JPH09248456A - Molecular sieve activated carbon fiber having selective adsorbing capacity and its production - Google Patents

Molecular sieve activated carbon fiber having selective adsorbing capacity and its production

Info

Publication number
JPH09248456A
JPH09248456A JP8060650A JP6065096A JPH09248456A JP H09248456 A JPH09248456 A JP H09248456A JP 8060650 A JP8060650 A JP 8060650A JP 6065096 A JP6065096 A JP 6065096A JP H09248456 A JPH09248456 A JP H09248456A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
pores
aromatic compound
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8060650A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8060650A priority Critical patent/JPH09248456A/en
Publication of JPH09248456A publication Critical patent/JPH09248456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an adsorbent excellent in selective adsorbing activity and having molecular sieve capacity by thermally polymerizing a compd. having a specific molecular size and thermal polymerization reactivity within pores of activated carbon fibers. SOLUTION: Activated carbon fibers wherein the greater part of pores are micropores of 2mm or less are used and an aromatic compd. containing atoms selected from carbon, hydrogen, nitrogen, sulfur and oxygen such as benzene or toluene is thermally polymerized within the pores of activated carbon fibers. For example since, a carbocylic compd. has a planar molecular structure, it is laminated and adsorbed on the wall surfaces of pores of activated carbon fibers in a planar state. Subsequently, when these activated carbon fibers are heated, the adsorbed aromatic compd. such as benzene is thermally polymerized and carbonized to be deposited. By this method, an adsorbent narrowed and controlled in its pore size and showing excellent selectivity even to a mixture approximate in molecular size such as oxygen/nitrogen and having the selectivity of properties caused by atoms deposited to pores is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、混合物から特定の
分子だけを選択的に吸着する活性炭素繊維に関する。
TECHNICAL FIELD The present invention relates to an activated carbon fiber which selectively adsorbs only specific molecules from a mixture.

【0002】より詳しくは、本発明による活性炭素繊維
は、空気分離による高純度の酸素、窒素、アルゴンなど
の製造;二酸化炭素とメタンなどの選択的吸着分離によ
る各種ガス分離精製・製造などにおいて有用である。ま
た、本発明による活性炭素繊維は、排煙、化学工場排ガ
スなどの中の二酸化窒素、二酸化硫黄、塩化水素などの
酸性ガスの選択的吸着分離除去、金属イオンの選択的吸
着分離などのガス処理技術にも、有用である。さらに、
本発明による活性炭素繊維は、水道水中のハロゲン、ハ
ロゲン化炭化水素類の吸着除去、排水中の酸性イオン、
金属イオンなどの吸着除去などの浄水においても、有用
である。さらにまた、本発明による活性炭素繊維は、塩
基性に基づく触媒機能をも発揮する。
More specifically, the activated carbon fiber according to the present invention is useful in the production of high-purity oxygen, nitrogen, argon, etc. by air separation; various gas separation purification / production by selective adsorption separation of carbon dioxide and methane, etc. Is. Further, the activated carbon fiber according to the present invention is used for gas treatment such as selective adsorption / separation and removal of acid gases such as nitrogen dioxide, sulfur dioxide and hydrogen chloride in exhaust gas of exhaust gas from chemical plants, selective adsorption / separation of metal ions, etc. It is also useful in technology. further,
Activated carbon fiber according to the present invention, halogen in tap water, adsorption removal of halogenated hydrocarbons, acidic ions in wastewater,
It is also useful in water purification such as adsorption removal of metal ions. Furthermore, the activated carbon fibers according to the present invention also exert a catalytic function based on basicity.

【0003】[0003]

【従来の技術】従来、分子篩(モレキュラーシーブ)作
用を持つ物質としては、ゼオライト系のもの(MSZ−5A
など)と、分子篩炭素(モレキュラーシービングカーボ
ン、MSC-5Aなど)が知られている。このうち,モレキュ
ラーシービングカーボン(MSC)については、1948
年にエメット(P.H.Emmet)が、Chem.Rev.,43,69(194
8)でサラン炭の分子篩能を報告して以来、多数の報告
がある。その後実用化されたものとしては、武田薬品工
業株式会社の製品(特公昭49-37036号公報参照)、西独
Bergbau Forshung社の製品(特公昭52-18675号公報参
照)などがある。
2. Description of the Related Art Conventionally, zeolite-based substances (MSZ-5A) have been used as substances having a molecular sieve action.
Etc.) and molecular sieve carbon (molecular sieving carbon, MSC-5A, etc.) are known. Of these, for molecular sieving carbon (MSC), 1948
In the year PHEmmet, Chem. Rev., 43, 69 (194
Since 8) reported the molecular sieving ability of Saran coal, there are many reports. After that, products that were commercialized were Takeda Pharmaceutical Co., Ltd.'s products (see Japanese Patent Publication No. 49-37036), West Germany.
There is a product of Bergbau Forshung (see Japanese Patent Publication No. 52-18675).

【0004】これらの製造方法は、次の5種に分類され
る;(1)樹脂などの熱分解法、(2)炭化物を原料と
する賦活法、(3)炭化物や活性炭を原料として、有機
物を含浸させた後、熱処理する法、(4)炭化物や活性
炭を原料とするCVD法、(5)炭化物や活性炭を原料
とする熱収縮法。
These production methods are classified into the following five types: (1) a thermal decomposition method of a resin or the like, (2) an activation method using a carbide as a raw material, and (3) an organic substance using a carbide or an activated carbon as a raw material. After impregnating with, heat treatment, (4) CVD method using carbide or activated carbon as a raw material, and (5) heat shrinking method using carbide or activated carbon as a raw material.

【0005】しかしながら、従来のMSC製造に際して
は、細孔径をある値に精密に制御する技術は確立されて
いない。その理由は、樹脂などの熱分解法では、プラス
チック類(サラン、ポリ塩化ビニリデン、フェノール樹
脂、尿素樹脂など)を600〜900℃で炭化しただけのもの
で、細孔制御には程遠い製法であること、賦活法も、炭
化物をスチームや二酸化炭素で700〜800℃で軽度に賦活
する方法であり、精密な制御は困難であることなどによ
る。
However, in the conventional MSC production, a technique for precisely controlling the pore diameter to a certain value has not been established. The reason for this is that in the thermal decomposition method of resins, plastics (saran, polyvinylidene chloride, phenol resin, urea resin, etc.) are only carbonized at 600 to 900 ° C, which is a method far from pore control. The activation method is also a method of mildly activating the carbide with steam or carbon dioxide at 700 to 800 ° C., and it is difficult to precisely control it.

【0006】また、原料である炭化物や活性炭に有機物
を含浸させたり、CVDする方法では、細孔制御性はある
程度は高まるが、原料自身の細孔径の分布が0.5〜500nm
以上と極めて広く、均一な細孔を得ることがほとんど不
可能である。
In the method of impregnating a raw material such as carbide or activated carbon with an organic substance or by CVD, the pore controllability is improved to some extent, but the distribution of the pore diameter of the raw material itself is 0.5 to 500 nm.
As described above, it is almost impossible to obtain uniform and wide pores.

【0007】さらに、従来の含浸法では、コールタール
ピッチ、樹脂類などを含浸剤に用いており、また従来の
CVD法では、ベンゼン、トルエン、スチレンなどを蒸着
させているが、いずれもそれらの持つ化学官能基の特性
を分子篩炭に付与する技術ではなかった。
Further, in the conventional impregnation method, coal tar pitch, resins and the like are used as the impregnating agent.
In the CVD method, benzene, toluene, styrene, etc. are vapor-deposited, but none of them was a technology for imparting the characteristics of their chemical functional groups to molecular sieve coal.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記問題点
を解決するために鋭意検討した結果、活性炭素繊維を基
材として用い、特定の分子サイズと熱重合反応性を有す
る化合物を活性炭素繊維の細孔内で熱重合させ、沈着さ
せることにより、選択的吸着能に優れ、且つ分子篩性能
を持つ吸着剤を製造することに成功した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has used activated carbon fiber as a base material and activated a compound having a specific molecular size and thermal polymerization reactivity. We succeeded in producing an adsorbent having excellent selective adsorption ability and molecular sieve performance by thermally polymerizing and depositing in the pores of carbon fiber.

【0009】即ち、本発明は、下記の選択的吸着能を有
する分子篩活性炭素繊維およびその製造方法を提供す
る; 1.活性炭素繊維の2nm以下の細孔内で、炭素原子と水
素、窒素、硫黄および酸素からなる群から選ばれた少な
くとも1種の原子とを含む芳香族化合物を熱重合させ、
沈着させてなる選択的吸着能を持つ分子篩活性炭素繊
維。
That is, the present invention provides a molecular sieve activated carbon fiber having the following selective adsorption ability and a method for producing the same: An aromatic compound containing carbon atoms and at least one atom selected from the group consisting of hydrogen, nitrogen, sulfur and oxygen is thermally polymerized in pores of 2 nm or less of the activated carbon fiber,
A molecular sieve activated carbon fiber with selective adsorption ability deposited.

【0010】2.芳香族化合物の分子厚みにより任意に
細孔径が制御された上記項1に記載の活性炭素繊維。
[0010] 2. Item 2. The activated carbon fiber according to Item 1, wherein the pore size is arbitrarily controlled by the molecular thickness of the aromatic compound.

【0011】3.細孔内に沈着した炭素化合物中の窒素
原子および/または硫黄原子および/または酸素原子に
起因する選択的性能を有する上記項1または2に記載の
活性炭素繊維。
3. Item 3. The activated carbon fiber according to Item 1 or 2, which has selective performance due to a nitrogen atom and / or a sulfur atom and / or an oxygen atom in the carbon compound deposited in the pores.

【0012】4.活性炭素繊維の2nm以下の細孔内で、
炭素原子と水素、窒素、硫黄および酸素からなる群から
選ばれた少なくとも1種の原子とを含む芳香族化合物を
熱重合させ、沈着させることを特徴とする選択的吸着能
を持つ分子篩活性炭素繊維の製造方法。
4. Within the pores of 2 nm or less of activated carbon fiber,
Molecular sieve activated carbon fiber having selective adsorption ability, characterized by thermally polymerizing and depositing an aromatic compound containing carbon atoms and at least one atom selected from the group consisting of hydrogen, nitrogen, sulfur and oxygen. Manufacturing method.

【0013】5.芳香族化合物の分子厚みにより任意に
細孔径を制御する上記項4に記載の活性炭素繊維の製造
方法。
5. Item 5. The method for producing activated carbon fiber according to Item 4, wherein the pore size is arbitrarily controlled by the molecular thickness of the aromatic compound.

【0014】6.芳香族化合物が単環または二環である
上記項4または5に記載の活性炭素繊維の製造方法。
6. Item 6. The method for producing activated carbon fiber according to Item 4 or 5, wherein the aromatic compound is monocyclic or bicyclic.

【0015】7.芳香族化合物がピリジンであることを
特徴とする上記項4〜6のいずれかに記載の活性炭素繊
維の製造方法。
[0015] 7. 7. The method for producing activated carbon fiber according to any one of items 4 to 6, wherein the aromatic compound is pyridine.

【0016】8.熱重合を600〜800℃の温度下で行う上
記項4〜7のいずれかに記載の活性炭素繊維の製造方
法。
8. Item 8. The method for producing an activated carbon fiber according to any one of Items 4 to 7, wherein the thermal polymerization is performed at a temperature of 600 to 800 ° C.

【0017】9.熱重合を650〜750℃の温度下で行う上
記項8に記載の活性炭素繊維の製造方法。
9. Item 9. The method for producing an activated carbon fiber according to Item 8, wherein the thermal polymerization is performed at a temperature of 650 to 750 ° C.

【0018】10.芳香族化合物の活性炭素繊維細孔内
への進入がその分子サイズにより停止する時点で、熱重
合と沈着を停止させる上記項4〜9のいずれかに記載の
活性炭素繊維の製造方法。
10. 10. The method for producing an activated carbon fiber according to any one of items 4 to 9, wherein the thermal polymerization and the deposition are stopped at the time when the invasion of the aromatic compound into the activated carbon fiber pores is stopped due to the molecular size.

【0019】[0019]

【発明の実施の形態】本発明では、従来の活性炭とは構
造の異なる活性炭素繊維を基材として使用するので、基
材自身の細孔が極めて均一である。図1に本発明で使用
する活性炭素繊維と従来の粒状活性炭とを比較して示
す。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, since activated carbon fiber having a structure different from that of conventional activated carbon is used as a base material, the pores of the base material itself are extremely uniform. FIG. 1 shows a comparison between activated carbon fibers used in the present invention and conventional granular activated carbon.

【0020】従来の粒状活性炭は、細孔径は、0.5nm程
度のミクロポアから500nm以上のマクロポアまで広い範
囲に分布している。これに対し、本発明で使用する活性
炭素繊維は、その細孔の大半が2nm以下のミクロポアで
構成されており、均一な細孔分布を有しているので、そ
の細孔内で化合物を熱重合させ、沈着させることによ
り、極めて均一な細孔分布を持つ分子篩活性炭素繊維を
得ることができる。
The conventional granular activated carbon has a wide pore size distribution ranging from micropores of about 0.5 nm to macropores of 500 nm or more. On the other hand, the activated carbon fiber used in the present invention has most of the pores composed of micropores of 2 nm or less and has a uniform pore distribution, so that the compound is heated in the pores. By polymerizing and depositing, a molecular sieve activated carbon fiber having a very uniform pore distribution can be obtained.

【0021】さらに、沈着させる化合物として、芳香族
化合物を用いることにより、図2に示す機構により、細
孔径の精密な制御をはかることができる。芳香族化合物
としては、単環または二環のものがその分子サイズと熱
重合反応性の点で、適しており、より具体的には、ベン
ゼン、トルエン、キシレン、エチルベンゼン、スチレ
ン、ナフタレン、ピリジン、メチルピリジン、キノリン
などが特に有用である。図2では、沈着させる化合物と
してベンゼンを例示しているが、このような炭素環状化
合物は、平面的な分子構造を持っており、分子直径は0.
7nm、分子厚みは0.37nmである。これを活性炭素繊維の
2nm以下の細孔内に吸着させた場合、細孔内壁面に平面
的に積層吸着する(第1段階)。
Further, by using an aromatic compound as the compound to be deposited, the pore size can be precisely controlled by the mechanism shown in FIG. As the aromatic compound, a monocyclic or bicyclic compound is suitable in terms of its molecular size and thermal polymerization reactivity, and more specifically, benzene, toluene, xylene, ethylbenzene, styrene, naphthalene, pyridine, Methylpyridine, quinoline and the like are particularly useful. In Fig. 2, benzene is illustrated as an example of the compound to be deposited, but such a carbocyclic compound has a planar molecular structure and a molecular diameter of 0.
The thickness is 7 nm and the molecular thickness is 0.37 nm. When this is adsorbed in the pores of the activated carbon fiber having a diameter of 2 nm or less, it is planarly adsorbed on the inner wall surface of the pore (first step).

【0022】従って、沈着させる化合物の分子厚みによ
り、任意に細孔径を制御できる。また、その分子厚み以
下に細孔径が狭小化した後は、沈着化合物は進入するこ
とができず、反応が停止する。
Therefore, the pore diameter can be arbitrarily controlled by the molecular thickness of the compound to be deposited. Further, after the pore diameter is narrowed to the molecular thickness or less, the deposition compound cannot enter and the reaction is stopped.

【0023】次いで、上記の様にしてベンゼンなどの芳
香族化合物の分子を沈着させた活性炭素繊維を600〜800
℃の温度で加熱することにより、吸着したベンゼンなど
の芳香族化合物の分子が熱重合し、炭素化して、沈着す
る。これは難黒鉛化性炭素である(第2段階)。
Next, 600 to 800 activated carbon fibers having the molecules of the aromatic compound such as benzene deposited as described above are prepared.
By heating at a temperature of ° C, the adsorbed molecules of the aromatic compound such as benzene are thermally polymerized, carbonized, and deposited. This is non-graphitizable carbon (second stage).

【0024】加熱温度が600℃未満である場合には、芳
香族化合物が熱重合しないか或いは熱重合したとして
も、反応速度が非常に遅くなる。これに対し、加熱温度
が800℃を超える場合には、芳香族化合物が活性炭素繊
維細孔内部に到達する前に気相で熱重合が起きてしま
い、これが活性炭素繊維の外表面を覆って、細孔を閉塞
してしまうため、分子篩能はまったく発現されない。
When the heating temperature is lower than 600 ° C., the reaction rate becomes very slow even if the aromatic compound does not heat-polymerize or heat-polymerizes. On the other hand, when the heating temperature exceeds 800 ° C, thermal polymerization occurs in the vapor phase before the aromatic compound reaches the inside of the activated carbon fiber pores, which covers the outer surface of the activated carbon fiber. Since the pores are blocked, the molecular sieving ability is not expressed at all.

【0025】以上のようにして得られた分子篩活性炭素
繊維は、その細孔サイズが狭小化され、且つ制御されて
いるので、酸素/窒素、二酸化炭素/メタンなどの分子
サイズの近似したガス同士を含む混合物に対しても、優
れた選択的吸着分離性能を発現する。
The molecular sieve-activated carbon fiber obtained as described above has a narrow pore size and is controlled, so that gases having similar molecular sizes such as oxygen / nitrogen, carbon dioxide / methane, etc. It also exhibits excellent selective adsorptive separation performance even for a mixture containing.

【0026】さらに、沈着させる化合物として水素、窒
素、硫黄および酸素のうち少なくとも1種の原子を含む
芳香族化合物を用いることにより、細孔内に沈着した炭
素化合物の窒素原子および/または硫黄原子および/ま
たは酸素原子に起因する塩基性、金属配位能、触媒機能
などの選択的性能を有する分子篩活性炭素繊維を製造す
ることができる。
Furthermore, by using an aromatic compound containing at least one atom of hydrogen, nitrogen, sulfur and oxygen as the compound to be deposited, the nitrogen atom and / or the sulfur atom of the carbon compound deposited in the pores and It is possible to produce a molecular sieve activated carbon fiber having selective properties such as basicity, metal coordination ability, and catalytic function due to oxygen atoms.

【0027】例えば、塩基性を有する分子篩活性炭素繊
維を製造するには、窒素原子を含む芳香族化合物が適し
ており、より具体的にはピリジン、メチルピリジン、キ
ノリンなどが挙げられる。これらの中でも、特にピリジ
ンの効果が優れている。すなわち、ピリジンに由来する
窒素官能基の効果により、活性炭素繊維に塩基性を付与
でき、二酸化硫黄などの酸性ガスの吸着性能が飛躍的に
向上し、また触媒機能も顕著に発現する。
For example, an aromatic compound containing a nitrogen atom is suitable for producing a basic molecular sieve activated carbon fiber, and more specific examples thereof include pyridine, methylpyridine and quinoline. Among these, pyridine is particularly effective. That is, due to the effect of the nitrogen functional group derived from pyridine, basicity can be imparted to the activated carbon fiber, the adsorption performance of acidic gas such as sulfur dioxide is dramatically improved, and the catalytic function is remarkably exhibited.

【0028】[0028]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples are shown below to further clarify the features of the present invention.

【0029】実施例1 図3に示すCahn天秤装置7を使用して、活性炭素繊維
(Activated Carbon Fiber;以下ACFとする)への芳香
族化合物の沈着処理を実施し、選択的吸着能を持つ分子
篩活性炭素繊維を調製した。
Example 1 A Cahn balance device 7 shown in FIG. 3 was used to deposit an aromatic compound on an activated carbon fiber (hereinafter referred to as ACF) to have a selective adsorption ability. A molecular sieve activated carbon fiber was prepared.

【0030】すなわち、ACFとしてピッチ系ACF(大阪ガ
ス(株)製、商品名「OG-20A」)を用い、その0.2〜0.3
gを石英バスケット10に充填し、キャリアガスボンベ
1から配管2を経てヘリウム150ml/mimを系内へ流通さ
せた。次いで、石英バスケット10を囲むように管状炉
9を取り付け、室温から所定の温度まで10℃/minで昇温
し、所定の温度で1時間保持した。その後、マイクロシ
リンジ5からピリジンを導入した。ACFに対するピリジ
ンの析出量は、天秤で確認した。ピリジンを所定量まで
析出させた後、その導入を停止し、その後、室温まで空
冷した。
That is, a pitch type ACF (trade name "OG-20A" manufactured by Osaka Gas Co., Ltd.) is used as the ACF, and its 0.2 to 0.3
The quartz basket 10 was filled with g, and 150 ml / mim of helium was passed from the carrier gas cylinder 1 through the pipe 2 into the system. Next, a tubular furnace 9 was attached so as to surround the quartz basket 10, the temperature was raised from room temperature to a predetermined temperature at 10 ° C./min, and the temperature was maintained at the predetermined temperature for 1 hour. Then, pyridine was introduced from the microsyringe 5. The amount of pyridine deposited with respect to ACF was confirmed by a balance. After the pyridine was precipitated to a predetermined amount, its introduction was stopped, and then it was cooled to room temperature by air.

【0031】なお、図3に示す装置全体において、3は
三方コック、4はストップバルブ、6はヒーター、8は
フレームをそれぞれ示す。
In the entire apparatus shown in FIG. 3, 3 is a three-way cock, 4 is a stop valve, 6 is a heater, and 8 is a frame.

【0032】図4にピリジン析出の経時変化を示す。温
度400℃ではほとんどピリジンの析出はなく、また500
℃、600℃、650℃でも析出による重量増加は、非常に遅
い。しかしながら、温度を700℃に上げると、180分後に
30%(=300mg/g・AFC)の析出があった。さらに、725
℃で析出させると、約120分で飽和に達し、45%の析出
が起こり、それ以降は析出量は、増加しない。
FIG. 4 shows the change with time in the precipitation of pyridine. Almost no pyridine was precipitated at a temperature of 400 ° C and 500
Even at ℃, 600 ℃ and 650 ℃, the weight increase due to precipitation is very slow. However, if you raise the temperature to 700 ° C, after 180 minutes
There was precipitation of 30% (= 300 mg / g · AFC). In addition, 725
When it was precipitated at ℃, it reached saturation in about 120 minutes, 45% precipitation occurred, and thereafter the amount of precipitation does not increase.

【0033】725℃でピリジンを析出させたACFの析出場
所をPoint1〜4の4段階に分け、サンプルを取り出し
分析した。結果を表1に示す。
The deposition location of ACF in which pyridine was deposited at 725 ° C. was divided into four stages of Points 1 to 4, and a sample was taken out and analyzed. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1において、Point1、2、3および4
は、各々ピリジン由来の析出炭素量が8、16、25および4
5%の時点でのサンプルに相当する。比表面積(m2/
g)、細孔容積(ml/g)および平均細孔径(nm)のデー
タは、(株)島津製作所製「ASAP2400」測定装置を用
い、窒素吸着BET法により測定した。
In Table 1, Points 1, 2, 3 and 4
Is the amount of precipitated carbon derived from pyridine, 8, 16, 25 and 4 respectively.
This corresponds to the sample at 5%. Specific surface area (m 2 /
The data of g), pore volume (ml / g) and average pore diameter (nm) were measured by the nitrogen adsorption BET method using an “ASAP2400” measuring device manufactured by Shimadzu Corporation.

【0036】表1に示す結果から、ピリジンの析出量が
増加するに従って、比表面積、細孔容積および平均細孔
径はいずれも減少し、ACF細孔内でピリジンの沈着およ
び析出が起こっていることが確認された。特に、Point
4の45%飽和になるまで炭素を析出させた場合には、細
孔径は0.47nmまで狭小化し、それ以上の炭素の析出は起
こっていない。
From the results shown in Table 1, the specific surface area, the pore volume and the average pore diameter decreased as the amount of pyridine deposited increased, and the deposition and precipitation of pyridine occurred in the ACF pores. Was confirmed. In particular, Point
When carbon was deposited to 45% saturation of No. 4, the pore size was narrowed to 0.47 nm, and further deposition of carbon did not occur.

【0037】実施例2 725℃でピリジン由来の炭素を11%析出させたACF(大阪
ガス(株)製「OG-20A」)について、760Torr、室温下
における二酸化炭素とメタンの吸着等温線を図5に示
す。
Example 2 With respect to ACF (“OG-20A” manufactured by Osaka Gas Co., Ltd.) in which 11% of carbon derived from pyridine was deposited at 725 ° C., an adsorption isotherm of carbon dioxide and methane at 760 Torr and room temperature was plotted. 5 shows.

【0038】二酸化炭素は、3分程度で急速に吸着さ
れ、35mlの二酸化炭素がACF1gに吸着する。これに対
し、メタンは殆ど吸着されないので、二酸化炭素/メタ
ン共存ガスから二酸化炭素のみを選択的に吸着分離でき
ることが明らかである。
Carbon dioxide is rapidly adsorbed in about 3 minutes, and 35 ml of carbon dioxide is adsorbed on 1 g of ACF. On the other hand, since methane is hardly adsorbed, it is clear that only carbon dioxide can be selectively adsorbed and separated from the carbon dioxide / methane coexisting gas.

【0039】実施例3 700℃でピリジン由来の炭素を11%析出させたACF(大阪
ガス(株)製「OG-20A」)について、760Torr、室温下
における酸素と窒素の吸着等温線を図6に示す。酸素は
3分程度で急速に吸着され、4.5mlの酸素がACF1gに吸
着する。これに対し、窒素の吸着は遅いので、空気から
酸素のみを選択的に吸着分離できることが明らかであ
る。
Example 3 For ACF (“OG-20A” manufactured by Osaka Gas Co., Ltd.) in which 11% of carbon derived from pyridine was deposited at 700 ° C., adsorption isotherms of oxygen and nitrogen at 760 Torr and room temperature are shown in FIG. Shown in. Oxygen is rapidly adsorbed in about 3 minutes, and 4.5 ml of oxygen is adsorbed on 1 g of ACF. On the other hand, since the adsorption of nitrogen is slow, it is clear that only oxygen can be selectively adsorbed and separated from the air.

【0040】実施例4および比較例1 表2に725℃でピリジン由来の炭素を20%析出させたACF
(大阪ガス(株)製「OG-20A」)について、760Torr、3
0℃下における二酸化硫黄の飽和吸着量を表2に示す。
表2には、比較例1として無処理のACFに対する同様の
吸着量を示す。
Example 4 and Comparative Example 1 Table 2 shows ACF in which 20% of pyridine-derived carbon was deposited at 725 ° C.
About "OG-20A" manufactured by Osaka Gas Co., Ltd., 760Torr, 3
Table 2 shows the saturated adsorption amount of sulfur dioxide at 0 ° C.
Table 2 shows the same amount of adsorption to untreated ACF as Comparative Example 1.

【0041】[0041]

【表2】 [Table 2]

【0042】本発明による分子篩活性炭素繊維の総吸着
量は、無処理ACFに比べて、2倍以上に増加している。
The total adsorption amount of the molecular sieve activated carbon fiber according to the present invention is more than doubled as compared with the untreated ACF.

【0043】表2において、物理吸着量とは、総吸着量
の内数で、飽和吸着後150℃にACFを加熱したとき脱離す
る二酸化硫黄の量である。この値は。炭素を析出させた
方が1.6倍程度増加した。
In Table 2, the physical adsorption amount is the number of the total adsorption amount, and is the amount of sulfur dioxide desorbed when the ACF is heated to 150 ° C. after saturated adsorption. This value is. The precipitation of carbon increased about 1.6 times.

【0044】また、化学吸着量とは、物理吸着より強く
吸着した二酸化硫黄の量であり、総吸着量の内数で、飽
和吸着後400℃にACFを加熱したとき、脱離する二酸化硫
黄の量である。この値は炭素を析出させた方が13倍以
上に増加した。即ち、ピリジン由来の炭素が析出したAC
Fは、ピリジンの持つ窒素原子が窒素官能基として残
り、塩基性を示すので、酸性の二酸化硫黄を強く吸着す
る。
The chemical adsorption amount is the amount of sulfur dioxide adsorbed more strongly than physical adsorption. It is the number of total adsorption amount and is the amount of sulfur dioxide desorbed when ACF is heated to 400 ° C. after saturated adsorption. Is the amount. This value increased 13 times or more when carbon was deposited. That is, AC in which carbon derived from pyridine is deposited
In F, the nitrogen atom of pyridine remains as a nitrogen functional group and exhibits basicity, and thus strongly adsorbs acidic sulfur dioxide.

【0045】実施例5および比較例2〜3 実施例1と同様にして活性炭素繊維を処理した場合のベ
ンゼンの析出の経時変化を図7に示す。温度400℃では
ベンゼンの析出は殆どなく、500℃および600℃でも析出
による重量増加は、非常に遅い。しかしながら、温度を
700℃に上げると、120分の経過で10%(=100mg/g・AC
F)の析出があった。
Example 5 and Comparative Examples 2 to 3 FIG. 7 shows the change over time in the precipitation of benzene when the activated carbon fiber was treated in the same manner as in Example 1. Almost no precipitation of benzene occurs at a temperature of 400 ° C, and the weight increase due to precipitation is very slow even at 500 ° C and 600 ° C. However, the temperature
When the temperature is raised to 700 ° C, 10% (= 100mg / g ・ AC) after 120 minutes
There was precipitation of F).

【0046】さらに、725℃および800℃でそれぞれ析出
させると、45分および30分でそれぞれ飽和に達して、10
%の析出が起こり、それ以降は析出が増加しない。
Furthermore, when precipitation was carried out at 725 ° C. and 800 ° C. respectively, saturation was reached in 45 minutes and 30 minutes, respectively, and
% Precipitation occurs and thereafter does not increase.

【0047】しかしながら、温度を900℃に上げると、
析出量は10%を超え、経時変化とともに増加し、収束し
ない。これは、気相で熱重合したベンゼン由来の炭素が
ACFの表面に沈着していくためである。
However, if the temperature is raised to 900 ° C.,
The amount of precipitation exceeds 10%, increases with time and does not converge. This is because the carbon derived from benzene that was thermally polymerized in the gas phase
This is because it will be deposited on the surface of the ACF.

【0048】図7において、725℃で60分経過して、ベ
ンゼン由来の炭素を10%析出させたACFを実施例5と
し、900℃で40分経過し、同じく10%析出させたACFを比
較例2とし、無処理のACFを比較例3として、それらの7
60Torr、室温下における二酸化炭素とメタンの吸着等温
線を図8に示す。
In FIG. 7, an ACF in which 10% of benzene-derived carbon was deposited at 725 ° C. for 60 minutes was designated as Example 5, and the same 10% of ACF deposited at 900 ° C. for 40 minutes was compared. Example 2 and untreated ACF as Comparative Example 3
FIG. 8 shows adsorption isotherms of carbon dioxide and methane at 60 Torr and room temperature.

【0049】900℃で炭素析出させたACF(比較例
2)は、二酸化炭素とメタンの吸着量がともにに低く、
比較例3の無処理のACFの値をも下回り、また、ガス種
の選択性も低い。
ACF (Comparative Example 2) carbon-deposited at 900 ° C. had low adsorption amounts of carbon dioxide and methane,
It is lower than the value of untreated ACF of Comparative Example 3, and the gas species selectivity is low.

【0050】また、比較例3の無処理ACFは、二酸化炭
素の吸着量は37.3ml/gと大きいが、メタンの吸着量も1
5.8ml/gと大きいので、選択性(二酸化炭素/メタン)
が、2.36と低く、分子篩性能は発現されない。
The untreated ACF of Comparative Example 3 has a large carbon dioxide adsorption amount of 37.3 ml / g, but also has a methane adsorption amount of 1%.
As large as 5.8 ml / g, selectivity (carbon dioxide / methane)
However, it is as low as 2.36, and the molecular sieve performance is not expressed.

【0051】一方、実施例5の725℃で析出させたACF
は、二酸化炭素の吸着量は32ml/gであるが、メタンの吸
着量は1ml/gしかなく、選択性(二酸化炭素/メタン)
が、32と非常に高く、優れた分子篩性能を発揮する。
On the other hand, the ACF precipitated in Example 5 at 725 ° C.
Has a carbon dioxide adsorption capacity of 32 ml / g, but has a methane adsorption capacity of only 1 ml / g, which is selective (carbon dioxide / methane).
However, it is extremely high at 32 and exhibits excellent molecular sieve performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】活性炭素繊維と粒状活性炭の特性を対比して示
す図である。
FIG. 1 is a diagram showing characteristics of activated carbon fibers and granular activated carbon in comparison.

【図2】活性炭素繊維にベンゼンが沈着し、熱重合し
て、析出する過程を示す模式図である。
FIG. 2 is a schematic diagram showing a process in which benzene is deposited on activated carbon fibers, thermally polymerized, and deposited.

【図3】実施例で使用した活性炭繊維に対する芳香族化
合物の沈着および析出のための装置を示す模式的断面図
である。
FIG. 3 is a schematic cross-sectional view showing an apparatus for depositing and depositing an aromatic compound on activated carbon fibers used in Examples.

【図4】実施例1におけるピリジンの析出の掲示変化を
示すグラフである。
FIG. 4 is a graph showing changes in the precipitation of pyridine in Example 1.

【図5】実施例2における本発明の分子篩活性炭素繊維
のCO2とCH4の吸着等温曲線を示すグラフである。
FIG. 5 is a graph showing adsorption isotherms of CO 2 and CH 4 of the molecular sieve activated carbon fiber of the present invention in Example 2.

【図6】実施例3における本発明の分子篩活性炭素繊維
のO2とN2の吸着等温曲線を示すグラフである。
FIG. 6 is a graph showing adsorption isotherms of O 2 and N 2 of the molecular sieve activated carbon fiber of the present invention in Example 3.

【図7】実施例5と比較例2におけるベンゼン析出の経
時変化を示すグラフである。
FIG. 7 is a graph showing changes over time in benzene precipitation in Example 5 and Comparative Example 2.

【図8】実施例5および比較例2、3における活性炭素
繊維のCO2とCH4の吸着等温曲線を示すグラフであ
る。
FIG. 8 is a graph showing adsorption isotherms of CO 2 and CH 4 of activated carbon fibers in Example 5 and Comparative Examples 2 and 3.

【符号の説明】[Explanation of symbols]

1…キャリアガスボンベ 2…配管 3…三方コック 4…ストップバルブ 5…マイクロシリンジ 6…ヒーター 7…Cahn天秤 8…フレーム 9…管状炉 10…石英バスケット 1 ... Carrier gas cylinder 2 ... Piping 3 ... Three-way cock 4 ... Stop valve 5 ... Micro syringe 6 ... Heater 7 ... Cahn balance 8 ... Frame 9 ... Tubular furnace 10 ... Quartz basket

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】活性炭素繊維の2nm以下の細孔内で、炭素
原子と水素、窒素、硫黄および酸素からなる群から選ば
れた少なくとも1種の原子とを含む芳香族化合物を熱重
合させ、沈着させてなる選択的吸着能を持つ分子篩活性
炭素繊維。
1. An aromatic compound containing carbon atoms and at least one atom selected from the group consisting of hydrogen, nitrogen, sulfur and oxygen is thermally polymerized in pores of 2 nm or less of activated carbon fiber, A molecular sieve activated carbon fiber with selective adsorption ability deposited.
【請求項2】芳香族化合物の分子厚みにより任意に細孔
径が制御された請求項1に記載の活性炭素繊維。
2. The activated carbon fiber according to claim 1, wherein the pore size is arbitrarily controlled by the molecular thickness of the aromatic compound.
【請求項3】細孔内に沈着した炭素化合物中の窒素原子
および/または硫黄原子および/または酸素原子に起因
する選択的性能を有する請求項1または2に記載の活性
炭素繊維。
3. The activated carbon fiber according to claim 1, which has selective performance due to nitrogen atoms and / or sulfur atoms and / or oxygen atoms in the carbon compound deposited in the pores.
【請求項4】活性炭素繊維の2nm以下の細孔内で、炭素
原子と水素、窒素、硫黄および酸素からなる群から選ば
れた少なくとも1種の原子とを含む芳香族化合物を熱重
合させ、沈着させることを特徴とする選択的吸着能を持
つ分子篩活性炭素繊維の製造方法。
4. An aromatic compound containing carbon atoms and at least one atom selected from the group consisting of hydrogen, nitrogen, sulfur and oxygen is thermally polymerized in pores of 2 nm or less of activated carbon fiber, A method for producing a molecular sieve activated carbon fiber having selective adsorption ability, which comprises depositing.
【請求項5】芳香族化合物の分子厚みにより任意に細孔
径を制御する請求項4に記載の活性炭素繊維の製造方
法。
5. The method for producing activated carbon fiber according to claim 4, wherein the pore size is arbitrarily controlled by the molecular thickness of the aromatic compound.
【請求項6】芳香族化合物が単環または二環である請求
項4または5に記載の活性炭素繊維の製造方法。
6. The method for producing activated carbon fiber according to claim 4, wherein the aromatic compound is monocyclic or bicyclic.
【請求項7】芳香族化合物がピリジンであることを特徴
とする請求項4〜6のいずれかに記載の活性炭素繊維の
製造方法。
7. The method for producing activated carbon fiber according to claim 4, wherein the aromatic compound is pyridine.
【請求項8】熱重合を600〜800℃の温度下で行う
請求項4〜7のいずれかに記載の活性炭素繊維の製造方
法。
8. The method for producing an activated carbon fiber according to claim 4, wherein the thermal polymerization is carried out at a temperature of 600 to 800 ° C.
【請求項9】熱重合を650〜750℃の温度下で行う
請求項8に記載の活性炭素繊維の製造方法。
9. The method for producing activated carbon fiber according to claim 8, wherein the thermal polymerization is carried out at a temperature of 650 to 750 ° C.
【請求項10】芳香族化合物の活性炭素繊維細孔内への
進入がその分子サイズにより停止する時点で、熱重合と
沈着を停止させる請求項4〜9のいずれかに記載の活性
炭素繊維の製造方法。
10. The activated carbon fiber according to claim 4, wherein the thermal polymerization and the deposition are stopped at the time when the invasion of the aromatic compound into the activated carbon fiber pores is stopped by its molecular size. Production method.
JP8060650A 1996-03-18 1996-03-18 Molecular sieve activated carbon fiber having selective adsorbing capacity and its production Pending JPH09248456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8060650A JPH09248456A (en) 1996-03-18 1996-03-18 Molecular sieve activated carbon fiber having selective adsorbing capacity and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8060650A JPH09248456A (en) 1996-03-18 1996-03-18 Molecular sieve activated carbon fiber having selective adsorbing capacity and its production

Publications (1)

Publication Number Publication Date
JPH09248456A true JPH09248456A (en) 1997-09-22

Family

ID=13148430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8060650A Pending JPH09248456A (en) 1996-03-18 1996-03-18 Molecular sieve activated carbon fiber having selective adsorbing capacity and its production

Country Status (1)

Country Link
JP (1) JPH09248456A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514546A (en) * 2000-09-20 2004-05-20 シェブロン ユー.エス.エー. インコーポレイテッド Matrix membrane mixed with pyrolytic carbon sieve particles and its preparation and use
JP2005187253A (en) * 2003-12-25 2005-07-14 Japan Enviro Chemicals Ltd Activated carbon to which carbon dioxide is adsorbed and its manufacturing method
WO2011125504A1 (en) * 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
JP2016512163A (en) * 2013-03-12 2016-04-25 スリーエム イノベイティブ プロパティズ カンパニー Removal of chlorine and / or chloramine from aqueous solution
WO2021095738A1 (en) * 2019-11-13 2021-05-20 大阪ガスケミカル株式会社 Molecular sieve activated carbon
CN114522664A (en) * 2022-03-21 2022-05-24 美埃(中国)环境科技股份有限公司 Molecular sieve inorganic fiber felt for adsorbing different VOCs (volatile organic compounds) and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514546A (en) * 2000-09-20 2004-05-20 シェブロン ユー.エス.エー. インコーポレイテッド Matrix membrane mixed with pyrolytic carbon sieve particles and its preparation and use
JP2005187253A (en) * 2003-12-25 2005-07-14 Japan Enviro Chemicals Ltd Activated carbon to which carbon dioxide is adsorbed and its manufacturing method
JP4537699B2 (en) * 2003-12-25 2010-09-01 日本エンバイロケミカルズ株式会社 Activated carbon slurry transport method
WO2011125504A1 (en) * 2010-03-31 2011-10-13 クラレケミカル株式会社 Activated carbon and uses thereof
CN102822093A (en) * 2010-03-31 2012-12-12 可乐丽化学株式会社 Activated carbon and uses thereof
JP5815506B2 (en) * 2010-03-31 2015-11-17 クラレケミカル株式会社 Activated carbon and its use
US9359390B2 (en) 2010-03-31 2016-06-07 Kuraray Chemical Co., Ltd. Activated carbon and use therefor
JP2016512163A (en) * 2013-03-12 2016-04-25 スリーエム イノベイティブ プロパティズ カンパニー Removal of chlorine and / or chloramine from aqueous solution
CN110078154A (en) * 2013-03-12 2019-08-02 3M创新有限公司 Dechlorination and/or chloramines are removed from aqueous solution
WO2021095738A1 (en) * 2019-11-13 2021-05-20 大阪ガスケミカル株式会社 Molecular sieve activated carbon
CN114522664A (en) * 2022-03-21 2022-05-24 美埃(中国)环境科技股份有限公司 Molecular sieve inorganic fiber felt for adsorbing different VOCs (volatile organic compounds) and preparation method thereof
CN114522664B (en) * 2022-03-21 2024-01-19 美埃(中国)环境科技股份有限公司 Molecular sieve inorganic fiber felt for adsorbing different VOCs and preparation method thereof

Similar Documents

Publication Publication Date Title
Shafiei et al. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101 (Cr) for VOCs removal at ambient conditions
US5098880A (en) Modified carbon molecular sieves for gas separation
KR100236785B1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
Kawabuchi et al. The modification of pore size in activated carbon fibers by chemical vapor deposition and its effects on molecular sieve selectivity
KR890011627A (en) Carbonaceous Adsorbent Particles and Manufacturing Processes
Moore et al. The preparation of carbon molecular sieves by pore blocking
US5294585A (en) Preparation of particulate composite material with carbon matrix
Jahangiri et al. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge
Giesy et al. Mass transfer rates of oxygen, nitrogen, and argon in carbon molecular sieves determined by pressure-swing frequency response
JPH09248456A (en) Molecular sieve activated carbon fiber having selective adsorbing capacity and its production
KR960010383B1 (en) Composite porous carbonaceous membranes
JP4025228B2 (en) Preparation method of molecular sieve adsorbent for selective separation of air size / morphology
Yan et al. Efficient adsorption separation of xylene isomers in zeolitic imidazolate framework-67@ MCF hybrid materials
Duan et al. A core–shell structure of β-cyclodextrin polyisocyanate boosts selective recovery of acetophenone from petrochemical by-products
Srivastava et al. Preparation of mesoporous carbon composites and its highly enhanced removal capacity of toxic pollutants from air
US7041616B1 (en) Enhanced selectivity of zeolites by controlled carbon deposition
JPS60209249A (en) Purifying agent for industrial gaseous raw material and method for preparation and use thereof
US20180126357A1 (en) Method for tailoring electrical resistivity of molecular sieve adsorbents for resistive heating application
JP3310348B2 (en) Method for producing molecular sieve carbon
JPS6359740B2 (en)
KR102583047B1 (en) Methane-selective adsorbent and method for selective separation of methane using the same
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
RU2518579C1 (en) Method of obtaining carbon adsorbent
RU2036718C1 (en) Porous carbonic material
Yakovleva et al. Effect of the Means Used to Synthesize Highly Fluorinated Polyimide on the Properties of an Adsorbent Prepared on Its Basis