JPH0599900A - Flaw detection by use of optomagnetic field - Google Patents

Flaw detection by use of optomagnetic field

Info

Publication number
JPH0599900A
JPH0599900A JP26403391A JP26403391A JPH0599900A JP H0599900 A JPH0599900 A JP H0599900A JP 26403391 A JP26403391 A JP 26403391A JP 26403391 A JP26403391 A JP 26403391A JP H0599900 A JPH0599900 A JP H0599900A
Authority
JP
Japan
Prior art keywords
inspected
magnetic field
film
optical
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26403391A
Other languages
Japanese (ja)
Other versions
JP2672912B2 (en
Inventor
Shuji Naito
藤 修 治 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3264033A priority Critical patent/JP2672912B2/en
Publication of JPH0599900A publication Critical patent/JPH0599900A/en
Application granted granted Critical
Publication of JP2672912B2 publication Critical patent/JP2672912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To rapidly and highly accurately detect a defect by making an optomagnetic effect element film whose axis of easy magnetization is perpendicular to the film surface close to a surface to be inspected, applying a strong magnetic field in parallel with the surface to be inspected, and optically scanning perpendicular components of the magnetic field leaking from a surface detect. CONSTITUTION:A thin film 5 of an optomagnetic effect element having an axis of easy magnetization perpendicular to the film surface is placed close to a surface of a material 1 to be inspected. When the material 1 is strongly magnetized by a magnetizer 2, a strong background magnetic field begins to scatter after the material 1 to be inspected is magnetically saturated completely. If no surface detect 7 exists, a direction of a magnetic flux 3 is horizontal with no magnetic component in a perpendicular direction. Sector light 7 linearly polarized through a polarizer 8 from a sector light source 6 is projected from a perpendicular direction and reflected on a bottom of the film 5 to be detected. If the detect 4 exists, a perpendicular magnetic field occurs in the vicinity, so that magnetization of the film 5 along the axis of easy magnetization proceeds, and rotation of a polarizing surface occurs due to a Faraday effect. This rotation is converted into a change in light amount by a light detector 9 and is made incident to a linear sensor 10 to be detected as a voltage signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性体の表面欠陥及
び表層内部欠陥を検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting surface defects and surface internal defects of a ferromagnetic material.

【0002】[0002]

【従来技術】強磁性体を磁化し、欠陥より漏洩する漏洩
磁束をホール素子や検出コイルにて検出する方法は、磁
粉探傷に較べて検査速度が速いことと、深さに対する検
出出力の相関性が高いうえ、渦流探傷法等のその他の方
法に比較して強磁性体材料の表面粗度及びスケールや透
磁率のばらつきの影響が少ないため、鋼管の自動探傷装
置等で多数使用されている。また特開平2−22768
3号公報に見られるごとく光磁界測定法を漏洩磁束の検
出に適用する為の考案もなされている。
2. Description of the Related Art A method of magnetizing a ferromagnetic material and detecting a leakage magnetic flux leaking from a defect by a hall element or a detection coil is that an inspection speed is faster than a magnetic particle flaw detection and a correlation of a detection output with a depth. In addition, since it is high in temperature, and less affected by variations in surface roughness and scale and magnetic permeability of the ferromagnetic material compared to other methods such as eddy current flaw detection, it is widely used in automatic flaw detectors for steel pipes. In addition, JP-A-2-22768
As seen in Japanese Patent No. 3 publication, a device for applying the optical magnetic field measuring method to the detection of the leakage magnetic flux has been devised.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の方法は
漏洩磁束を磁界の変化分として検出しているため、欠陥
の大きさが小さくなると磁界が漏れている範囲が急速に
小さくなり、これを検出するためには小さな磁界検出素
子を多数、被検査材の表面に近接して配置し、相手に追
従させる必要がある。しかし数千本の信号配線を有する
センサーヘッドを高速に移動する鋼帯や厚板に高速追従
する機構を製作する事は非常に困難であるしまたコスト
的にも実用的でない。
However, since the conventional method detects the leakage magnetic flux as a change in the magnetic field, the range in which the magnetic field leaks rapidly decreases as the size of the defect decreases. In order to detect, it is necessary to arrange a large number of small magnetic field detecting elements close to the surface of the material to be inspected and to follow the other party. However, it is very difficult to manufacture a mechanism that follows a steel head or a thick plate that moves a sensor head having thousands of signal wirings at high speed, and it is not practical in terms of cost.

【0004】さらに前述した特開平2−227683号
公報はあくまでも微小欠陥の検出の為の点計測に関わる
ものであり、広い表面積を有する鋼帯や厚板の探傷の場
合の様な、設備コストと検査速度及び検査精度の相互矛
盾を解決するための手段に関しては従来は皆無であっ
た。
Further, the above-mentioned Japanese Patent Application Laid-Open No. 2-227683 relates to the point measurement for the detection of minute defects, and the equipment cost such as in the case of flaw detection of a steel strip or a thick plate having a large surface area is required. Conventionally, there has been no means for solving the mutual contradiction between the inspection speed and the inspection accuracy.

【0005】さらに近年顧客の製品に対する品質要求は
厳しくなる一方であり、従来の磁気探傷法と同じ磁化レ
ベルでは検出できない様な小さい欠陥の保証を要求され
るようになり、磁化レベルを従来は飽和磁束密度の0.
8倍程度の磁化レベルが最適と言われていたものが、例
えば薄板の微小介在物検出においてはその40倍近い磁
界強度が必要になっている。一般には感度の高いセンサ
ーは弱い磁界中でしか使えないが、磁気探傷のためには
強い背景磁界の中での微弱な磁界変化を検出する必要が
あり、新たな課題となっている。
Further, in recent years, the quality requirements of customers' products have become stricter, and it has become necessary to guarantee small defects that cannot be detected at the same magnetization level as in the conventional magnetic flaw detection method. The magnetic flux density of 0.
It was said that a magnetization level of about 8 times was optimum, but for example, in detecting small inclusions in a thin plate, a magnetic field strength of about 40 times that is required. In general, a highly sensitive sensor can be used only in a weak magnetic field, but for magnetic flaw detection, it is necessary to detect a weak magnetic field change in a strong background magnetic field, which is a new issue.

【0006】本発明はかかる問題点に鑑み、これを抜本
的に解決し、一つの検出部で広い範囲の漏洩磁気検査可
能とし、高速でかつ高精度な表面欠陥の検出を可能とす
る方法を提供することを目的とする。
In view of such a problem, the present invention provides a method for radically solving this problem, enabling a wide range of magnetic leakage inspection with a single detection unit, and enabling high-speed and highly accurate detection of surface defects. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、漏洩磁束探傷
法において、被検査材の表面に近接して、膜面に垂直方
向に磁化容易軸を有する光磁気効果素子の薄膜を、前記
被検査材の表面に平行に配置し、磁化器により被検査材
の検査面に平行方向に強い磁界を印加し、被検査材の表
面の欠陥より漏洩する漏洩磁界の垂直成分を、前記膜面
の上方から光学的走査手段によって測定し被検査材の表
面欠陥を検出することを特徴とする。
According to the present invention, in a magnetic flux leakage flaw detection method, a thin film of a magneto-optical effect element having an easy axis of magnetization in a direction perpendicular to a film surface is provided near the surface of a material to be inspected. It is arranged parallel to the surface of the inspection material, and a strong magnetic field is applied in the parallel direction to the inspection surface of the inspection material by the magnetizer, and the vertical component of the leakage magnetic field leaking from the defect on the surface of the inspection material is It is characterized in that the surface defect of the material to be inspected is detected by measuring with an optical scanning means from above.

【0008】また好ましい態様では、前記光学的走査手
段の被光学的走査手段および磁化器を固定し、磁気光学
素子の薄膜は被検査材表面に追従させつつ、検査材表面
における走査線と直交方向に被検査材を移動させ探傷す
る事を特徴とする。
In a preferred embodiment, the optically scanned means of the optical scanning means and the magnetizer are fixed, and the thin film of the magneto-optical element is made to follow the surface of the material to be inspected, and in a direction orthogonal to the scanning line on the surface of the material to be inspected. The feature is that the material to be inspected is moved to detect flaws.

【0009】さらに好ましい態様では、前記光磁気効果
素子の薄膜,光学的走査手段,および磁化器は、静置さ
れた被検査材に対し、光学的走査手段の被検査材表面に
おける走査線と直交方向に同時に移動追従させつつ、探
傷する事を特徴とする。
In a further preferred aspect, the thin film of the magneto-optical effect element, the optical scanning means, and the magnetizer are perpendicular to the scanning line on the surface of the inspection material of the optical scanning means with respect to the stationary inspection material. The feature is that it detects flaws while simultaneously moving and following the directions.

【0010】[0010]

【作用】以下、本発明について詳細に説明する。本発明
は以下の知見に基ずいてなされたものである。強磁性体
の被検査材を磁化すると、被検査材が磁気飽和しない間
は磁束は被検査材の中を通過するが、飽和近くなると欠
陥部より磁束が空気中に漏れでてくる。この漏洩磁束を
磁気センサーを用いて検査するのが漏洩磁束探傷法であ
り、鋼材の最も有力な探傷法である。しかし表面欠陥が
非常に小さい割れであったり、薄板の内部微小介在物等
の場合欠陥が小さい為磁束の漏れている範囲が非常に狭
く、従来は小さい検出器を多数並列に配置するか、小数
のセンサーを機械的に走査するしか方法がなかった。こ
のため価格が高くなったり、検査速度が上げられないと
いう問題点があった。また微小欠陥を検出する為に磁化
を強めて行くと、空間へ漏れている磁界の3次元的強度
が疵検査に影響する様になり、強磁性体を使用した磁気
センサ−では感度変化や磁気飽和による測定不能の自体
が生じる。
The present invention will be described in detail below. The present invention has been made based on the following findings. When a ferromagnetic material to be inspected is magnetized, the magnetic flux passes through the material to be inspected while the material to be inspected is not magnetically saturated, but when it is close to saturation, the magnetic flux leaks into the air from the defective portion. Inspecting this leakage magnetic flux using a magnetic sensor is the leakage magnetic flux flaw detection method, which is the most effective flaw detection method for steel materials. However, if the surface defects are very small cracks, or if there are small inclusions inside the thin plate, the defects are so small that the range of leakage of magnetic flux is very narrow.In the past, many small detectors were arranged in parallel or a small number. The only option was to mechanically scan the sensor. Therefore, there are problems that the price becomes high and the inspection speed cannot be increased. When the magnetization is increased in order to detect minute defects, the three-dimensional strength of the magnetic field leaking into the space affects the flaw inspection, and the magnetic sensor using a ferromagnetic material changes the sensitivity and the magnetic field. Unstable measurement itself occurs due to saturation.

【0011】そこで、以上の様な問題点を一気に解決す
るため種々の研究並びに調査を行なった結果、近年光通
信におけるアイソレ−タ用に開発されたファラデ−回転
素子材料の中で、膜面に垂直な軸にのみ磁化容易軸を有
する希土類金属・鉄・ガ−ネット薄膜は、磁化困難面に
平行に、上述したような4000e程度の強い磁界をか
けても垂直方向から偏光顕微鏡で見た磁区模様は変化し
ないということ、更に欠陥による10e以下の微弱な垂
直磁界でも、垂直方向から見た磁区模様が変化するとい
うことを発見した。この新たな知見に基ずきなされたの
が、本発明の方法である。
Therefore, as a result of various researches and investigations in order to solve the above problems all at once, among the materials of Faraday rotator elements recently developed for the isolator in optical communication, the film surface is A rare earth metal / iron / garnet thin film having an easy axis of magnetization only in the vertical axis is a magnetic domain seen from a vertical direction in a vertical direction even when a strong magnetic field of about 4000e as described above is applied parallel to the hard-to-magnetize surface. It has been discovered that the pattern does not change, and that the magnetic domain pattern viewed from the vertical direction changes even with a weak vertical magnetic field of 10e or less due to defects. The method of the present invention is based on this new finding.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明に用いる装置の全体構成を
示している。1は被検査材であり、2はこれを磁化する
為の磁化器である。3は磁束線であり、一方のN極から
出てもう一方のS極にはいることを示している。4は表
面欠陥であり、被検査材1の表面に近接して膜面に垂直
方向に磁化容易軸を有する光磁気効果素子の薄膜5を配
置する。6は扇状光の光源であり、7はそれより射出す
る扇状光を示している。8は偏光子であり扇状光7を扇
状光の造る平面に垂直な方向の振動成分のみに直線偏光
させる。9は検光子であり、その偏光軸は偏光子8に対
し45°傾いている。10はリニアイメ−ジセンサ−で
あり、入射した扇状光を光電変換し、電圧時系列信号と
して出力するものである。
FIG. 1 shows the overall structure of the apparatus used in the present invention. Reference numeral 1 is a material to be inspected, and 2 is a magnetizer for magnetizing the material. 3 is a magnetic flux line, which indicates that it exits from one N pole and enters the other S pole. Reference numeral 4 is a surface defect, and a thin film 5 of a magneto-optical effect element having an easy axis of magnetization in the direction perpendicular to the film surface is arranged in the vicinity of the surface of the inspection object 1. Reference numeral 6 indicates a fan-shaped light source, and reference numeral 7 indicates fan-shaped light emitted from the light source. Reference numeral 8 denotes a polarizer that linearly polarizes the fan-shaped light 7 only into a vibration component in a direction perpendicular to a plane formed by the fan-shaped light. Reference numeral 9 is an analyzer, the polarization axis of which is inclined by 45 ° with respect to the polarizer 8. A linear image sensor 10 photoelectrically converts incident fan-shaped light and outputs it as a voltage time-series signal.

【0014】さて、微小欠陥を検出するために磁化器2
により強い磁化をかけると被検査材が完全に磁気飽和し
たあとは、強い背景磁界が飛ぶようになるが、欠陥が無
ければ磁化器2の両極の中間付近においては、磁束3の
方向は水平であり垂直方向の磁界成分はない。光磁気効
果素子5には、面に垂直な方向以外は難磁化特性を有
し、このレベルの水平磁界にては磁区の移動や磁気飽和
がおきないものを使用する。
Now, in order to detect minute defects, the magnetizer 2
When a stronger magnetization is applied, a strong background magnetic field will fly after the material to be inspected is completely magnetically saturated, but if there is no defect, the direction of the magnetic flux 3 is horizontal near the middle of both poles of the magnetizer 2. Yes There is no vertical magnetic field component. As the magneto-optical effect element 5, a magneto-optical effect element 5 is used which has a non-magnetizing property except in a direction perpendicular to the surface and which does not cause magnetic domain movement or magnetic saturation in a horizontal magnetic field at this level.

【0015】また扇状光源6から偏光子8を通して直線
偏光した扇状光7は、ほぼ垂直方向から投射し、素子の
底面で反射して厚みの2倍の距離を透過して検出される
が、ファラデ−効果の測定原理により、光の進行方向成
分の磁化レベルと、透過距離に比例した偏光面の回転が
おきるが、磁界の方向と光の進行方向がほぼ直行してい
る為、磁界の水平成分は検出されない。しかし表面疵の
近傍においては、疵表面に生じる磁極のために垂直の磁
界成分が生じる。これにより、光磁気効果素子の磁化容
易軸方向の磁化が進み、これが光の偏光面の回転を引き
起こして、検光子9により光量変化に変換されてリニア
イメ−ジセンサ−10に入射し、電圧信号系列として検
出される事となる。
Further, the fan-shaped light 7 linearly polarized from the fan-shaped light source 6 through the polarizer 8 is projected from a substantially vertical direction, is reflected by the bottom surface of the element, and is transmitted by a distance of twice the thickness. -Depending on the measurement principle of the effect, the polarization level is rotated in proportion to the magnetization level of the light traveling direction component and the transmission distance, but since the magnetic field direction and the light traveling direction are almost orthogonal, the horizontal component of the magnetic field is Is not detected. However, in the vicinity of the surface flaw, a vertical magnetic field component is generated due to the magnetic pole generated on the flaw surface. As a result, the magnetization of the magneto-optical effect element advances in the easy axis direction, which causes rotation of the plane of polarization of light, which is converted into a change in the amount of light by the analyzer 9 and is incident on the linear image sensor 10 to generate a voltage signal sequence. Will be detected as.

【0016】従って、被測定対象材に追従させる必要が
あるのは、光磁気効果素子のみである。このため、従来
多数のセンサ−を整列しモ−ルドした検出ヘッドを引き
ずりながら追従させていたのに比べ、はるかに軽量コン
パクト化し追従性能の大幅な向上とセンサ−及び配線系
統の故障トラブルを減少させる事が出来る。
Therefore, it is only the magneto-optical effect element that needs to follow the material to be measured. For this reason, compared to the conventional method in which a large number of sensors are arranged and followed by dragging a detection head, the weight is much lighter and more compact, and the tracking performance is greatly improved and troubles in the sensor and wiring system are reduced. I can let you do it.

【0017】垂直磁界を抑えたままで強力な、かつ一定
な水平磁界を長距離に渡って発生させる方法は、図示し
た以外にも色々と考えられる。例えば、特開昭59−1
60750号公報に示される様な均一水平磁界を発生さ
せる全く同一の棒状電磁石を、実開昭62−11153
9号公報に示される様に、2本平行に配置し、その軸対
象の線に沿って被検査材を配置すれば、垂直磁界につい
ては打ち消しあい、水平磁界については強め合うため、
強力かつ均一な水平磁界を得ることが出来る。このよう
にすれば、帯状の被検査材を幅方向に垂直磁界を抑えな
がら強力な水平磁界を発生する事も可能である。このよ
うに様々な方法が考えられるが、測定対象の特性に応じ
てそれに適した方法を選択すればよい。
There are various methods other than those shown in the figure for generating a strong and constant horizontal magnetic field over a long distance while suppressing the vertical magnetic field. For example, JP-A-59-1
The same rod-shaped electromagnet that generates a uniform horizontal magnetic field as shown in Japanese Patent No. 60750 is disclosed in Japanese Utility Model Laid-Open No. 62-11153.
As shown in Japanese Patent Publication No. 9, if two test pieces are arranged in parallel and the material to be inspected is arranged along the axis-symmetrical line, vertical magnetic fields cancel each other out, and horizontal magnetic fields reinforce each other.
A strong and uniform horizontal magnetic field can be obtained. By doing so, it is possible to generate a strong horizontal magnetic field while suppressing the vertical magnetic field in the width direction of the strip-shaped inspection material. Although various methods are conceivable as described above, a method suitable for the method may be selected according to the characteristics of the measurement target.

【0018】また本発明においては、光学的に走査する
ため、走査速度は対象部材を振動させる場合に比較して
充分速くする事が可能で、後処理において通常の画像信
号と同じ信号処理が適用可能であり、特開昭2−227
683号公報において課題としているリフトオフ変化に
よる磁界変化の影響は、単純な空間微分処理のみで除去
可能であり、更に疵のパタ−ン認識や疵種判別も可能に
なる。
Further, in the present invention, since the optical scanning is performed, the scanning speed can be made sufficiently higher than that in the case where the target member is vibrated, and the same signal processing as a normal image signal is applied in the post-processing. It is possible and disclosed in JP-A-2-227
The effect of the change in the magnetic field due to the lift-off change, which is a problem in Japanese Patent No. 683, can be removed only by a simple spatial differentiation process, and it is also possible to recognize the pattern of flaws and determine the flaw type.

【0019】図2及び図3は、請求項2に対応する好ま
しい実施例の構成を示している。図2及び図3におい
て、21は扇状光の光源、22は偏光子、23は扇状
光、24は膜面に垂直方向に磁化容易軸を有する光磁気
効果素子、25は検光子、26はリニアイメ−ジセンサ
−である。27は被検査材の薄板であり、28は磁化ロ
−ルである。図3は磁化ロ−ル28並びに光磁気効果素
子24の薄膜の追従機構の詳細を示している。29は空
心の非磁性体金属ロ−ル、30は磁化器、31はエアク
ッションボ−トである。光磁気効果素子24は、エアク
ッションボ−ト31の先端中央部に装着されている。3
3はエアシリンダ−、34は空心のピストンロッド、3
5は押し付け並びに退避用作動エア供給口であり、36
はベロ−ズである。
2 and 3 show the configuration of a preferred embodiment corresponding to claim 2. In FIGS. 2 and 3, 21 is a fan-shaped light source, 22 is a polarizer, 23 is a fan-shaped light, 24 is a magneto-optical effect element having an easy axis of magnetization in the direction perpendicular to the film surface, 25 is an analyzer, and 26 is a linear image. -Jisensor-. Reference numeral 27 is a thin plate of the material to be inspected, and 28 is a magnetizing roll. FIG. 3 shows the details of the tracking mechanism of the magnetization roll 28 and the thin film of the magneto-optical effect element 24. Reference numeral 29 is an air-core non-magnetic metal roll, 30 is a magnetizer, and 31 is an air cushion boat. The magneto-optical effect element 24 is attached to the center of the tip of the air cushion boat 31. Three
3 is an air cylinder, 34 is an air-core piston rod, 3
5 is an operation air supply port for pressing and retracting, and 36
Is a bellows.

【0020】扇状光光源21は、半導体レ−ザ−,コリ
メ−タ−レンズ,シリンドリカルレンズ等よりなり、リ
ニアイメ−ジセンサ−26の表面に細長い線状光が結像
するようにコリメ−タ−が調整される。半導体レ−ザ−
の波長としては、磁気光学効果素子の薄膜24によって
決まる最適波長のものを使用する。鋼板27の形状や振
動によって薄膜24とのギャップが変動しないように、
鋼板27は磁化ロ−ル28に対して所定の張力をもって
巻き付けられている。磁化ロ−ル28の断面構成は図3
の様になっており、ロ−ル29はステンレス製であり、
その中に電磁石(30)が設置されている。
The fan-shaped light source 21 is composed of a semiconductor laser, a collimator lens, a cylindrical lens, etc., and has a collimator so that an elongated linear light is imaged on the surface of the linear image sensor 26. Adjusted. Semiconductor laser
As the wavelength of, the one having the optimum wavelength determined by the thin film 24 of the magneto-optical effect element is used. In order that the gap with the thin film 24 does not change due to the shape and vibration of the steel plate 27,
The steel plate 27 is wound around the magnetizing roll 28 with a predetermined tension. The sectional configuration of the magnetizing roll 28 is shown in FIG.
And the roll 29 is made of stainless steel,
An electromagnet (30) is installed in it.

【0021】エアクッションボ−ト31には、底面の4
周にスリットが内向き傾めに切られており、そこからエ
アを吹き出して、エアカ−テンを形成し空気を閉じこめ
てエアクッション層を形成する。これによって鋼板7よ
り30〜300μm程度浮上し非接触で探傷できること
になる。薄板24はモ−ルドで固定されている。浮上用
エアはエアボ−トの両サイドに設置された押し付け用エ
アシリンダ−33の中空のピストンロッド34の中を経
由して、更に金属ベロ−ズ36を経由して供給される。
ベロ−ズ36は、バネの役目と自在継ぎ手の役目を持っ
ている。
The air cushion boat 31 has a bottom 4
A slit is cut inwardly around the circumference, and air is blown from the slit to form an air curtain and trap air to form an air cushion layer. As a result, the surface of the steel plate 7 rises by about 30 to 300 μm and flaw detection can be performed without contact. The thin plate 24 is fixed in a mold. The levitation air is supplied through the hollow piston rods 34 of the pressing air cylinders 33 installed on both sides of the air boat, and further through the metal bellows 36.
The bellows 36 has the functions of a spring and a universal joint.

【0022】図4は、請求項3に対応する好ましい具体
的な実施例の構成を示している。図4において、41は
被検査材、42はベッド、43は磁気光学効果測定部で
あり、44は磁化器である。本実施例では、磁化器は測
定光学系の上方から設置している。磁気光学効果測定部
43及び磁化器44はタッチロ−ルにより被検査材との
ギャップを一定にたもつようになっている。45は移動
台車であり、電動機により所定の速度で移動可能であ
る。46は移動台車用のレ−ル、47は門型フレ−ムで
ある。被検査材が極厚板等のように移動,形状矯正及び
裏面からの磁化が困難な場合、このような方式が有効で
ある。
FIG. 4 shows the configuration of a preferred concrete embodiment corresponding to the third aspect. In FIG. 4, 41 is a material to be inspected, 42 is a bed, 43 is a magneto-optical effect measuring unit, and 44 is a magnetizer. In this embodiment, the magnetizer is installed from above the measurement optical system. The magneto-optical effect measuring unit 43 and the magnetizer 44 are configured to have a constant gap with the material to be inspected by a touch roll. Reference numeral 45 denotes a movable carriage, which can be moved at a predetermined speed by an electric motor. Reference numeral 46 is a rail for a moving carriage, and 47 is a gate frame. Such a method is effective when the material to be inspected is difficult to move, correct the shape and magnetize from the back surface like an extremely thick plate.

【0023】なお、図1及び図2に示した走査光学系は
撮像側が動く飛像型であるが、これと対象的に、レ−ザ
−スポットを走査する飛点型の走査光学系に構成を変更
しても全く同じ効果を得ることが可能であり、本発明は
図に示した実施例に限定されるものではない。
The scanning optical system shown in FIG. 1 and FIG. 2 is a flying image type in which the image pickup side moves, but in contrast to this, it is constructed as a flying point type scanning optical system for scanning a laser spot. It is possible to obtain exactly the same effect by changing the above, and the present invention is not limited to the embodiment shown in the drawings.

【0024】[0024]

【発明の効果】近年オプトエレクトロニクス分野の進歩
はめざましく、光出力半導体レ−ザ−やアイソレ−タ用
の高感度ファラデ−回転材料,大型ファクシミリ用の大
型密着センサ−等が従来に比較して安価に入手できる様
になったため、広幅の扇状光源,高感度垂直磁化膜,広
幅のイメ−ジスキャナ−のいずれもが安価に実現可能で
あり、本発明の方法を採用した装置は従来の小型センサ
−を多数並列化したものに比べて回路数にして数百分の
1になり、画期的に経済性を向上できる。
In recent years, the field of optoelectronics has made remarkable progress, and high-sensitivity Faraday rotating materials for optical output semiconductor lasers and isolators, large contact sensors for large facsimiles, etc. are cheaper than conventional ones. Since a wide fan-shaped light source, a high-sensitivity perpendicularly magnetized film, and a wide image scanner can be realized at low cost, the device adopting the method of the present invention can be used as a conventional small sensor. The number of circuits is several hundredth of that of a large number of parallelized circuits, and the economical efficiency can be remarkably improved.

【0025】また光学系の倍率を変えることにより従来
より小さな欠陥も検出できるようになり、検出精度も向
上した。
Further, by changing the magnification of the optical system, it becomes possible to detect a defect smaller than before, and the detection accuracy is improved.

【0026】また構成部品数が少なくなる為、故障が減
り、保守性が画期的に向上する。
Further, since the number of constituent parts is reduced, breakdowns are reduced and maintainability is remarkably improved.

【0027】更に本発明の方法は、経済的困難性から精
度の良い漏洩磁気探傷法を利用できていなかったあらゆ
る領域で利用可能であり、省力化や自動化を通しての生
産性向上の効果は大きい。
Further, the method of the present invention can be used in all areas where the accurate leakage magnetic flaw detection method could not be used due to economical difficulty, and the effect of labor saving and improvement of productivity through automation is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施する装置の構成を示す斜視図で
ある。
FIG. 1 is a perspective view showing the configuration of an apparatus for carrying out the present invention.

【図2】 具体的な実施例の装置構成を示す斜視図であ
る。
FIG. 2 is a perspective view showing a device configuration of a specific embodiment.

【図3】 図2の装置を示す正面図である。3 is a front view showing the device of FIG. 2. FIG.

【図4】 変形実施例の装置構成を示す正面図である。FIG. 4 is a front view showing a device configuration of a modified example.

【符号の説明】[Explanation of symbols]

1:被検査材 2:磁化器 3:磁
束線 4:欠陥 5:光磁気効果素子 6:扇
状光光源 7:扇状光 8:偏光子 9:検
光子 10:リニアイメ−ジセンサ− 21:
扇状光の光源 22:偏光子 23:扇状光 24:
光磁気効果素子 25:検光子 26:リニアイメ−ジセンサ− 27:被検査材の薄板 28:磁化ロ−ル 29:
非磁性体金属ロ−ル 30:磁化器 31:エアクッションボ−ト 33:エアシリンダ− 34:ピストンロッド 35:押し付け並びに退避用作動エア供給口 36:
ベロ−ズ 41:被検査材 42:ベッド 43:
磁気光学効果測定部 44:磁化器 45:移動台車 46:
レ−ル 47:門型フレ−ム
1: Inspected material 2: Magnetizer 3: Magnetic flux line 4: Defect 5: Magneto-optical effect element 6: Fan-shaped light source 7: Fan-shaped light 8: Polarizer 9: Analyzer 10: Linear image sensor-21:
Light source of fan-shaped light 22: Polarizer 23: Fan-shaped light 24:
Magneto-optical effect element 25: Analyzer 26: Linear image sensor 27: Thin plate of material to be inspected 28: Magnetization roll 29:
Non-magnetic metal roll 30: Magnetizer 31: Air cushion boat 33: Air cylinder 34: Piston rod 35: Operation air supply port for pressing and retracting 36:
Bellows 41: Inspected material 42: Bed 43:
Magneto-optical effect measuring unit 44: magnetizer 45: moving carriage 46:
Rail 47: Gate frame

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 漏洩磁束による探傷方法であって、被検
査材の表面に近接して、膜面に垂直方向に磁化容易軸を
有する光磁気効果素子の薄膜を、前記被検査材の表面に
平行に配置し、磁化器により被検査材の検査面に平行方
向に強い磁界を印加し、被検査材の表面の欠陥より漏洩
する漏洩磁界の垂直成分を、前記膜面の上方から光学的
走査手段によって測定し被検査材の表面欠陥を検出する
ことを特徴とする光磁界探傷方法。
1. A flaw detection method using leakage magnetic flux, wherein a thin film of a magneto-optical effect element having an easy axis of magnetization in a direction perpendicular to a film surface is provided on the surface of the material to be inspected, close to the surface of the material to be inspected. By arranging in parallel, a strong magnetic field is applied in the parallel direction to the inspection surface of the material to be inspected by the magnetizer, and the vertical component of the leakage magnetic field leaking from the defect on the surface of the material to be inspected is optically scanned from above the film surface. An optical magnetic field flaw detection method characterized by detecting surface defects of a material to be inspected by measuring with a means.
【請求項2】 前記光学的走査手段及び磁化器を固定
し、光磁気効果素子の薄膜を被検査材表面に追従させつ
つ、検査材表面における走査線と直交方向に被検査材を
移動させ探傷する事を特徴とする、前記請求項1記載の
光磁界探傷方法。
2. The optical scanning means and the magnetizer are fixed, the thin film of the magneto-optical effect element is made to follow the surface of the material to be inspected, and the material to be inspected is moved in a direction orthogonal to the scanning line on the surface of the material to be inspected. The optical magnetic field flaw detection method according to claim 1, wherein
【請求項3】 前記光磁気効果素子の薄膜,光学的走査
手段,および磁化器を、静置された被検査材に対し、光
学的走査手段の被検査材表面における走査線と直交方向
に同時に移動追従させつつ、探傷する事を特徴とする前
記請求項1記載の光磁界探傷方法。
3. The thin film of the magneto-optical effect element, the optical scanning means, and the magnetizer are simultaneously applied to a stationary inspection object in a direction orthogonal to a scanning line on the inspection object surface of the optical scanning means. The optical magnetic field flaw detection method according to claim 1, wherein flaw detection is performed while following the movement.
JP3264033A 1991-10-11 1991-10-11 Optical magnetic field flaw detection method Expired - Lifetime JP2672912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3264033A JP2672912B2 (en) 1991-10-11 1991-10-11 Optical magnetic field flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3264033A JP2672912B2 (en) 1991-10-11 1991-10-11 Optical magnetic field flaw detection method

Publications (2)

Publication Number Publication Date
JPH0599900A true JPH0599900A (en) 1993-04-23
JP2672912B2 JP2672912B2 (en) 1997-11-05

Family

ID=17397617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3264033A Expired - Lifetime JP2672912B2 (en) 1991-10-11 1991-10-11 Optical magnetic field flaw detection method

Country Status (1)

Country Link
JP (1) JP2672912B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300879A (en) * 2005-04-25 2006-11-02 Magnegraph:Kk Device for measuring object
JP2008216045A (en) * 2007-03-05 2008-09-18 Nippon Steel Corp Method and apparatus for observing surface properties of magnetic band
JP2012026980A (en) * 2010-07-27 2012-02-09 Fdk Corp Magneto-optic defect detection method
JP2016161350A (en) * 2015-02-27 2016-09-05 Fdk株式会社 Magnetism detection device
CN111307723A (en) * 2020-03-06 2020-06-19 山东大学 Magnetic rotation diaphragm, magneto-optical sensor, and weld joint detection device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286763A (en) * 1985-06-13 1986-12-17 Tdk Corp Method for evaluating magnetic head
JPH0277643A (en) * 1988-09-13 1990-03-16 Sumitomo Electric Ind Ltd Flaw detector
JPH02227655A (en) * 1989-02-28 1990-09-10 Sumitomo Metal Ind Ltd Method and device for magneto-optic flaw detection
JPH02291955A (en) * 1989-05-02 1990-12-03 Shigeki Maeda Non-destructive inspection apparatus for long material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286763A (en) * 1985-06-13 1986-12-17 Tdk Corp Method for evaluating magnetic head
JPH0277643A (en) * 1988-09-13 1990-03-16 Sumitomo Electric Ind Ltd Flaw detector
JPH02227655A (en) * 1989-02-28 1990-09-10 Sumitomo Metal Ind Ltd Method and device for magneto-optic flaw detection
JPH02291955A (en) * 1989-05-02 1990-12-03 Shigeki Maeda Non-destructive inspection apparatus for long material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300879A (en) * 2005-04-25 2006-11-02 Magnegraph:Kk Device for measuring object
JP2008216045A (en) * 2007-03-05 2008-09-18 Nippon Steel Corp Method and apparatus for observing surface properties of magnetic band
JP2012026980A (en) * 2010-07-27 2012-02-09 Fdk Corp Magneto-optic defect detection method
JP2016161350A (en) * 2015-02-27 2016-09-05 Fdk株式会社 Magnetism detection device
CN111307723A (en) * 2020-03-06 2020-06-19 山东大学 Magnetic rotation diaphragm, magneto-optical sensor, and weld joint detection device and method

Also Published As

Publication number Publication date
JP2672912B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
KR100671630B1 (en) On-line flaw detection method of magnetic leak detector and strip of magnetic flaw detector
JPH03221804A (en) Method for detecting ruggedness of magnetic metal plate
JP4911489B2 (en) Flaw detector
JPH0752219B2 (en) Non-destructive hysteresis test equipment
JP2672912B2 (en) Optical magnetic field flaw detection method
Tsukada et al. Magnetic property mapping system for analyzing three-dimensional magnetic components
US3588683A (en) Method and apparatus for nondestructive testing of ferromagnetic articles,to determine the location,orientation and depth of defects in such articles utilizing the barkhausen effect
US7365533B2 (en) Magneto-optic remote sensor for angular rotation, linear displacements, and evaluation of surface deformations
JPH0335624B2 (en)
Lee et al. An algorithm for the characterization of surface crack by use of dipole model and magneto-optical non-destructive inspection system
CN108445429A (en) A kind of Ke Er microscopes for complicated magnetic domain research
JP2671243B2 (en) Optical magnetic field distribution measuring device
CN208140907U (en) A kind of Ke Er microscope for complicated magnetic domain research
JP2665294B2 (en) Magneto-optical defect detection method
JPH08193980A (en) Method and device for magnetic flaw detection
JP3201031B2 (en) Magneto-optical flaw detection method and apparatus
JPH06201654A (en) Method and apparatus for magneto-optical flaw detection
JPH081458B2 (en) Optical magnetic field distribution measuring device
Lee et al. Application of magneto-optical method for inspection of the internal surface of a tube
JPH1026608A (en) Nondestructive inspecting method
JP2860336B2 (en) Steel plate magnetic inspection equipment
JPS6011492Y2 (en) Automatic magnetic flaw detection equipment inspection equipment
JPH07146277A (en) Non-destructive inspection device
Wang et al. Simultaneous imaging defect and measuring lift-off using a double layer parallel-cable-based probe
Bender Barkhausen noise and eddy current microscopy (BEMI): microscope configuration, probes and imaging characteristics

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970617