of holding a molded shape by binding fine powdery substances or fibrous substances together, and has a softening point of 80.
Pitch, phenol resin, furan resin, epoxy resin and the like at about 120 ° C. can be exemplified. The binder is preferably used in an amount of 2 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the fine powdery substance and the fibrous substance infusibilized as residual carbon content. If it is more than 30 parts by weight, the activation treatment will not be easy, and the pore distribution will be widened, which is not preferable as a raw material for molecular sieving carbon. When the amount is less than 2 parts by weight, the effect as the above-mentioned binder does not appear.

【0022】この成型工程により、微粉状の不融化物は
押出造粒法あるいは転動造粒法により粒状に成型され
る。繊維状の不融化物は微粉状の場合と同様に粒状に成
型され、またその他湿式抄紙法によるペーパーやニード
ルパンチ法によるフェルト等に成型される。
By this molding step, the finely powdered infusibilized material is molded into particles by the extrusion granulation method or the rolling granulation method. The fibrous infusibilized material is formed into a granular form as in the case of the fine powder form, and is also formed into paper by a wet papermaking method or felt by a needle punch method.

【0023】この成型品は次に賦活処理に付される。賦
活処理においては、炭材(賦活原料)を構成する炭素結
晶体、あるいは微細な孔隙部分を構成する炭素が反応消
耗して、炭素構造により孔隙が複雑に組織的に形成し、
比表面積が増大する。
This molded product is then subjected to activation treatment. In the activation treatment, carbon crystals forming the carbonaceous material (activating raw material) or carbon forming the fine pores are consumed by reaction, and pores are formed in a complicated and systematic manner due to the carbon structure,
The specific surface area increases.

【0024】賦活処理は、炭酸ガス雰囲気下あるいは炭
酸ガスまたは/および水蒸気を含む窒素ガスなどの不活
性ガス雰囲気下で800〜1100℃の温度で、0〜4
80分放置することにより行われる。賦活処理前にあら
かじめ窒素ガスなどの不活性ガス雰囲気中で500〜1
500℃の温度で炭化処理してもよい。
The activation treatment is carried out at a temperature of 800 to 1100 ° C. under a carbon dioxide gas atmosphere or an inert gas atmosphere such as carbon dioxide gas and / or nitrogen gas containing water vapor at 0 to 4 ° C.
It is carried out by leaving it for 80 minutes. Before activation, 500-1 in an inert gas atmosphere such as nitrogen gas in advance.
You may carbonize at the temperature of 500 degreeC.

【0025】この賦活処理で、処理物の比表面積が30
0〜1000m2 /gとなるように処理温度と時間を制
御することにより、平均ミクロ孔径が5.5〜12Åの
範囲内にある炭素質基材を容易に製造することができ
る。この程度の賦活化であれば、賦活収率(微粉状物あ
るいは繊維状物の成型物重量に対する賦活処理物重量の
割合)は50〜70%と高く分子ふるい炭素を安価に得
ることができる。
With this activation treatment, the specific surface area of the treated product is 30
By controlling the treatment temperature and time so as to be 0 to 1000 m 2 / g, a carbonaceous substrate having an average micropore diameter in the range of 5.5 to 12Å can be easily produced. If activation is performed to this extent, the activation yield (the ratio of the weight of the activated product to the weight of the molded product of the fine powder or fibrous material) is as high as 50 to 70%, and the molecular sieving carbon can be obtained at a low cost.

【0026】炭化水素 本発明の熱分解炭素蒸着法の炭素源となる炭化水素とし
て、芳香族炭化水素もしくは、脂環式炭化水素が用いら
れる。芳香族炭化水素としては、ベンゼン、トルエン、
エチルベンゼン、キシレンなどのアルキルベンゼン、そ
の他ナフタレン、メチルナフタレンなど、また脂環式炭
化水素としてはシクロヘキサンなどを例示できるが、一
般的には炭素環が1〜2環程度のものが好ましい。
Hydrocarbons Aromatic hydrocarbons or alicyclic hydrocarbons are used as the hydrocarbons that serve as the carbon source in the pyrolytic carbon deposition method of the present invention. As aromatic hydrocarbons, benzene, toluene,
Alkylbenzene such as ethylbenzene and xylene, naphthalene, methylnaphthalene, and the like, and cyclohexane and the like as an alicyclic hydrocarbon can be given, but generally, those having 1 to 2 carbon rings are preferable.

【0027】蒸着処理法 本発明に於いては、まず前述の炭素質基材を不活性ガス
雰囲気下で650〜850℃好ましくは700〜800
℃まで加熱される。この加熱は後述する処理炉中で行っ
てもよいし、別の炉中で加熱し、加熱された炭素質基材
を連続的に処理炉に供給してもよい。
In the present invention, the above-mentioned carbonaceous base material is first subjected to an inert gas atmosphere at 650 to 850 ° C., preferably 700 to 800.
Heated to ℃. This heating may be performed in a treatment furnace described later, or may be performed in another furnace and the heated carbonaceous substrate may be continuously supplied to the treatment furnace.

【0028】蒸着処理は650〜850℃、好ましくは
700〜750℃に加熱された処理炉中で行われる。処
理炉中には前記の加熱された炭素質基材が存在し、そこ
へ芳香族炭化水素、または脂環式炭化水素を0.1〜2
0容量%、好ましくは3〜10容量%含有する窒素ガス
で代表される不活性ガスが供給される。
The vapor deposition process is carried out in a processing furnace heated to 650 to 850 ° C., preferably 700 to 750 ° C. The above-mentioned heated carbonaceous substrate is present in the treatment furnace, to which aromatic hydrocarbon or alicyclic hydrocarbon is added in an amount of 0.1 to 2
An inert gas represented by nitrogen gas containing 0% by volume, preferably 3 to 10% by volume, is supplied.

【0029】なお、処理炉の温度が650℃未満では熱
分解炭素の発生量が少なく、蒸着に膨大な時間を要し、
850℃を超える温度では熱分解炭素の発生量が多すぎ
て、ミクロ孔径が狭くなる速度が速くなり制御不能とな
る。
If the temperature of the processing furnace is lower than 650 ° C., the amount of pyrolytic carbon generated is small, and a huge amount of time is required for vapor deposition.
If the temperature exceeds 850 ° C., the amount of pyrolytic carbon generated is too large, and the speed at which the micropore diameter becomes narrow becomes fast, making control uncontrollable.

【0030】蒸着処理の時間は、工業的な製造では10
分以上480分以下、より好ましくは10分以上120
分以下とするのが品質の安定性から好ましい。蒸着処理
時の炭化水素を含有する不活性ガスの流速は、1cm/
s以上200cm/s以下が好ましい。蒸着処理は固定
床でも回転炉などの移動床でも製造可能であるが、流動
床で製造する方法が処理温度を均一にできることから好
ましい。蒸着処理時のガスは循環させることもできる
が、析出した微小炭素粒子をフィルターなどで除去した
後循環する方法が好ましい。
The time for vapor deposition treatment is 10 in industrial production.
Minutes to 480 minutes, more preferably 10 minutes to 120
It is preferable that the amount is not more than a minute because of the stability of quality. The flow rate of the inert gas containing hydrocarbon during the vapor deposition process is 1 cm /
It is preferably s or more and 200 cm / s or less. The vapor deposition treatment can be performed on a fixed bed or a moving bed such as a rotary furnace, but a method of producing on a fluidized bed is preferable because the treatment temperature can be made uniform. The gas at the time of the vapor deposition treatment can be circulated, but a method in which the precipitated fine carbon particles are removed by a filter or the like and then circulated is preferable.

【0031】このような蒸着処理後は、不活性ガス雰囲
気下で冷却することにより分子ふるい炭素を得ることが
できる。
After such a vapor deposition process, the molecular sieving carbon can be obtained by cooling in an inert gas atmosphere.

【0032】以上の処理方法により、芳香族炭化水素ま
たは脂環式炭化水素から放出される熱分解炭素が炭素質
基材のミクロ孔入口付近に蒸着し、処理温度、処理時
間、芳香族炭化水素または脂環式炭化水素の濃度を前述
の範囲で適切に制御することにより3〜4Å強のミクロ
孔を持ち、かつミロク孔径分布の狭い分子ふるい炭素を
再現性良く、安価に製造することができる。
By the above treatment method, pyrolytic carbon released from an aromatic hydrocarbon or an alicyclic hydrocarbon is vapor-deposited in the vicinity of the micropore inlet of the carbonaceous substrate, and the treatment temperature, treatment time, aromatic hydrocarbon Alternatively, by appropriately controlling the concentration of alicyclic hydrocarbons within the above range, it is possible to inexpensively produce molecular sieving carbon having 3-4 Å or more micropores and narrow Miroku pore size distribution with good reproducibility. .

【0033】なお、蒸着処理後、引き続き不活性ガス雰
囲気下で蒸着処理温度以上、1100℃以下の温度に保
持すると、なお一層良い結果を得る。この効果は、蒸着
処理で得られたミクロ孔径分布を強固に固定することに
ある。また、高温保持には4Åを超えるミクロ孔の径を
狭める効果もあるので、蒸着処理で生成したミクロ孔径
分布をよりシャープにする効果もある。蒸着処理温度未
満ではこの効果は得られない。また、温度が1100℃
を超えると、ミクロ孔が急激に消失するので好ましくな
い。以上に説明した方法により、ミクロ孔径が3〜4Å
強と狭い分子ふるい炭素を簡便に、安価に、かつ再現性
良く製造することができる。
Even better results can be obtained if the temperature is kept above the vapor deposition temperature and below 1100 ° C. in an inert gas atmosphere after the vapor deposition treatment. The effect is to firmly fix the micropore size distribution obtained by the vapor deposition process. Further, holding at high temperature also has the effect of narrowing the diameter of the micropores exceeding 4Å, and therefore has the effect of making the distribution of micropores generated by the vapor deposition treatment sharper. This effect cannot be obtained below the vapor deposition treatment temperature. Also, the temperature is 1100 ℃
When it exceeds, the micropores disappear rapidly, which is not preferable. According to the method explained above, the micropore diameter is 3 to 4Å
Strong and narrow molecular sieving carbon can be produced easily, inexpensively and with good reproducibility.

【0034】[0034]

【実施例】以下、本発明を実施例により説明する。 (実施例1)コールタールピッチを熱処理して、軟化点
210℃、灰分350ppm以下の光学的等方性ピッチ
を得た。このピッチを押出紡糸し、直径14μmのピッ
チ繊維を得た。このピッチ繊維を炉中で、空気を送り込
みながら、室温から300℃まで5時間かけて昇温し、
さらに1時間保持してピッチ不融化繊維とした。このピ
ッチ不融化繊維をインペラーミル(INP250型、セ
イシン企業(株)製)で粉砕し、平均繊維長0.35m
mのピッチ不融化繊維とした。次に、この粉砕ピッチ不
融化繊維100重量部に対し、軟化点110℃のコール
タールピッチを15重量部の割合で混合した。この混合
原料を1000mmφの皿型造粒機で水を添加しながら
転動造粒し、3.35〜4.8mm径の造粒体を得た。
この造粒体を200℃で乾燥して水分を除去した。以
下、この造粒体を繊維造粒体と呼ぶことにする。この繊
維造粒体を分級して、粒度3.35〜4mmと4〜4.
8mmの2種類に分別した。
EXAMPLES The present invention will be described below with reference to examples. (Example 1) Coal tar pitch was heat-treated to obtain an optically isotropic pitch having a softening point of 210 ° C and an ash content of 350 ppm or less. This pitch was extrusion-spun to obtain pitch fibers having a diameter of 14 μm. This pitch fiber is heated in a furnace from room temperature to 300 ° C. over 5 hours while blowing air,
It was further held for 1 hour to obtain pitch infusible fiber. The pitch infusibilized fiber was crushed with an impeller mill (INP250 type, manufactured by Seishin Enterprise Co., Ltd.), and the average fiber length was 0.35 m.
m pitch infusible fiber. Next, 100 parts by weight of the crushed pitch infusible fiber was mixed with 15 parts by weight of coal tar pitch having a softening point of 110 ° C. This mixed raw material was tumbled and granulated with a 1000 mmφ dish type granulator while adding water to obtain a granulated product having a diameter of 3.35-4.8 mm.
The granules were dried at 200 ° C. to remove water. Hereinafter, this granule will be referred to as a fiber granule. The fiber granules are classified to have particle sizes of 3.35 to 4 mm and 4 to 4.
It was separated into two types of 8 mm.

【0035】粒度3.35〜4mmの繊維造粒体を炉中
で、窒素ガスを送り込みながら300℃まで加熱し、引
き続き炭酸ガスを50%含む窒素ガスを送り込みなが
ら、5℃/分の昇温速度で1000℃まで加熱し、この
温度で2時間保持して賦活処理を施した後、窒素ガス中
で冷却して炭素質基材Iを得た。炭素質基材Iの賦活収
率は56%であった。そのミクロ孔は、図1に示すよう
に、5〜11Åの範囲内にあり、平均ミクロ孔径は7.
2Åで、比表面積は800m2 /gであった。
A fibrous granule having a particle size of 3.35 to 4 mm is heated in a furnace to 300 ° C. while feeding nitrogen gas, and then heated to 5 ° C./min while feeding nitrogen gas containing 50% carbon dioxide gas. After heating up to 1000 ° C. at a speed and holding at this temperature for 2 hours for activation treatment, it was cooled in nitrogen gas to obtain a carbonaceous substrate I. The activation yield of the carbonaceous substrate I was 56%. The micropores are in the range of 5 to 11Å as shown in FIG. 1, and the average micropore diameter is 7.
The specific surface area was 2 m and the specific surface area was 800 m 2 / g.

【0036】なお、ミクロ孔径分布は、積算ミクロ孔容
積とミクロ孔径の関係で表示してある。6Å以下のミク
ロ孔容積は、四塩化炭素(最小分子径6Å)、イソブタ
ン(同5.0Å)、n−ブタン(同4.3Å)、エタン
(同4.0Å)、炭酸ガス(同3.3Å)の吸着等温線
を測定し、Dubinin-Astakhovプロットから、各々の最大
吸着容積W0 を求め、その値で代表させた。また、6Å
より大きい径のミクロ孔容積は、液体窒素温度における
窒素の吸着等温線をMP法で解析して求めた。 W/W0 =exp{−(A/E)n } W :相対圧がP/P0 のとき満されているミクロ孔容
積[cm3/g ] W0 :最大吸着容積[cm3/g ] A :吸着ポテンシャル[mol/joul] E :吸着の特性エネルギー[joul/mol] n :1〜6の定数 P0 :測定温度における吸着ガスの飽和蒸気圧[torr] P :吸着ガスの蒸気圧[torr]
The micropore size distribution is represented by the relationship between the integrated micropore volume and the micropore size. The micropore volume of 6 Å or less is carbon tetrachloride (minimum molecular diameter 6 Å), isobutane (5.0 Å), n-butane (4.3 Å), ethane (4.0 Å), carbon dioxide (3.0 Å). The adsorption isotherm of 3Å) was measured, the maximum adsorption volume W 0 of each was determined from the Dubinin-Astakhov plot, and the value was represented. Also, 6Å
The volume of micropores having a larger diameter was obtained by analyzing the adsorption isotherm of nitrogen at the liquid nitrogen temperature by the MP method. W / W 0 = exp {-(A / E) n } W: Micropore volume [cm 3 / g] filled when relative pressure is P / P 0 W 0 : Maximum adsorption volume [cm 3 / g ] A: Adsorption potential [mol / joul] E: Adsorption characteristic energy [joul / mol] n: Constant of 1 to 6 P 0 : Saturated vapor pressure of adsorbed gas at measurement temperature [torr] P: Vapor pressure of adsorbed gas [Torr]

【0037】次に、炭素質基材Iを炉中で窒素ガスを送
り込みながら、725℃まで加熱した。引き続きこの温
度でベンゼンを7.8%含む窒素ガスを送り込みなが
ら、90分保持して熱分解炭素蒸着処理を施した後、窒
素ガスで冷却し、分子ふるい炭素I−1を試作した。
Next, the carbonaceous substrate I was heated to 725 ° C. while feeding nitrogen gas in the furnace. Subsequently, while feeding a nitrogen gas containing 7.8% of benzene at this temperature, it was held for 90 minutes to perform a pyrolytic carbon vapor deposition treatment, and then cooled with a nitrogen gas to prepare a molecular sieving carbon I-1 as a prototype.

【0038】同様に、炭素質基材Iを用いて熱分解炭素
蒸着処理時間を120分とした分子ふるい炭素I−2を
試作した。図1に、I−1およびI−2のミクロ孔径分
布を示す。熱分解炭素蒸着処理により、ミクロ孔容積を
ほとんど減ずることなく、ミクロ孔が3〜4Å強に狭ま
っていることがわかる。次に分子ふるい性を評価するた
め、I−1およびI−2の酸素(最小分子径2.8
Å)、窒素(同3.0Å)、炭酸ガス(同3.3Å)、
メタン(同4.0Å)に対する吸着等温線を測定した。
測定には、定容法による吸着等温線測定装置ベルソープ
18(高圧測定仕様、日本ベル(株))を用いた。その
結果を、図2、図3に示す。I−1およびI−2とも、
メタンと炭酸ガスの吸着量には大きな差があり(図
2)、優れた平衡分離型の分子ふるい性を示している。
また、I−2は、酸素、窒素に対しても多少の平衡分離
型分子ふるい性を示している(図3)。図4は、I−
1、I−2の窒素、酸素の吸着速度を比較したものであ
る。測定方法は容積既知の容器内に分子ふるい炭素サン
プルを入れ、系内を真空にした後、吸着させるガス(窒
素、酸素)を導入し、導入後の時間と圧力を計測する方
法によるもので、装置としては吸着等温線の測定と同じ
ベルソープ18を用いて実施した。図4から、酸素は非
常に短い時間内で吸着が完了するのに対し、窒素の吸着
完了に要する時間は非常に長いことがわかる。つまり、
I−1、I−2は非常に良好な速度分離型の分子ふるい
性を持つことが明らかである。
Similarly, a molecular sieving carbon I-2 was prepared by using the carbonaceous substrate I and setting the pyrolytic carbon vapor deposition treatment time to 120 minutes. FIG. 1 shows the micropore size distribution of I-1 and I-2. It can be seen that the pyrolysis carbon vapor deposition treatment narrows the micropores to a little over 3 to 4 Å with almost no reduction in the micropore volume. Next, in order to evaluate the molecular sieving property, oxygen of I-1 and I-2 (minimum molecular diameter 2.8
Å), nitrogen (3.0 Å), carbon dioxide (3.3 Å),
The adsorption isotherm for methane (same as 4.0Å) was measured.
For the measurement, an adsorption isotherm measuring device Bell Soap 18 (high pressure measurement specification, Nippon Bell Co., Ltd.) by a constant volume method was used. The results are shown in FIGS. 2 and 3. Both I-1 and I-2
There is a large difference in the adsorption amount of methane and carbon dioxide (Fig. 2), which shows excellent equilibrium separation type molecular sieving property.
I-2 also shows some equilibrium separation type molecular sieving property with respect to oxygen and nitrogen (FIG. 3). FIG. 4 shows I-
1 is a comparison of adsorption rates of nitrogen and oxygen of I-2. The measurement method is a method in which a molecular sieving carbon sample is placed in a container of known volume, the system is evacuated, gases to be adsorbed (nitrogen, oxygen) are introduced, and the time and pressure after introduction are measured. As the device, the same bell soap 18 as that used for measuring the adsorption isotherm was used. From FIG. 4, it can be seen that the adsorption of oxygen is completed within a very short time, while the time required for the completion of adsorption of nitrogen is very long. That is,
It is clear that I-1 and I-2 have very good velocity separation type molecular sieving properties.

【0039】(実施例2)実施例1で製造した粒度3.
35〜4mmの繊維造粒体を、実施例1と同じ方法で賦
活して、炭素質基材Gを得た。ただし、1000℃にお
ける保持時間は、1時間とした。炭素質基材Gの賦活収
率は65%であった。そのミクロ孔は、図5に示すよう
に、5〜10Åの範囲内にあり、平均ミクロ孔径は6.
2Åで、比表面積は590m2 /gであった。
(Example 2) Particle size produced in Example 1
A fibrous granule having a size of 35 to 4 mm was activated by the same method as in Example 1 to obtain a carbonaceous base material G. However, the holding time at 1000 ° C. was 1 hour. The activation yield of the carbonaceous substrate G was 65%. As shown in FIG. 5, the micropores are in the range of 5 to 10Å, and the average micropore diameter is 6.
The specific surface area was 2Å and 590 m 2 / g.

【0040】次に、炭素質基材Gを、炉中で窒素ガスを
送り込みながら725℃まで加熱した。引き続きこの温
度でベンゼンを7.8%あるいは12.6%含む窒素ガ
スを送り込みながら、60分保持して熱分解炭素蒸着処
理を施した後、さらに窒素ガスを送り込みながら750
℃で60分間保持し、その後窒素ガスで冷却し、2種類
の分子ふるい炭素G−1(ベンゼン:7.8%)、G−
2(ベンゼン:12.6%)を試作した。
Next, the carbonaceous substrate G was heated to 725 ° C. in a furnace while feeding nitrogen gas. Subsequently, at this temperature, nitrogen gas containing 7.8% or 12.6% of benzene was fed, and after holding for 60 minutes to carry out the pyrolytic carbon vapor deposition treatment, 750 while feeding nitrogen gas further.
Hold at 60 ° C for 60 minutes, then cool with nitrogen gas, and use two types of molecular sieving carbon G-1 (benzene: 7.8%), G-
2 (benzene: 12.6%) was prototyped.

【0041】図5に、G−1およびG−2のミクロ孔径
分布を示す。熱分解炭素蒸着処理により、ミクロ孔容積
を減ずることなく、ミクロ孔が3〜4Åに狭まっている
ことがわかる。
FIG. 5 shows the micropore size distribution of G-1 and G-2. It can be seen that the pyrolysis carbon deposition treatment narrows the micropores to 3 to 4 Å without reducing the micropore volume.

【0042】次に、分子ふるい性を評価するため、炭酸
ガス、メタン、酸素、窒素の吸着等温線を測定した。そ
の結果を図6、図7に示す。この図6から、G−1、G
−2ともメタン、炭酸ガスに対し、優れた平衡分離型分
子ふるい性能を持っていることがわかる。また、図7か
ら、G−2は酸素、窒素に対しても平衡分離型分子ふる
い性能を持っていることがわかる。
Next, in order to evaluate the molecular sieving property, adsorption isotherms of carbon dioxide, methane, oxygen and nitrogen were measured. The results are shown in FIGS. 6 and 7. From this FIG. 6, G-1, G
It can be seen that -2 has excellent equilibrium separation type molecular sieving performance against methane and carbon dioxide gas. Further, it can be seen from FIG. 7 that G-2 has equilibrium separation type molecular sieving performance against oxygen and nitrogen.

【0043】図8は、G−1、G−2の窒素、酸素の吸
着速度を比較した結果である。この図から、G−1、G
−2とも窒素、酸素に対し、優れた速度分離型分子ふる
い性能を持っていることがわかる。
FIG. 8 shows the results of comparing the adsorption rates of nitrogen and oxygen of G-1 and G-2. From this figure, G-1, G
It can be seen that both -2 have excellent speed separation type molecular sieving performance for nitrogen and oxygen.

【0044】(実施例3)実施例1で製造した粒度4〜
4.8mmの繊維造粒体を、実施例2と同じ方法で賦活
して、炭素質基材Hを得た。炭素質基材Hの賦活収率は
69%であった。そのミクロ孔は、図9に示すように、
5〜9Åの範囲内にあり、平均ミクロ孔径は6.0Å
で、比表面積は470m2 /gであった。
(Example 3) The particle size of 4 to 4 produced in Example 1
A 4.8 mm fiber granule was activated by the same method as in Example 2 to obtain a carbonaceous substrate H. The activation yield of the carbonaceous substrate H was 69%. The micropores, as shown in FIG.
It is in the range of 5 to 9Å and the average micropore size is 6.0Å
The specific surface area was 470 m 2 / g.

【0045】次に、炭素質基材Hを炉中で窒素ガスを送
り込みながら、725℃まで加熱した。引き続きこの温
度でベンゼンを7.8%含む窒素ガスを送り込みなが
ら、90分保持して熱分解炭素蒸着処理を施した後、窒
素ガスで冷却し、分子ふるい炭素H−1を試作した。
Next, the carbonaceous substrate H was heated to 725 ° C. in a furnace while feeding nitrogen gas. Subsequently, while feeding nitrogen gas containing 7.8% of benzene at this temperature and holding it for 90 minutes to perform a pyrolytic carbon vapor deposition treatment, cooling with nitrogen gas was carried out, and molecular sieving carbon H-1 was produced as a trial.

【0046】図9に、H−1のミクロ孔径分布を示す。
熱分解炭素蒸着処理により、ミクロ孔容積を減ずること
なく、ミクロ孔が3〜4Åに狭まっていることがわか
る。
FIG. 9 shows the micropore size distribution of H-1.
It can be seen that the pyrolysis carbon deposition treatment narrows the micropores to 3 to 4 Å without reducing the micropore volume.

【0047】次に、分子ふるい性を評価するため、炭酸
ガス、メタン、酸素、窒素の吸着等温線を測定した。そ
の結果を図10、図11に示す。図10、図11から、
H−1はメタン、炭酸ガスに対し、また酸素、窒素に対
しても優れた平衡分離型分子ふるい性能を持っているこ
とがわかる。
Next, in order to evaluate the molecular sieving property, adsorption isotherms of carbon dioxide gas, methane, oxygen and nitrogen were measured. The results are shown in FIGS. From FIG. 10 and FIG.
It can be seen that H-1 has excellent equilibrium separation type molecular sieving performance against methane and carbon dioxide gas as well as against oxygen and nitrogen.

【0048】図12は、H−1の窒素、酸素の吸着速度
を比較した結果である。この図から、H−1は窒素、酸
素に対し平衡分離型だけでなく、優れた速度分離型分子
ふるい性能を持っていることがわかる。
FIG. 12 shows the results of comparing the adsorption rates of nitrogen and oxygen of H-1. From this figure, it is understood that H-1 has not only equilibrium separation type nitrogen and oxygen, but also excellent velocity separation type molecular sieving performance.

【0049】[0049]

【発明の効果】本発明の分子ふるい炭素の製造法によれ
ば、ミクロ孔径3〜4Å強で、かつ、ミクロ孔径分布の
狭い分子ふるい炭素を、簡便にかつ再現性良く、製造す
ることができる。本発明によって得られる分子ふるい炭
素は、特に、メタン、炭酸ガスに対する平衡分離型分子
ふるい性能、ならびに窒素、酸素に対する速度分離型分
子ふるい性能に優れている。
According to the method for producing molecular sieving carbon of the present invention, molecular sieving carbon having a micropore size of 3 to 4 Å and a narrow micropore size distribution can be produced easily and with good reproducibility. . The molecular sieving carbon obtained by the present invention is particularly excellent in equilibrium separation type molecular sieving performance for methane and carbon dioxide, and rate separation type molecular sieving performance for nitrogen and oxygen.

【図面の簡単な説明】[Brief description of drawings]

【図1】 炭素質基材I、および分子ふるい炭素I−
1、I−2のミクロ孔径分布を積算分布で表現した図で
ある。縦軸は積算のミクロ孔容積を、横軸はミクロ孔径
である。
FIG. 1 Carbonaceous substrate I and molecular sieve carbon I-
It is the figure which represented the micropore diameter distribution of 1 and I-2 by integrated distribution. The vertical axis represents integrated micropore volume, and the horizontal axis represents micropore diameter.

【図2】 分子ふるい炭素I−1、I−2各々の炭酸ガ
ス、メタンの吸着等温線を示す図である。
FIG. 2 is a diagram showing adsorption isotherms of carbon dioxide and methane of molecular sieve carbons I-1 and I-2, respectively.

【図3】 分子ふるい炭素I−1およびI−2の窒素、
酸素の吸着等温線を示す図である。
FIG. 3: Nitrogen of molecular sieve carbons I-1 and I-2,
It is a figure which shows the adsorption isotherm of oxygen.

【図4】 分子ふるい炭素I−1の窒素と酸素の吸着速
度を、時間に対する吸着量の変化で表現した図である。
FIG. 4 is a diagram expressing the adsorption rates of nitrogen and oxygen of molecular sieving carbon I-1 by the change in adsorption amount with time.

【図5】 炭素質基材G、および分子ふるい炭素G−
1、G−2のミクロ孔径分布を積算分布で表現した図で
ある。
FIG. 5: Carbonaceous substrate G and molecular sieving carbon G-
It is the figure which represented the micropore diameter distribution of 1 and G-2 by integrated distribution.

【図6】 分子ふるい炭素G−1、G−2の炭酸ガス、
メタンの吸着等温線を示す図である。
FIG. 6 is carbon dioxide gas of molecular sieving carbons G-1 and G-2,
It is a figure which shows the adsorption isotherm of methane.

【図7】 分子ふるい炭素G−1、G−2の窒素、酸素
の吸着等温線を示す図である。
FIG. 7 is a diagram showing adsorption isotherms of nitrogen and oxygen on molecular sieving carbons G-1 and G-2.

【図8】 分子ふるい炭素G−1、G−2の窒素と酸素
の吸着速度を、時間に対する吸着量の変化で表現した図
である。
FIG. 8 is a diagram in which the adsorption rates of nitrogen and oxygen on molecular sieving carbons G-1 and G-2 are expressed by changes in the adsorption amount with respect to time.

【図9】 炭素質基材H、および分子ふるい炭素H−1
のミクロ孔径分布を積算分布で表現した図である。
FIG. 9: Carbonaceous substrate H and molecular sieving carbon H-1
It is the figure which expressed the micropore diameter distribution of this with integrated distribution.

【図10】 分子ふるい炭素H−1の炭酸ガス、メタン
の吸着等温線を示す図である。
FIG. 10 is a diagram showing adsorption isotherms of carbon dioxide and methane of molecular sieving carbon H-1.

【図11】 分子ふるい炭素H−1の窒素、酸素の吸着
等温線を示す図である。
FIG. 11 is a diagram showing adsorption isotherms of nitrogen and oxygen of molecular sieving carbon H-1.

【図12】 分子ふるい炭素H−1の窒素と酸素の吸着
速度を、時間に対する吸着量の変化で表現した図であ
る。
FIG. 12 is a diagram in which the adsorption rates of nitrogen and oxygen on molecular sieving carbon H-1 are expressed by the change in adsorption amount with time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/85 F (72)発明者 三 好 史 洋 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 大 杉 幸 広 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 中 野 義 夫 神奈川県茅ケ崎市赤松町7の2の10−104─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location C04B 41/85 F (72) Inventor Miyoshi Fumihiro 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Technology Co., Ltd.Technology Research Headquarters (72) Inventor Hiroyuki Osugi 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Co., Ltd. Technology Research Headquarters (72) Inventor Yoshio Nakano Akamatsu, Chigasaki-shi, Kanagawa 2-10-10 of town 7

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】5.5〜12Åの平均ミクロ孔径を有する
炭素質基材を、650〜850℃に加熱した処理炉中
で、芳香族炭化水素および/または脂環式炭化水素を含
む不活性ガスを供給して熱分解炭素をミクロ孔に蒸着す
ることを特徴とする分子ふるい炭素の製造方法。
1. An inert gas containing an aromatic hydrocarbon and / or an alicyclic hydrocarbon in a treatment furnace in which a carbonaceous substrate having an average micropore diameter of 5.5 to 12Å is heated to 650 to 850 ° C. A method for producing molecular sieving carbon, which comprises supplying gas to deposit pyrolytic carbon on micropores.
【請求項2】不活性ガス雰囲気下で650〜850℃に
加熱され、5.5〜12Åの平均ミクロ孔径を有する炭
素質基材を、650〜850℃に加熱された処理炉中
で、該反応炉に芳香族炭化水素および/または脂環式炭
化水素を含む不活性ガスを供給して蒸着処理することを
特徴とする分子ふるい炭素の製造方法。
2. A carbonaceous substrate heated to 650 to 850 ° C. under an inert gas atmosphere and having an average micropore diameter of 5.5 to 12 Å in a treatment furnace heated to 650 to 850 ° C. A method for producing molecular sieving carbon, which comprises supplying an inert gas containing an aromatic hydrocarbon and / or an alicyclic hydrocarbon to a reaction furnace and performing a vapor deposition process.
【請求項3】前記炭素質基材が、軟化点150℃以上、
灰分5000ppm以下の光学的等方性ピッチを原料と
して製造されたものであることを特徴とする請求項1ま
たは2に記載の分子ふるい炭素の製造方法。
3. The carbonaceous substrate has a softening point of 150 ° C. or higher,
The method for producing molecular sieving carbon according to claim 1 or 2, which is produced using an optically isotropic pitch having an ash content of 5000 ppm or less as a raw material.
【請求項4】軟化点150℃以上、灰分5000ppm
以下の光学的等方性ピッチを、粉砕ないしは繊維とし、
これを不融化し、次いで成型し、さらに炭酸ガスおよび
/または水蒸気を含む不活性ガス雰囲気下で賦活処理を
施して比表面積300〜1000m2 /gの多孔性炭素
とし、これを前記炭素質基材として使用する請求項1〜
3いずれかに記載の分子ふるい炭素の製造方法。
4. A softening point of 150 ° C. or higher and an ash content of 5000 ppm
The following optical isotropic pitch is crushed or fiber,
This is made infusible, then molded, and further activated in an inert gas atmosphere containing carbon dioxide gas and / or steam to obtain porous carbon having a specific surface area of 300 to 1000 m 2 / g, which is the carbonaceous group described above. 1 to use as a material
3. The method for producing molecular sieving carbon according to any one of 3 above.
【請求項5】前記蒸着処理終了後、引き続き不活性ガス
雰囲気下に蒸着処理温度以上1100℃以下の温度で保
持することを特徴とする請求項1〜4いずれかに記載の
分子ふるい炭素の製造方法。
5. The production of molecular sieving carbon according to any one of claims 1 to 4, wherein after the completion of the vapor deposition treatment, the temperature is kept above the vapor deposition treatment temperature and below 1100 ° C. in an inert gas atmosphere. Method.
JP25309792A 1992-09-22 1992-09-22 Method for producing molecular sieve carbon Expired - Fee Related JP3310348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25309792A JP3310348B2 (en) 1992-09-22 1992-09-22 Method for producing molecular sieve carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25309792A JP3310348B2 (en) 1992-09-22 1992-09-22 Method for producing molecular sieve carbon

Publications (2)

Publication Number Publication Date
JPH06100309A true JPH06100309A (en) 1994-04-12
JP3310348B2 JP3310348B2 (en) 2002-08-05

Family

ID=17246450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25309792A Expired - Fee Related JP3310348B2 (en) 1992-09-22 1992-09-22 Method for producing molecular sieve carbon

Country Status (1)

Country Link
JP (1) JP3310348B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972834A (en) * 1995-04-27 1999-10-26 Nippon Sanso Corporation Carbon adsorbent, manufacturing method therefor, gas separation method and device therefor
JP2995495B2 (en) * 1995-04-27 1999-12-27 日本酸素株式会社 Carbon adsorbent, its production method, gas separation method and its apparatus
JP3592636B2 (en) * 1998-02-17 2004-11-24 カネボウ株式会社 Activated carbon for adsorption and storage of gaseous compounds
US7897540B2 (en) 2003-02-25 2011-03-01 Cataler Corporation Process for producing activated carbon
WO2014148503A1 (en) * 2013-03-19 2014-09-25 大阪瓦斯株式会社 Gas purification method
CN116613299A (en) * 2023-07-17 2023-08-18 浙江锂宸新材料科技有限公司 Preparation method of novel silicon-carbon anode material and product thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972834A (en) * 1995-04-27 1999-10-26 Nippon Sanso Corporation Carbon adsorbent, manufacturing method therefor, gas separation method and device therefor
JP2995495B2 (en) * 1995-04-27 1999-12-27 日本酸素株式会社 Carbon adsorbent, its production method, gas separation method and its apparatus
JP3592636B2 (en) * 1998-02-17 2004-11-24 カネボウ株式会社 Activated carbon for adsorption and storage of gaseous compounds
US7897540B2 (en) 2003-02-25 2011-03-01 Cataler Corporation Process for producing activated carbon
WO2014148503A1 (en) * 2013-03-19 2014-09-25 大阪瓦斯株式会社 Gas purification method
US9732297B2 (en) 2013-03-19 2017-08-15 Osaka Gas Co., Ltd. Gas purification method
AU2014239386B2 (en) * 2013-03-19 2018-10-04 Osaka Gas Co., Ltd. Gas purification method
AU2018232927B2 (en) * 2013-03-19 2019-12-19 Osaka Gas Co., Ltd. Gas purification method
CN116613299A (en) * 2023-07-17 2023-08-18 浙江锂宸新材料科技有限公司 Preparation method of novel silicon-carbon anode material and product thereof
CN116613299B (en) * 2023-07-17 2023-11-24 浙江锂宸新材料科技有限公司 Preparation method of silicon-carbon anode material and product thereof

Also Published As

Publication number Publication date
JP3310348B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US6258300B1 (en) Activated carbon fiber composite material and method of making
WO1989004810A1 (en) Activated carbon and process for its production
KR100236785B1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
JPS62176908A (en) Preparation of molecular sieve comprising carbon
US5238888A (en) Carbon molecular sieve
CN113842884B (en) Medium-temperature hydrophobic decarbonization adsorbent and preparation method thereof
JPH06100309A (en) Production of carbon of molecular sieve
Shi et al. Preparation of porous carbon–silica composite monoliths
KR870002124B1 (en) Preparation method of carbon molecular sieves
Arenillas et al. Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale
JP3280094B2 (en) Method for producing molecular sieve carbon
JP3253708B2 (en) Method for producing molecular sieve carbon of spherical fiber mass
JPH0280315A (en) Granulated active carbon
JPH05155673A (en) Porous carbon material and its production
JPH06157018A (en) Porous molecular sieve carbon and its production
JPH07299356A (en) Production of molecular sieve carbon
JPH09248456A (en) Molecular sieve activated carbon fiber having selective adsorbing capacity and its production
JP7454199B1 (en) Molecular sieve carbon, its manufacturing method, and gas separation device
JPH07299357A (en) Production of spherical fiber lump molecular sieve carbon
JP3197020B2 (en) Method for producing molecular sieve carbon
JPH0663397A (en) Molecular sieve carbon material for purifying hydrogen
KR102580274B1 (en) manufacturing method of ACTIVATED CARBON to improve TO IMPROVE MESOPORE RATIO AND SPECIFC SURFACE AREA by SURFACE OXIDATION OF PETROLEUM RESIDUE PITCH OR COAL TAR PITCH and activated carbon manufactured thereby
KR100272617B1 (en) Carbon molecular sieve manufacturing method using volatile organic substance
JP7423839B1 (en) Porous material for hydrogen purification, its manufacturing method, and hydrogen purification equipment
JP2524442B2 (en) Method for producing porous carbon material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020430

LAPS Cancellation because of no payment of annual fees