JP3064136B2 - Measurement method of two-dimensional magnetic field distribution - Google Patents

Measurement method of two-dimensional magnetic field distribution

Info

Publication number
JP3064136B2
JP3064136B2 JP5033421A JP3342193A JP3064136B2 JP 3064136 B2 JP3064136 B2 JP 3064136B2 JP 5033421 A JP5033421 A JP 5033421A JP 3342193 A JP3342193 A JP 3342193A JP 3064136 B2 JP3064136 B2 JP 3064136B2
Authority
JP
Japan
Prior art keywords
polarizer
magnetic field
film
light
field distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5033421A
Other languages
Japanese (ja)
Other versions
JPH06242196A (en
Inventor
宣夫 中村
陽介 浅原
道章 石原
和幸 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5033421A priority Critical patent/JP3064136B2/en
Publication of JPH06242196A publication Critical patent/JPH06242196A/en
Application granted granted Critical
Publication of JP3064136B2 publication Critical patent/JP3064136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鋼板の探傷, 超伝導物
質の評価, ステンレス鋼などの残留歪の検出などに利用
される二次元磁界分布の計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a two-dimensional magnetic field distribution used for flaw detection of a steel sheet, evaluation of a superconducting material, detection of residual strain of stainless steel, and the like.

【0002】[0002]

【従来の技術】従来、二次元の磁界分布の計測は、微小
なホール素子や磁気抵抗素子などの磁電変換素子を被測
定対象物上で走査したり、該磁電変換素子を二次元に敷
き詰めたりして行っていた。しかし、微小とは云うもの
の該磁電変換素子の大きさは小さいものでも0.5mm 角程
度であり、空間分解が満足に出来るものではなかった。
2. Description of the Related Art Conventionally, two-dimensional magnetic field distribution is measured by scanning a magneto-electric conversion element such as a minute Hall element or a magneto-resistance element on an object to be measured, or spreading the magneto-electric conversion element in two dimensions. I was going. However, although small, the size of the magnetoelectric conversion element is about 0.5 mm square even if it is small, and spatial resolution was not satisfactory.

【0003】近年、磁性ガーネット膜( 以下RIG 膜と称
する) を用いた二次元磁界分布の計測方法が注目されて
いる。この計測方法の概略を図1に示す。光源1から出
射した光は、偏光子2を通過した後、直線偏光となり、
被測定対象物3の直上に配置した RIG膜4に入射する。
その後、光は RIG膜4内部を通過し、反射膜5により反
射され、再び RIG膜4を通過した後、偏光子6を通過
し、光検出器7へ入射し電気信号へ変換される。
In recent years, a method of measuring a two-dimensional magnetic field distribution using a magnetic garnet film (hereinafter, referred to as an RIG film) has attracted attention. FIG. 1 shows an outline of this measuring method. The light emitted from the light source 1 becomes linearly polarized light after passing through the polarizer 2,
The light impinges on the RIG film 4 disposed immediately above the object 3 to be measured.
After that, the light passes through the inside of the RIG film 4, is reflected by the reflection film 5, passes through the RIG film 4 again, passes through the polarizer 6, enters the photodetector 7, and is converted into an electric signal.

【0004】なお、一般的に偏光子2と偏光子6の相対
的な角度は最も信号レベルが大きくなる45°としてい
る。若し被測定対象物3からの磁界強度が空間的(二次
元的)に変調されている時は、これに対応して RIG膜4
を通過した光は旋光作用を受け、偏光子6を通過する際
に強度変調されるという原理である。この方法では RIG
膜4の磁区幅(数十μm 以下)に対応した空間分解能が
得られると共に RIG膜4への入射光を RIG膜4上で走査
することにより、 RIG膜4の面積に応じて大面積の計測
が可能となる。
In general, the relative angle between the polarizer 2 and the polarizer 6 is set to 45 ° at which the signal level becomes maximum. If the magnetic field intensity from the measured object 3 is spatially (two-dimensionally) modulated, the RIG film 4
The principle is that the light that has passed through is subjected to an optical rotation action and is intensity-modulated when passing through the polarizer 6. This method uses RIG
A spatial resolution corresponding to the magnetic domain width of the film 4 (several tens of μm or less) can be obtained, and a large area can be measured according to the area of the RIG film 4 by scanning the RIG film 4 with light incident on the RIG film 4. Becomes possible.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では理由が不明ではあるが、被測定対象物からの磁界
強度に変調が無いときでも、入射光が照射される RIG膜
の面内の位置により RIG膜から戻ってくる光の強度、即
ち、図1における光検出器7へ入射する光の強度が変動
するという現象(以下、異常ノイズと称する)があり、
この異常ノイズが被測定対象物からの磁界強度の変調が
小さいときのS/N(15dB以上が好適) の低下を招くという
問題があった。
However, although the reason is not clear in this method, even when there is no modulation in the magnetic field intensity from the object to be measured, it depends on the position in the plane of the RIG film irradiated with the incident light. There is a phenomenon that the intensity of light returning from the RIG film, that is, the intensity of light incident on the photodetector 7 in FIG.
There has been a problem that this abnormal noise causes a decrease in S / N (preferably 15 dB or more) when the modulation of the magnetic field intensity from the object to be measured is small.

【0006】そこで、この異常ノイズの原因を検討した
結果、 RIG膜の膜面内の厚さの不均一により、 RIG膜内
部での光の多重反射の状況が RIG膜の面内の位置で変化
しているためであることが判明した。さらにこの RIG膜
の厚さの不均一さが0.1 μm程度でも、この現象が現れ
ることが判った。しかし、現在の RIG膜の研磨加工によ
る膜厚制御は 1μm であり、磁界変調の小さいときは計
測困難であった。
Therefore, as a result of examining the cause of the abnormal noise, the state of multiple reflection of light inside the RIG film changes at a position within the RIG film surface due to unevenness in the thickness of the RIG film. It turned out to be because. Further, it was found that this phenomenon appeared even when the thickness of the RIG film was non-uniform about 0.1 μm. However, the current thickness control by polishing the RIG film is 1 μm, and it was difficult to measure when the magnetic field modulation was small.

【0007】本発明は、かかる実情に鑑み、被測定対象
物からの磁界強度の変調が小さいときでもS/N 良く二次
元磁界分布を計測する方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a method for measuring a two-dimensional magnetic field distribution with a good S / N even when the modulation of the magnetic field intensity from the object to be measured is small.

【0008】[0008]

【課題を解決するための手段】本発明による二次元磁界
分布の計測方法は、被測定対象物に対向した面に反射膜
を施した磁性ガーネット膜へ直線偏光の光を入射させ、
該反射膜で反射され該磁性ガーネット膜から出射してき
た光を偏光子を通して強度変調させ二次元の磁界分布を
計測する方法において、該偏光子が該磁性ガーネット膜
へ入射する光の偏光面に対して65°〜75°の配置にある
ことを特徴としている。
According to the method of measuring a two-dimensional magnetic field distribution according to the present invention, linearly polarized light is made incident on a magnetic garnet film having a reflective film formed on a surface facing an object to be measured.
In the method of measuring the two-dimensional magnetic field distribution by intensity-modulating the light reflected from the reflective film and emitted from the magnetic garnet film through a polarizer, the polarizer may be arranged such that the light is incident on the magnetic garnet film with respect to the polarization plane of the light. In an arrangement of 65 ° to 75 °.

【0009】[0009]

【作用】本発明者らは調査検討を行った結果、被測定対
象物からの磁界強度に変調が無いときでも、入射光が照
射される RIG膜の面内の位置により図1における光検出
器7への入射光の強度が変動すると云う異常ノイズの大
きさは、図1における偏光子2と偏光子6との相対的な
角度即ち RIG膜へ入射する光の偏光面と偏光子6の偏光
面とのなす角度(以後、偏光子相対角度と称する)に依
存することを発見した。従って、偏光子相対角度を最適
な値にすることによりS/N が向上できることになる。
The present inventors have conducted investigations and have found that even when there is no modulation in the magnetic field intensity from the object to be measured, the photodetector in FIG. the size of the abnormal noise intensity of the incident light is referred to vary to 7, the relative angle or the polarization plane of the incident light to the RIG film and polarization of the polarizer 6 and the polarizer 6 and the polarizer 2 in FIG. 1
It has been found that it depends on the angle formed by the plane (hereinafter referred to as a polarizer relative angle). Therefore, S / N can be improved by setting the relative angle of the polarizer to an optimum value.

【0010】[0010]

【実施例】先ず、異常ノイズの大きさと偏光子相対角度
の関係を詳しく調べた。図1に示した構成で異常ノイズ
の測定を行った。光源1には波長0.78μm の光を出射す
るレーザーダイオードを、偏光子2及び偏光子6には偏
光子ビームスプリッタを、RIG膜4には膜厚が 15 μm
で5mm ×50mmの長方形の(GdBi)3(FeAl)5O12 を、光検出
器7にはSiフォトダイオードを用いた。また、 RIG膜4
には真空蒸着法によりAlの反射膜5を設けた。
First, the relationship between the magnitude of the abnormal noise and the relative angle of the polarizer was examined in detail. Abnormal noise was measured with the configuration shown in FIG. The light source 1 has a laser diode for emitting light having a wavelength of 0.78 μm, the polarizers 2 and 6 have a polarizer beam splitter, and the RIG film 4 has a thickness of 15 μm.
And a rectangular (GdBi) 3 (FeAl) 5 O 12 of 5 mm × 50 mm, and a Si photodiode as the photodetector 7. Also, RIG film 4
Was provided with an Al reflective film 5 by a vacuum evaporation method.

【0011】尚、ここでは異常ノイズの大きさのみを測
定するため被測定対象物は配置しなかった。測定は長方
形の RIG膜4を長辺に沿って平行に移動して光の照射さ
れる位置を変えながら光検出器の出力を記録することに
より行い、更に偏光子相対角度を変えて、その都度この
測定を行った。また、RIG 膜4へ入射する光は1mmφの
スッポト状のものを用いた。
In this case, the object to be measured was not arranged because only the magnitude of the abnormal noise was measured. The measurement is performed by moving the rectangular RIG film 4 in parallel along the long side and recording the output of the photodetector while changing the light irradiation position, and further changing the relative angle of the polarizer. This measurement was performed. The light incident on the RIG film 4 was a 1 mmφ spot light.

【0012】光検出器の出力の変動を異常ノイズの大き
さとして、偏光子相対角度を変化させたときの異常ノイ
ズの大きさの測定結果を図2に示す。ここで偏光子相対
角度を変えると偏光子6を通過し光検出器7に入射す
る絶対的な光量も変化するので、偏光子相対角度を変え
たときの光検出器の出力の平均値で規格化し、さらに、
偏光子相対角度が45°のときの異常ノイズの大きさを1
とした。図2の結果から、異常ノイズの大きさは偏光子
相対角度に大きく依存し、また、偏光子相対角度が70°
付近で異常ノイズは最小となることが判る。 RIG膜の厚
さなどを変えてみたが、図2の傾向は殆ど変わらなかっ
た。
FIG. 2 shows the measurement results of the magnitude of the abnormal noise when the relative angle of the polarizer is changed, with the fluctuation of the output of the photodetector as the magnitude of the abnormal noise. Here, since through the polarizer 6 and changing the polarizer relative angle also changes the absolute amount of light incident on the light detector 7, an average value of the output of the photodetector when varying polarizer relative angle Standardized, and
When the relative angle of the polarizer is 45 °, the magnitude of abnormal noise is 1
And From the results in FIG. 2, the magnitude of the abnormal noise greatly depends on the relative angle of the polarizer, and the relative angle of the polarizer is 70 °.
It can be seen that the abnormal noise is minimized in the vicinity. The thickness of the RIG film was changed, but the tendency in FIG. 2 was hardly changed.

【0013】図2によると、異常ノイズが最小となる偏
光子相対角度は70°付近であり、これは磁界変調による
信号レベルが最も大きくなる偏光子相対角度である45°
と異なる。そこで、次に被測定対象物を図1のように配
置し、磁界強度が変調されているといき、実際にS/N が
15dB以上となる偏光子相対角度を求めた。被測定対象物
として人工傷を設けた鋼板を用いた。即ち、鋼板の人工
傷から漏洩する磁界が磁界強度の変調を与える。
According to FIG. 2, the polarizer relative angle at which anomalous noise is minimized is around 70 °, which is 45 ° which is the polarizer relative angle at which the signal level due to the magnetic field modulation becomes the largest.
And different. Then, the object to be measured is placed next as shown in FIG. 1, and it is assumed that the magnetic field intensity is modulated.
The polarizer relative angle of 15 dB or more was determined. A steel plate provided with artificial scratches was used as the object to be measured. That is, the magnetic field leaking from the artificial scratch on the steel plate modulates the magnetic field intensity.

【0014】測定は被測定対象物である鋼板が配置され
たことを除いて、上記の異常ノイズの大きさを測定した
ものと同一である。結果を図3に示す。鋼板の傷からの
漏洩磁界による信号は、偏光子相対角度が45°で最大と
なり、0 °及び90°で殆ど0になる。一方、異常ノイズ
は図2の結果を反映して70°付近で最小となる。S/Nは
従来用いていた偏光子相対角度である45°では、僅か5d
B 程度であるのに対して、70°付近では18dB以上とな
る。また、偏光子相対角度が65°〜75°ではS/Nが15dB
以上となり、鋼板の傷からの漏洩磁界による信号の測定
を良好に行うことができた。
The measurement is the same as the measurement of the magnitude of the above-mentioned abnormal noise, except that a steel plate as an object to be measured is arranged. The results are shown in FIG. The signal due to the leakage magnetic field from the scratch on the steel plate becomes maximum when the polarizer relative angle is 45 °, and becomes almost zero at 0 ° and 90 °. On the other hand, the abnormal noise becomes minimum around 70 ° reflecting the result of FIG. S / N is only 5d at 45 ° which is the conventional polarizer relative angle.
While it is about B, it becomes 18 dB or more around 70 °. Also, when the polarizer relative angle is 65 ° to 75 °, the S / N is 15 dB.
As described above, the measurement of the signal by the leakage magnetic field from the scratch on the steel plate was successfully performed.

【0015】[0015]

【発明の効果】以上説明したように本発明による二次元
磁界分布の計測方法によれば、二次元に分布した僅かな
磁界強度の変調をS/N 良く測定することが可能となる。
As described above, according to the method of measuring a two-dimensional magnetic field distribution according to the present invention, it is possible to measure a slight modulation of the magnetic field intensity distributed two-dimensionally with good S / N.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性ガーネット膜を用いた本発明による二次元
磁界分布の計測方法の概略構成図である。
FIG. 1 is a schematic configuration diagram of a method for measuring a two-dimensional magnetic field distribution according to the present invention using a magnetic garnet film.

【図2】異常ノイズの大きさと偏光子相対角度の関係図
である。
FIG. 2 is a diagram showing the relationship between the magnitude of abnormal noise and the relative angle of a polarizer.

【図3】S/N と偏光子相対角度の関係図である。FIG. 3 is a diagram illustrating a relationship between S / N and a relative angle of a polarizer.

【符号の説明】 1 光源 2,6 偏光子 3 被測定対象物 4 磁性ガーネット膜( RIG膜) 5 反射膜 7 光検出器[Description of Signs] 1 Light source 2, 6 Polarizer 3 Object to be measured 4 Magnetic garnet film (RIG film) 5 Reflective film 7 Photodetector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 春名 和幸 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平5−333124(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01R 33/00 - 33/18 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuyuki Haruna 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (56) References JP-A-5-333124 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) G01R 33/00-33/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定対象物に対向した面に反射膜を施
した磁性ガーネット膜へ直線偏光の光を入射させ、該反
射膜で反射され該磁性ガーネット膜から出射してきた光
を偏光子を通して強度変調させ二次元の磁界分布を計測
する方法において、該偏光子が該磁性ガーネット膜へ入
射する光の偏光面に対して65°〜75°の配置にあること
を特徴とする二次元磁界分布の計測方法。
1. A linearly-polarized light is made incident on a magnetic garnet film having a reflective film provided on a surface facing an object to be measured, and light reflected by the reflective film and emitted from the magnetic garnet film is passed through a polarizer. In a method for measuring a two-dimensional magnetic field distribution by intensity modulation, the two-dimensional magnetic field distribution is characterized in that the polarizer is arranged at 65 ° to 75 ° with respect to a polarization plane of light incident on the magnetic garnet film. Measurement method.
JP5033421A 1993-02-23 1993-02-23 Measurement method of two-dimensional magnetic field distribution Expired - Fee Related JP3064136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033421A JP3064136B2 (en) 1993-02-23 1993-02-23 Measurement method of two-dimensional magnetic field distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033421A JP3064136B2 (en) 1993-02-23 1993-02-23 Measurement method of two-dimensional magnetic field distribution

Publications (2)

Publication Number Publication Date
JPH06242196A JPH06242196A (en) 1994-09-02
JP3064136B2 true JP3064136B2 (en) 2000-07-12

Family

ID=12386107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033421A Expired - Fee Related JP3064136B2 (en) 1993-02-23 1993-02-23 Measurement method of two-dimensional magnetic field distribution

Country Status (1)

Country Link
JP (1) JP3064136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719497A (en) * 1996-05-09 1998-02-17 The Regents Of The University Of California Lensless Magneto-optic speed sensor

Also Published As

Publication number Publication date
JPH06242196A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
US8622612B2 (en) Method and apparatus for determining the thermal expansion of a material
JPH01502849A (en) distance measuring device
US5416860A (en) Method and apparatus for optically measuring electric current and/or magnetic field with temperature compensation
CN104764798B (en) A kind of visualization leakage magnetic detection device
JPS5885103A (en) Surface profile interferometer
US7286229B1 (en) Detecting multi-domain states in perpendicular magnetic media
JPH03221804A (en) Method for detecting ruggedness of magnetic metal plate
US4976543A (en) Method and apparatus for optical distance measurement
JPH0634330A (en) Method and device for measuring depth
JP2746446B2 (en) Optical measuring device
US7271900B2 (en) Magneto-optical imaging method and device
JP3064136B2 (en) Measurement method of two-dimensional magnetic field distribution
WO2001061323A1 (en) Instrument for measuring physical property of sample
JP2002257718A (en) Light beam scanning type magnetic domain detector
US5633492A (en) Real time monitoring of changes in objects or media
JP3194838B2 (en) Magnetic field measuring method and magnetic field measuring device
JP2010038880A (en) Device and method for laser ultrasonography
JPH0955051A (en) Method and device for measuring floating characteristic of magnetic head
JPH0820420B2 (en) Magneto-optical flaw detection method and apparatus
US4195261A (en) Method and apparatus for measuring the stripe width and collapse field of magnetic materials
JP3220252B2 (en) EO probe
JPH07287059A (en) Magnetic-domain detection apparatus for magnetic material
Masada Evaluation of optical properties of retroreflectors for quantum illumination
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate
JPH0277643A (en) Flaw detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees