JPH03221804A - Method for detecting ruggedness of magnetic metal plate - Google Patents

Method for detecting ruggedness of magnetic metal plate

Info

Publication number
JPH03221804A
JPH03221804A JP1751190A JP1751190A JPH03221804A JP H03221804 A JPH03221804 A JP H03221804A JP 1751190 A JP1751190 A JP 1751190A JP 1751190 A JP1751190 A JP 1751190A JP H03221804 A JPH03221804 A JP H03221804A
Authority
JP
Japan
Prior art keywords
metal plate
magnetic field
magnetic
spot
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1751190A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1751190A priority Critical patent/JPH03221804A/en
Publication of JPH03221804A publication Critical patent/JPH03221804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To rapidly and easily detect the ruggedness of a metal plate from the rotational angle of a polarization face of reflected light reflected from a substance having a pole Kerr effect by making a spot-like straight polarized light incident upon the substance so as to sweep its surface. CONSTITUTION:A magnetic field is impressed in the direction parallel with the surface of the magnetic metal plate 1 by using a permanent magnet 2 and a york 3 having high magnetic permeability in order to detect a recessed part 10 on the surface of the plate 1. In the vicinity of the recessed part 10, a leaked magnetic field 11 is distributed on the surface and an iron thin film 6 is formed on a non-magnetic base 5 in the vicinity of the magnetic field 11. The thin film 6 is magnetized by the magnetic field 11 and allowed to have the pole Kerr effect. Then, straight polarized light 8 is made incident from a polarizing light source 7 to the thin film 6 and the rotational angle of the polarized face of the reflected light is detected by a photodetector 9. Consequently, the size of the leaked magnetic field, i.e. the existence and size of a rugged part, can be known. Since the incident straight polarized light is like a spot, the magnetic field can be locally measured and the wide distribution of the leaked magnetic field can be known by sweeping the spot on the thin film 6.

Description

【発明の詳細な説明】 [産業上の利用分!l!F ] 本発明は磁性金属板表面の凹凸の検知方法に関する。[Detailed description of the invention] [Industrial use! l! F] The present invention relates to a method for detecting irregularities on the surface of a magnetic metal plate.

〔従来の技術〕[Conventional technology]

鉄、鋼、ニッケル合金等の磁性を有する金属板表面の凹
凸の検知方法は、杓料の非破壊検森に広く利用されてい
る。さらに最近、汚れや塗装に強いことから金属板の表
面にバーコード等を刻印したもの(特願昭63−015
973号「金属板刻印バーコード」)を用い、磁気的に
このバーコードパターンを5光み取ることによって製品
や部品の管理を行う手法が開光され始めている。この場
合にも、金属表面を検知する技術が利用されている。
A method for detecting irregularities on the surface of a magnetic metal plate such as iron, steel, nickel alloy, etc. is widely used for non-destructive inspection of ladle materials. Furthermore, recently, metal plates with barcodes etc. engraved on the surface because they are resistant to dirt and paint (patent application 1986-015)
No. 973 "Metal Plate Engraved Barcode") is beginning to be discovered, and a method of managing products and parts by magnetically capturing five light beams of this barcode pattern is beginning to be discovered. In this case as well, technology for detecting metal surfaces is used.

磁性金属板表面の凹凸を読み取る従来の技術について以
下に述べる。なお、簡車のために金属板に形成された1
つの凹部の検知について連べる。
A conventional technique for reading irregularities on the surface of a magnetic metal plate will be described below. In addition, 1 formed on a metal plate for a small car.
Let's talk about the detection of two recesses.

第9図に凹部検知の原理図を示す。磁性金属板lに凹部
10がイftEするのを磁気を利用して検知するには、
まず磁性金属板1の表面に対して型筒方向に磁場が印加
するように永久磁石2を配置i1.L t、、凹部10
によって変化する磁場の歪を磁気センサ19で検知し、
凹部10の存在を検知する。このためには、磁性金属板
1の表面の種々の位置に対応して磁気センサ19の出力
を測定する必要がある。それには、次の2つの方法が考
えられる。すなわち、(1)  磁気センサを1つだけ
用い、磁性金属板に対して検知部(永久磁石と磁気セン
サ)を機械的に掃引し、磁気センサの出ツノをn、!系
列に測定する。
FIG. 9 shows a diagram of the principle of recess detection. To detect ifE of the recess 10 on the magnetic metal plate l using magnetism,
First, the permanent magnet 2 is arranged so that a magnetic field is applied to the surface of the magnetic metal plate 1 in the direction of the mold cylinder i1. L t,, recess 10
The magnetic sensor 19 detects the distortion of the magnetic field changing by
The presence of the recess 10 is detected. For this purpose, it is necessary to measure the output of the magnetic sensor 19 corresponding to various positions on the surface of the magnetic metal plate 1. There are two possible methods for this. That is, (1) Using only one magnetic sensor, mechanically sweep the detection part (permanent magnet and magnetic sensor) against the magnetic metal plate, and measure the protrusion of the magnetic sensor by n,! Measure in series.

(2)磁気センサをアレイ状に複数側配置し、各センサ
の出力を同時に測定する。
(2) Magnetic sensors are arranged on multiple sides in an array, and the output of each sensor is measured simultaneously.

という2つの方法が考えられる。There are two possible methods.

[発明が解決しようとする課題] 」ユ記の従来ノj法では、磁気センサの測定したい点に
配置しなければならない。そのために、例えば(1)の
掃引方式では、検知部を111)引しなければならず、
!II定にn、17間がかかるという欠点を右する。
[Problems to be Solved by the Invention] In the conventional method described in U, a magnetic sensor must be placed at the point to be measured. For this purpose, for example, in the sweep method (1), the detection unit must be pulled 111),
! However, the drawback is that it takes about 17 seconds to complete the process.

特に、検知範囲か2次元的に広がった場合には、i!1
1j定11.定量1l’ 1:’;に長くなる。また、
この欠点がない(2)の方式でも、複数個のセンサのバ
ラつきが問題になり、生産の歩留りが悪くなる。また個
々のセンサの特性を補正するための装置が複雑になり、
高価なものになる。また磁気センサを2次元的に配置す
るためにはセンサ信号の取り出し配線か複軸になるとい
う欠点がある。
In particular, when the detection range expands two-dimensionally, i! 1
1j constant 11. Quantitative 1l'1:' becomes longer. Also,
Even in method (2), which does not have this drawback, variations in the plurality of sensors pose a problem, resulting in poor production yield. In addition, the equipment for correcting the characteristics of individual sensors becomes complicated.
It becomes expensive. Furthermore, in order to arrange the magnetic sensors two-dimensionally, there is a drawback that the wiring for taking out the sensor signals is multi-axial.

本究明の目的は8;I記課題を角11決した磁性金属板
の凹1す1検知方法を提供することにある。
The purpose of the present investigation is to provide a method for detecting concavities in a magnetic metal plate that solves the problems listed in Items 8 and 1.

〔課題を(Qld決するための手段] 前記[−1的を達成するため、本発明に係る磁性金属板
の凹凸検知方法においては、磁性を有する金属板に印加
した磁場が該金属板の凹凸によって変化するのを利用し
て磁性を有する金に′A板の凹凸を3− 検知する方法であって、 金属板表面に平行な方向に磁場を印加し、前記印加磁場
によって金属板の凹凸部に生じる漏れ磁場の垂直成分が
分布する位置に、極カー効果を有する物質を配置し、前
記極カー効果を有する物質にスポット状の酊線偏光をそ
のスポットが物質面を掃引するように入射させ、前記物
質からの反射光の偏光面の回転角の大きさによって金属
板の凹凸を検知するものである。また、本発明に係る磁
性金属板の凹凸検知方法においては、磁性を有する金属
板に印加した磁場が該金属板の凹凸によって変化するの
を利用して磁性を有する金属板の凹凸を検知する方法で
あって、 金属板表面に平行な方向に磁場を印加し、金属板の凹凸
部に生じる漏れ磁場の垂直成分が分布する位置にファラ
デー効果を有する物質を配置し、前記ファラデー効果を
有する物質にスポット状の直線偏光をそのスポットが物
質面を掃引するように入射させ、前記物質の端面に設け
られた反射膜からの反射光の偏光面の回転角の大きさに
よって金属板の凹]す1を検知するものである。
[Means for determining the problem (Qld)] In order to achieve the above-mentioned [-1], in the unevenness detection method of a magnetic metal plate according to the present invention, the magnetic field applied to the magnetic metal plate is caused by the unevenness of the metal plate. This is a method of detecting the unevenness of a metal plate by applying a magnetic field in a direction parallel to the surface of the metal plate, and the applied magnetic field causes the unevenness of the metal plate to be detected by the magnetic field. A substance having a polar Kerr effect is placed at a position where the vertical component of the generated leakage magnetic field is distributed, and a spot of polarized light is incident on the substance having a polar Kerr effect so that the spot sweeps the surface of the material, The unevenness of the metal plate is detected based on the rotation angle of the polarization plane of the reflected light from the substance.Furthermore, in the method for detecting unevenness of a magnetic metal plate according to the present invention, an electric current is applied to the magnetic metal plate. This is a method of detecting the unevenness of a magnetic metal plate by using the magnetic field that changes depending on the unevenness of the metal plate, in which a magnetic field is applied in a direction parallel to the surface of the metal plate, and A material having a Faraday effect is placed at a position where the vertical component of the generated leakage magnetic field is distributed, and a spot of linearly polarized light is made incident on the material having a Faraday effect so that the spot sweeps the surface of the material, and the end surface of the material is The indentation in the metal plate is detected based on the rotation angle of the plane of polarization of the reflected light from the reflective film provided on the metal plate.

[作用] 先に連べた従来方法の欠点は、磁気センサを11111
定したい点に配置しなければならないことがら生じてい
る。
[Operation] The disadvantage of the conventional method mentioned above is that the magnetic sensor
This arises from the fact that the object must be placed at the desired point.

これに対して、本発明では磁気センサの代わりに光を用
いて平面内を掃引し、磁、場の分布を)測定するもので
ある。周知のとおり、光は直進性に優れ、ミラーによっ
て容易にその方11′すを変化させることができるので
、平面内を高速に掃引することができる。
In contrast, in the present invention, instead of a magnetic sensor, light is used to sweep within a plane and measure the distribution of magnetism and field. As is well known, light has excellent straightness and can be easily changed in direction 11' by a mirror, so that it can sweep within a plane at high speed.

本発明では、光を用いて磁場を測定するために、極カー
効果及びファラデー効果を用いている。
In the present invention, the polar Kerr effect and the Faraday effect are used to measure the magnetic field using light.

第6図は極カー効果の原理を示したものである。FIG. 6 shows the principle of the polar Kerr effect.

鉄f・、す膜等の極カー効果の優れた物質に磁場を印加
し、物質内に磁4化\・Iが生じているとする。この物
質の磁化方向に対して重直な表面に直線偏光が入射する
と、物質表面で反射された反射光の偏光面は入射光の偏
光面に対しである角度OKたけ回転する。これが1・9
iカー効果である。
Suppose that a magnetic field is applied to a material with excellent polar Kerr effect, such as iron f. When linearly polarized light is incident on a surface that is perpendicular to the magnetization direction of this substance, the plane of polarization of the reflected light reflected from the surface of the substance is rotated by a certain angle OK with respect to the plane of polarization of the incident light. This is 1.9
This is the i-car effect.

このカー回転角OKは磁化Mに比例するので、偏光面の
回転角を)測定することによって磁化Mすなわち印加磁
場が測定できる。
Since this Kerr rotation angle OK is proportional to the magnetization M, the magnetization M, that is, the applied magnetic field can be measured by measuring the rotation angle of the plane of polarization.

第7図はファラデー効果の原理を示したものである。イ
ツトリウム鉄ガーネッl−(Y I G)等のファラデ
ー効果の優れた物質に磁化Mが生じているとき、磁化力
II′I]に平行な直線偏光が透過した場合、透過した
光の偏光「r1目よ入射光の偏光面に対しである角度O
F”だけ回転する。これがファラデー効果である。
FIG. 7 shows the principle of the Faraday effect. When magnetization M occurs in a material with excellent Faraday effect such as yttrium iron garnet (YI Angle O with respect to the polarization plane of the incident light
It rotates by F''. This is the Faraday effect.

ファラデー効果の場合は、第8図に示したように、物τ
1の端面に反射膜21を設けることによって透過光を反
射させた場合、偏光面の回転角は20Fになるので、よ
り有効に磁化を測定することができる。何れにしても、
ファラデー回転角flJFは磁化Mに比例するので、偏
光面の回転角を測定することによって磁化N4すなわち
印加磁場が測定できる3、 4774カー効果又はファラデー効果をイ1゛する物質
を検知列数の磁付金属板表面(−J近に配7t した場
合、検知可能な直1場(磁化) +1!2分は物質表面
に垂直な方向である。したがって、磁性金属板の凹凸に
よって垂直方向の磁場の変化が生じるように磁性金属板
に磁場を印加すればよい。本発明では、磁性金属板の表
面に平行に磁場を印加し、金属板表面の凹11!1によ
ってベニしる漏れ磁界が垂直方向の成づ)をもつことを
利用している。第5図には1川部10を有する磁性金属
板1の表面に平行に磁場を印加したときの四部(−J近
における磁場の様子をイf限要素法で計算したものであ
る。四部10を中心に漏れ磁界が<1:じているのがわ
かる。
In the case of the Faraday effect, as shown in Figure 8, the object τ
When the transmitted light is reflected by providing a reflective film 21 on the end face of the light source 1, the rotation angle of the plane of polarization becomes 20F, making it possible to measure magnetization more effectively. In any case,
Since the Faraday rotation angle flJF is proportional to the magnetization M, the magnetization N4, that is, the applied magnetic field, can be measured by measuring the rotation angle of the plane of polarization. When placed near the metal plate surface (-J), the detectable direct field (magnetization) +1!2 minutes is perpendicular to the material surface. Therefore, the vertical magnetic field is reduced by the unevenness of the magnetic metal plate. What is necessary is to apply a magnetic field to the magnetic metal plate so that the change occurs.In the present invention, a magnetic field is applied parallel to the surface of the magnetic metal plate, and the leakage magnetic field generated by the recess 11!1 on the surface of the metal plate is directed in the perpendicular direction. It takes advantage of the fact that it has a FIG. 5 shows the state of the magnetic field near 4 parts (-J) when a magnetic field is applied parallel to the surface of the magnetic metal plate 1 having 1 river part 10, calculated by the if finite element method. It can be seen that the leakage magnetic field is <1: around the center.

本発明では、AI)れ磁化の分イ1jする近傍に極力・
−効果又はファラデー効果を有する物質を配置し、漏れ
磁界の取直方向成分によって物質内に生じる厭0゛〔方
向の磁化Mによる偏光面の回転を測定する。
In the present invention, as much as possible, the
A substance having a Faraday effect or a Faraday effect is placed, and the rotation of the plane of polarization due to the magnetization M in the 0° [direction] produced in the material by the normal direction component of the leakage magnetic field is measured.

し西のないrtli分では、瀬れ磁界がないので偏光面
の回転は小さく、凹凸のイl′:rcする部分では乙「
)れ磁界によって偏光面の[lj1転が大きくなる。こ
れを利用して、金属表面の凹1「1]のイf無又は大き
さを検知することができる。
In the rtli portion where there is no edge, there is no magnetic field, so the rotation of the plane of polarization is small, and in the uneven I':rc part, the rotation is small.
) The [lj1 rotation of the plane of polarization increases due to the magnetic field. Utilizing this, it is possible to detect whether or not there is a depression 1 "1" on the metal surface.

[実施例] 以下、本発明の実施例を図面を用いて述べる。[Example] Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は本発明の実施例1を示す構成図である。(Example 1) FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

図において、磁性金属板1の表面−にの凹部10を検知
するために、永久磁石2と高透磁率を有する物質(フェ
ライト等)からなるヨーク3を用いて磁性金属板1の表
面に、平行な方向に磁場4を印加する。第5図に示した
ように凹部10付近では漏れ磁界IIが表面に分布する
。漏れ磁界の近傍に非磁性基板5上に形成した鉄薄膜6
を配置する。鉄薄膜6は漏れ磁界11によって磁化され
、極カー効果をもつようになる。偏光光源7から直線偏
光8を鉄薄膜6に入射させ、反射光の偏光面の回転角を
光検出器9によって検出する。これによって漏れ磁界の
大きさ、すなわち凹凸部の有無や大きさを知ることがで
きる。入射する直線偏光はスポット状になっており、局
所的な磁場を測定することができ、スポットを鉄薄膜6
」二で掃引させることによって、広範囲の漏れ磁界の分
布を知ることができる、 (実施例2) 第2図は本発明の実施例2を示す構地図である。
In the figure, in order to detect a recess 10 on the surface of the magnetic metal plate 1, a permanent magnet 2 and a yoke 3 made of a material with high magnetic permeability (ferrite, etc.) are used to A magnetic field 4 is applied in a direction. As shown in FIG. 5, near the recess 10, the leakage magnetic field II is distributed on the surface. A thin iron film 6 formed on a non-magnetic substrate 5 near the leakage magnetic field.
Place. The iron thin film 6 is magnetized by the leakage magnetic field 11 and has a polar Kerr effect. Linearly polarized light 8 is made incident on the iron thin film 6 from the polarized light source 7, and the rotation angle of the polarization plane of the reflected light is detected by the photodetector 9. This makes it possible to know the magnitude of the leakage magnetic field, that is, the presence or absence and size of uneven portions. The incident linearly polarized light is in the form of a spot, and the local magnetic field can be measured.
2. By sweeping the magnetic field with 2 sec, it is possible to know the distribution of the leakage magnetic field over a wide range. (Embodiment 2) FIG. 2 is a composition map showing Embodiment 2 of the present invention.

図において、磁場の印/Jll Jj法は第1図と同様
である。一端に反射1!;X 2 +を設けたイッI・
リウム鉄ガーネッl−(YIG) 20を反射膜21が
磁、仕金属板〕の方を11′すくように)届れ磁界11
の近イ’ljに配置する。t’ ] G20は翻れ磁界
11によって磁化され、ファラデー効果を示すようにな
る、偏光光iIi+t 7から直線偏光8をY I G
20に大割させ、Y I G20での反射光をビームス
プリッタ−22で入射光と分離した後、光検出器9によ
って偏光面の回転角を検出する。この場合も、第1図と
同様に入射光をスポラI・状にし、Mf引することで漏
れ磁界の分イIjを知ることができる。
In the figure, the magnetic field marking/Jll Jj method is the same as in FIG. Reflection 1 on one end! ;
When the reflective film 21 is magnetic, the magnetic field 11 reaches 11' away from the metal plate]
Place it near i'lj. t' ] G20 is magnetized by the deflecting magnetic field 11 and begins to exhibit the Faraday effect, converting linearly polarized light 8 from polarized light iIi+t 7 into Y I G
After the reflected light from the Y I G 20 is separated from the incident light by the beam splitter 22, the rotation angle of the polarization plane is detected by the photodetector 9. In this case as well, the leakage magnetic field component Ij can be found by making the incident light into a sporadic I-shape and subtracting Mf as in FIG.

こ1]によって漏れ磁界の大きさ、すなわち凹凸部のイ
f無や大きさを知ることができる。
1], it is possible to know the magnitude of the leakage magnetic field, that is, the presence and size of the uneven portion.

これらの実施例で用いている偏光光源7の構成例を第3
図に示す。通常の光源12から出た光のうち111.色
光器(フィルタ)で’i’  訣4乏の光にしたのち、
ポリゴンミラーA7の可動ミラー15で光路を掃引させ
られるようにして偏光子16を通して直線偏光8にする
。その後、レンズI4を通してスポット状に集光させる
。なお、光源としてレーザーを用いた場合には、単色光
器は不要である。
A configuration example of the polarized light source 7 used in these examples is shown in the third example.
As shown in the figure. 111 of the light emitted from the normal light source 12. After using a color light device (filter) to make the 'i' light 4-poor,
The light path is swept by the movable mirror 15 of the polygon mirror A7, and the light passes through the polarizer 16 into linearly polarized light 8. Thereafter, the light is focused into a spot through the lens I4. Note that when a laser is used as a light source, a monochromatic light device is not required.

このような構成の偏光光源により、可動ミラー15によ
ってスポット状の光を魚射面内で高速に掃引させること
ができる。例えば、刻印バーコードの場合、掃引する削
離(バーコードの幅)は5〜!Ocmであり、従来の機
械掃引では1秒程度必要なのに対し、本5を明の光掃引
では0.01秒以下に1!′6速化できる。バーコード
の場合は1次元掃引で十分であるが、金属板に刻印され
た文字を統み取る場合のように2次元掃引が必要な場合
は、本発明の高速性はさらに顕著になる。
With the polarized light source having such a configuration, the movable mirror 15 can sweep the spot-like light at high speed within the fish projection plane. For example, in the case of an engraved barcode, the sweep ablation (width of the barcode) is 5~! 0 cm, and while conventional mechanical sweep requires about 1 second, bright optical sweep takes less than 0.01 second! 'Can be made into 6 speeds. In the case of bar codes, a one-dimensional sweep is sufficient, but when a two-dimensional sweep is required, such as when reading characters engraved on a metal plate, the high speed of the present invention becomes even more remarkable.

第4図に光検出器9の構成例を示す。レンズ14で集光
した光を検光子17を通した後、フォトダイオード等の
検出器18に入れる。ここで、検光子17は磁性金属表
面の凹凸がない状態のとき透過光が最小になるように調
整しておく。このようにすることによって、金属表面の
凹凸ffpの漏れ磁界によす る磁化で備光面同転がおきたとき検光子を透過する光の
量が増加し、凹凸を検知することができる。
FIG. 4 shows an example of the configuration of the photodetector 9. After the light collected by the lens 14 passes through an analyzer 17, it enters a detector 18 such as a photodiode. Here, the analyzer 17 is adjusted so that the transmitted light is minimized when there is no unevenness on the surface of the magnetic metal. By doing so, when the optical surface rotates due to magnetization due to the leakage magnetic field of the unevenness ffp on the metal surface, the amount of light that passes through the analyzer increases, and the unevenness can be detected.

〔発明の効果] 以上運べたように、本発明により磁性金属表面の凹凸を
高速にしかも容易に検知することができ、したがって材
料の非破壊検査や金属板バーコード読み取りを高速、か
つ容易に行うことができる効果を有する。
[Effects of the Invention] As described above, according to the present invention, unevenness on the surface of magnetic metal can be detected quickly and easily, and therefore non-destructive testing of materials and metal plate barcode reading can be performed quickly and easily. It has the effect that it can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示ず摺成図、第2図は本発
明の実施例2を示す+14 K Z、第3図は偏光光源
の構成例を示す図、第4図は光検出器の構成例を示す図
、第5図は金属表面の四部イ」近の漏れ磁界の様子を示
す図、第6図は極カー効果の原理を示す図、第7図はフ
ァラデー効果の原理を示す図、第8図は反射型のファラ
デー効果の原理を示す図、第9図は従来の磁、性金属板
表面の凹凸検知法の原理を示す図である。 1・・・磁刊二金属板    2・・・永久碍1石3・
・・ヨーク       4・・・磁場12− 5・・・非磁性基板 7・・・偏光光源 9・・・光検出器 II・・・漏れ磁界 20・・・イツトリウム鉄ガーネット(Y I G)2
1・・・反射膜      22・・・ビームスプリッ
タ−6・・・鉄薄膜 8・・・直線偏光 10・・・凹部
Fig. 1 is a drawing showing Embodiment 1 of the present invention, Fig. 2 is a drawing showing Embodiment 2 of the present invention, and Fig. 3 is a diagram showing an example of the configuration of a polarized light source. A diagram showing an example of the configuration of a photodetector, Figure 5 is a diagram showing the leakage magnetic field near the four parts of the metal surface, Figure 6 is a diagram showing the principle of the polar Kerr effect, and Figure 7 is a diagram showing the principle of the Faraday effect. FIG. 8 is a diagram showing the principle of the reflective Faraday effect, and FIG. 9 is a diagram showing the principle of a conventional method for detecting irregularities on the surface of a magnetic metal plate. 1...magnetic paper, 2 metal plates, 2...permanent stone, 1 stone, 3.
...Yoke 4...Magnetic field 12-5...Nonmagnetic substrate 7...Polarized light source 9...Photodetector II...Leakage magnetic field 20...Yttrium iron garnet (Y I G) 2
1...Reflection film 22...Beam splitter 6...Iron thin film 8...Linearly polarized light 10...Concave part

Claims (2)

【特許請求の範囲】[Claims] (1)磁性を有する金属板に印加した磁場が該金属板の
凹凸によって変化するのを利用して磁性を有する金属板
の凹凸を検知する方法であって、金属板表面に平行な方
向に磁場を印加し、前記印加磁場によって金属板の凹凸
部に生じる漏れ磁場の垂直成分が分布する位置に、極カ
ー効果を有する物質を配置し、前記極カー効果を有する
物質にスポット状の直線偏光をそのスポットが物質面を
掃引するように入射させ、前記物質からの反射光の偏光
面の回転角の大きさによって金属板の凹凸を検知するこ
とを特徴とする磁性金属板の凹凸検知方法。
(1) A method for detecting the unevenness of a magnetic metal plate by utilizing the fact that the magnetic field applied to the metal plate changes depending on the unevenness of the metal plate, in which the magnetic field is applied in a direction parallel to the surface of the metal plate. is applied, a material having a polar Kerr effect is placed at a position where the perpendicular component of the leakage magnetic field generated in the uneven portion of the metal plate due to the applied magnetic field is distributed, and a spot-shaped linearly polarized light is applied to the material having the polar Kerr effect. A method for detecting irregularities on a magnetic metal plate, characterized in that the spot is made to sweep across a material surface, and the irregularities on the metal plate are detected based on the magnitude of the rotation angle of the polarization plane of light reflected from the material.
(2)磁性を有する金属板に印加した磁場が該金属板の
凹凸によって変化するのを利用して磁性を有する金属板
の凹凸を検知する方法であって、金属板表面に平行な方
向に磁場を印加し、金属板の凹凸部に生じる漏れ磁場の
垂直成分が分布する位置にファラデー効果を有する物質
を配置し、前記ファラデー効果を有する物質にスポット
状の直線偏光をそのスポットが物質面を掃引するように
入射させ、前記物質の端面に設けられた反射膜からの反
射光の偏光面の回転角の大きさによって金属板の凹凸を
検知することを特徴とする磁性金属板の凹凸検知方法。
(2) A method for detecting the unevenness of a magnetic metal plate by utilizing the fact that the magnetic field applied to the metal plate changes depending on the unevenness of the metal plate, in which the magnetic field is applied in a direction parallel to the surface of the metal plate. is applied, a material with a Faraday effect is placed at a position where the vertical component of the leakage magnetic field generated on the uneven part of the metal plate is distributed, and a spot of linearly polarized light is applied to the material with the Faraday effect, and the spot sweeps the surface of the material. A method for detecting unevenness on a magnetic metal plate, characterized in that the unevenness of the metal plate is detected by the magnitude of the rotation angle of the plane of polarization of reflected light from a reflective film provided on an end surface of the material.
JP1751190A 1990-01-26 1990-01-26 Method for detecting ruggedness of magnetic metal plate Pending JPH03221804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1751190A JPH03221804A (en) 1990-01-26 1990-01-26 Method for detecting ruggedness of magnetic metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1751190A JPH03221804A (en) 1990-01-26 1990-01-26 Method for detecting ruggedness of magnetic metal plate

Publications (1)

Publication Number Publication Date
JPH03221804A true JPH03221804A (en) 1991-09-30

Family

ID=11945996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1751190A Pending JPH03221804A (en) 1990-01-26 1990-01-26 Method for detecting ruggedness of magnetic metal plate

Country Status (1)

Country Link
JP (1) JPH03221804A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034778A (en) * 1998-04-22 2000-03-07 Hyundai Electronics Industries Method of measuring surface area variation rate of a polysilicon film having hemispherical grains, and capacitance measuring method and apparatus by the same
US6392749B1 (en) 1997-09-22 2002-05-21 Candela Instruments High speed optical profilometer for measuring surface height variation
US6665078B1 (en) 1997-09-22 2003-12-16 Candela Instruments System and method for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern in thin film magnetic disks and silicon wafers
US6717671B1 (en) 1997-09-22 2004-04-06 Candela Instruments System for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern
US6757056B1 (en) 2001-03-26 2004-06-29 Candela Instruments Combined high speed optical profilometer and ellipsometer
US6882437B2 (en) 2002-04-19 2005-04-19 Kla-Tencor Technologies Method of detecting the thickness of thin film disks or wafers
US6897957B2 (en) 2001-03-26 2005-05-24 Candela Instruments Material independent optical profilometer
US6909500B2 (en) 2001-03-26 2005-06-21 Candela Instruments Method of detecting and classifying scratches, particles and pits on thin film disks or wafers
US6930765B2 (en) 2001-03-26 2005-08-16 Kla-Tencor Technologies Multiple spot size optical profilometer, ellipsometer, reflectometer and scatterometer
US7061601B2 (en) 1999-07-02 2006-06-13 Kla-Tencor Technologies Corporation System and method for double sided optical inspection of thin film disks or wafers
US7075741B1 (en) 2004-06-14 2006-07-11 Kla Tencor Technologues Corporation System and method for automatically determining magnetic eccentricity of a disk
US7123357B2 (en) 1997-09-22 2006-10-17 Candela Instruments Method of detecting and classifying scratches and particles on thin film disks or wafers
US7201799B1 (en) 2004-11-24 2007-04-10 Kla-Tencor Technologies Corporation System and method for classifying, detecting, and counting micropipes
US7396022B1 (en) 2004-09-28 2008-07-08 Kla-Tencor Technologies Corp. System and method for optimizing wafer flatness at high rotational speeds
US7684032B1 (en) 2005-01-06 2010-03-23 Kla-Tencor Corporation Multi-wavelength system and method for detecting epitaxial layer defects

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392749B1 (en) 1997-09-22 2002-05-21 Candela Instruments High speed optical profilometer for measuring surface height variation
US6665078B1 (en) 1997-09-22 2003-12-16 Candela Instruments System and method for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern in thin film magnetic disks and silicon wafers
US6717671B1 (en) 1997-09-22 2004-04-06 Candela Instruments System for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern
US7123357B2 (en) 1997-09-22 2006-10-17 Candela Instruments Method of detecting and classifying scratches and particles on thin film disks or wafers
US6956658B2 (en) 1997-09-22 2005-10-18 Kla-Tencor Technologies Corporation System and method for measuring object characteristics using phase differences in polarized light reflections
US6956660B2 (en) 1997-09-22 2005-10-18 Kla-Tencor Technologies System and method for measuring properties of an object using a phase difference between two reflected light signals
US6034778A (en) * 1998-04-22 2000-03-07 Hyundai Electronics Industries Method of measuring surface area variation rate of a polysilicon film having hemispherical grains, and capacitance measuring method and apparatus by the same
US7061601B2 (en) 1999-07-02 2006-06-13 Kla-Tencor Technologies Corporation System and method for double sided optical inspection of thin film disks or wafers
US6930765B2 (en) 2001-03-26 2005-08-16 Kla-Tencor Technologies Multiple spot size optical profilometer, ellipsometer, reflectometer and scatterometer
US6909500B2 (en) 2001-03-26 2005-06-21 Candela Instruments Method of detecting and classifying scratches, particles and pits on thin film disks or wafers
US6897957B2 (en) 2001-03-26 2005-05-24 Candela Instruments Material independent optical profilometer
US7075630B2 (en) 2001-03-26 2006-07-11 Kla-Tencor Technologies Corporation Combined high speed optical profilometer and ellipsometer
US7113284B1 (en) 2001-03-26 2006-09-26 Kla-Tencor Technologies Corporation Material independent optical profilometer
US6757056B1 (en) 2001-03-26 2004-06-29 Candela Instruments Combined high speed optical profilometer and ellipsometer
US6882437B2 (en) 2002-04-19 2005-04-19 Kla-Tencor Technologies Method of detecting the thickness of thin film disks or wafers
US7075741B1 (en) 2004-06-14 2006-07-11 Kla Tencor Technologues Corporation System and method for automatically determining magnetic eccentricity of a disk
US7396022B1 (en) 2004-09-28 2008-07-08 Kla-Tencor Technologies Corp. System and method for optimizing wafer flatness at high rotational speeds
US7201799B1 (en) 2004-11-24 2007-04-10 Kla-Tencor Technologies Corporation System and method for classifying, detecting, and counting micropipes
US7684032B1 (en) 2005-01-06 2010-03-23 Kla-Tencor Corporation Multi-wavelength system and method for detecting epitaxial layer defects

Similar Documents

Publication Publication Date Title
JPH03221804A (en) Method for detecting ruggedness of magnetic metal plate
JP7297306B2 (en) Terahertz magneto-optical sensor, high-performance non-destructive inspection device and method using the same, and magneto-optical imaging sensor used therefor
CN104764798B (en) A kind of visualization leakage magnetic detection device
US10317368B2 (en) Defect inspection device and defect inspection method
Radtke et al. Application of magneto-optical method for real-time visualization of eddy currents with high spatial resolution for nondestructive testing
JP4911489B2 (en) Flaw detector
US7271900B2 (en) Magneto-optical imaging method and device
US3893023A (en) Magnetic bubble device for visualizing magnetic field patterns
JP2672912B2 (en) Optical magnetic field flaw detection method
JP2002257718A (en) Light beam scanning type magnetic domain detector
Eftekhari et al. Miniaturized magneto-optical imaging sensor for crack and micro-crack detection
JP6083064B2 (en) Magnetic characteristic measuring apparatus, magnetic characteristic measuring method, and magnetic field measuring method
JP5550141B2 (en) Magneto-optical defect detection method
JP3194838B2 (en) Magnetic field measuring method and magnetic field measuring device
JPH0820421B2 (en) Flaw detection method and flaw detection device
Wegner et al. In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy
JPH081458B2 (en) Optical magnetic field distribution measuring device
CN108414952A (en) A kind of surface nano-structure magnetic measuring device
JP2665294B2 (en) Magneto-optical defect detection method
JPH05264510A (en) Distribution measuring apparatus of magneto-optical field
JP3064136B2 (en) Measurement method of two-dimensional magnetic field distribution
RU2021590C1 (en) Method of measurement of parameters of outside action on medium or object and device to implement it
RU2159426C1 (en) Procedure of magnetic-optical inspection of article
Hauser et al. Measurement of small distances between light spots by domain wall displacements
JPH0619093Y2 (en) Flaw detector