JPH0599783A - Water entrance detection method and system device of optical fiber - Google Patents

Water entrance detection method and system device of optical fiber

Info

Publication number
JPH0599783A
JPH0599783A JP26404991A JP26404991A JPH0599783A JP H0599783 A JPH0599783 A JP H0599783A JP 26404991 A JP26404991 A JP 26404991A JP 26404991 A JP26404991 A JP 26404991A JP H0599783 A JPH0599783 A JP H0599783A
Authority
JP
Japan
Prior art keywords
optical fiber
water
detection point
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26404991A
Other languages
Japanese (ja)
Inventor
Izumi Mikawa
泉 三川
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Shinichi Furukawa
眞一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26404991A priority Critical patent/JPH0599783A/en
Publication of JPH0599783A publication Critical patent/JPH0599783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a water entrance detection method and system device which can detect presence or absence of water entrance at a number of water entrance detection points with one optical fiber for detecting water entrance without requiring any special consideration in terms of operation. CONSTITUTION:Optical fiber parts 8 and 8' with a water-absorption inflation material 3 where the birefringence of an optical fiber 1 is changed by operating an inflation pressure absorbing water are placed at least one required water entrance detection point. A light pulse is transmitted repeatedly from a pulse light source 9 which is placed at one edge of the optical fiber 1 using light pulse testers a and b and at the same time any polarization constituent out of the reflection light is received selectively and birefringence change at the optical fiber parts 8 and 8' at a required position is detected by measuring change with time at a rear-scattering waveform from the optical fiber 1 which is away from a required water entrance detection point by a data-processing part, thus presence or absence of water entrance at the water entrance detection point to be observed is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光線路設備内に生じた
浸水を検知する方法及びその実施に直接使用するシステ
ム装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting water ingress in an optical fiber facility and a system device used directly for implementing the method.

【0002】[0002]

【従来の技術】近年、光線路設備の保守性向上のため、
光ファイバケーブル内の非ガス化が進められている。非
ガス光ファイバケーブル、即ちケーブル内にガスを封入
しない光ファイバケーブルの長期信頼性を保証する為に
は光ファイバの劣化要因である歪量の測定と浸水の検知
が必要になる。特に、光ファイバケーブルの接続点にお
いては余長収納の都合上、光ファイバに曲げ歪が付与さ
れているため、浸水による劣化が著しく、浸水の検知は
不可欠である。従来、このような浸水の検知は吸水膨張
性素材を用いたセンサにより光ファイバに曲げを与えて
損失増を引き起こし、これを光パルス試験器により検知
するという方法がとられている(笠原他,1990年電
子情報通信学会春季全国大会,B−878)。
2. Description of the Related Art In recent years, in order to improve the maintainability of optical fiber equipment,
The degassing of optical fiber cables is being promoted. In order to guarantee the long-term reliability of a non-gas optical fiber cable, that is, an optical fiber cable in which gas is not sealed in the cable, it is necessary to measure the amount of strain, which is a factor of deterioration of the optical fiber, and detect water immersion. In particular, at the connection point of the optical fiber cable, since bending strain is applied to the optical fiber for the sake of accommodating the extra length, deterioration due to water immersion is significant, and water immersion detection is indispensable. Conventionally, such a method of detecting water immersion has been performed by bending the optical fiber with a sensor using a water-swelling material to cause an increase in loss and detecting this with an optical pulse tester (Kasahara et al., 1990 IEICE Spring National Convention, B-878).

【0003】従来の技術を図7乃至図9に示す。図7は
従来の吸水膨張性素材を用いた浸水検知用のセンサを示
す図、図8は図7の浸水検知用センサを用いた従来の浸
水検知システム装置を示す図、図9は図8のシステム装
置による測定結果を示すグラフである。図中、Aは従来
の浸水検知用センサ、αはセンサAを用いた従来の浸水
検知システム装置、1は浸水検知用光ファイバ、2,
2’は光ファイバ1に曲げを付与する凸状押圧ガイドと
凹状受ガイド、3は吸水膨張性素材、4,5はガイド
2,2’と吸水膨張性素材3を収納する蓋とケース、6
は光パルス試験器、7はデータ処理部である。
A conventional technique is shown in FIGS. FIG. 7 is a diagram showing a conventional sensor for detecting inundation using a water-absorptive expansive material, FIG. 8 is a diagram showing a conventional intrusion detection system device using the intrusion detection sensor of FIG. 7, and FIG. 9 is a diagram of FIG. It is a graph which shows the measurement result by a system unit. In the figure, A is a conventional water immersion detection sensor, α is a conventional water immersion detection system device using the sensor A, 1 is a water immersion detection optical fiber, 2,
2'is a convex pressing guide and a concave receiving guide for bending the optical fiber 1, 3 is a water-swellable material, 4, 5 are guides 2, 2'and a lid and a case for housing the water-swellable material 3, 6
Is an optical pulse tester, and 7 is a data processing unit.

【0004】図7(a)は浸水前で吸水膨張性素材3の
吸水前の状態を示す図で、光ファイバ1は曲がりが加わ
らないように取り付けられている。図7(b)はセンサ
Aが浸水したときの状態を示す図であり、吸水膨張性素
材3が水を吸って膨張し、これによって光ファイバ1が
凸状押圧ガイド2により凹状受ガイド2′に押付けられ
て曲げられ、約2dB以上の損失増が生じる。図8は、
前記のセンサAを用いた従来の浸水検知システム装置α
を示す図であり、複数のセンサAを取り付けた浸水検知
用光ファイバ1の一端が光パルス試験器6に接続されて
いる。
FIG. 7 (a) is a view showing a state before water absorption of the water-swellable expansive material 3 before water immersion, and the optical fiber 1 is attached so as not to be bent. FIG. 7B is a diagram showing a state when the sensor A is flooded, and the water-absorptive expandable material 3 absorbs water and expands, whereby the optical fiber 1 is recessed by the convex pressing guide 2 and the concave receiving guide 2 ′. It is pressed against and bent, and a loss increase of about 2 dB or more occurs. Figure 8
Conventional Infiltration Detection System Device α Using the Sensor A
FIG. 4 is a diagram showing the above, in which one end of the water immersion detection optical fiber 1 to which a plurality of sensors A are attached is connected to an optical pulse tester 6.

【0005】光パルス試験器6は、被測定光ファイバに
光パルスを送出し、これによって発生する後方散乱光並
びにフレネル反射光を検出して当該被測定光ファイバ1
の損失分布や破断点位置を検出するものであって、浸水
検知用システム装置αにおいては、浸水検知用センサA
の設置点における光損失の変化を検出するために用いら
れる。図9は図8のシステムαによる測定結果を示すグ
ラフで、L1は浸水前の特性、L2は浸水後の特性を示
し、浸水検知用光ファイバ1の損失が浸水により変化す
る様子が示されている。
The optical pulse tester 6 sends an optical pulse to the optical fiber to be measured, detects the backscattered light and Fresnel reflected light generated thereby, and detects the optical fiber 1 to be measured.
For detecting the loss distribution and the position of the break point of the water.
Used to detect changes in light loss at the installation point of the. FIG. 9 is a graph showing the measurement results by the system α in FIG. 8, where L1 shows the characteristics before water immersion and L2 shows the characteristics after water immersion, showing that the loss of the optical fiber 1 for water immersion detection changes due to water immersion. There is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の浸水検知システム装置αには以下のような欠点があ
った。まず、第一に、浸水検知用センサAでは光ファイ
バ1に所定の曲がりを加える必要があるので曲げに必要
な光ファイバ1のたるみをセンサA前後に確保する必要
があり、センサAの配置作業が非常に困難であった。第
二に、1本の浸水検知用光ファイバ1に設置可能なセン
サAの数が制限されるという問題があった。
However, the conventional water immersion detection system device α has the following drawbacks. First, in the sensor A for detecting water immersion, since it is necessary to add a predetermined bend to the optical fiber 1, it is necessary to secure the slack of the optical fiber 1 necessary for bending before and after the sensor A. Was very difficult. Secondly, there is a problem that the number of sensors A that can be installed in one optical fiber 1 for water detection is limited.

【0007】即ち、浸水検知用光ファイバ1の損失増に
より浸水の有無を検知しているため、複数のセンサAに
同時に浸水すると、ついには浸水検知用光ファイバAの
損失が光パルス試験器6のダイナミックレンジ(測定可
能最大損失)を超過し、遠方での状態はもはや検知不可
能となるからである。こゝにおいて、本発明は前記従来
の浸水検知用センサの欠点を除去し、特別な作業上の配
慮を必要とせず、1本の浸水検知用光ファイバで多数の
浸水検知点における浸水の有無を検知可能な浸水検知方
法及びそのシステム装置を提供せんとするものである。
That is, since the presence or absence of water intrusion is detected by the increase in loss of the water inundation detecting optical fiber 1, when water is simultaneously infiltrated into a plurality of sensors A, the loss of the water inundation detecting optical fiber A is finally detected by the optical pulse tester 6. This is because the dynamic range (maximum measurable loss) of is exceeded and the state at a long distance can no longer be detected. In this regard, the present invention eliminates the drawbacks of the conventional sensor for detecting water immersion, does not require special work considerations, and detects the presence or absence of water leakage at a large number of water detection points with one optical fiber for water detection. An object of the present invention is to provide a detectable inundation detection method and its system device.

【0008】[0008]

【課題を解決するための手段】前記課題の解決は、本発
明の次に列挙する新規な特徴的手法及び構成手段を援用
することにより達成される。即ち、本発明法の第一の特
徴は、水を吸収して光ファイバの複屈折を変化させる手
段を具備した光ファイバ部品を少なくとも1つの所要の
浸水検知地点に配置し、前記光ファイバの一端に設置さ
れた光源より光パルスを繰り返し送出するとともにその
反射光のうち任意の偏光成分を選択的に受光し、所要の
前記浸水検知地点より遠方の前記光ファイバからの後方
散乱波形における時間的変化を測定して所要箇所の前記
光ファイバ部品での複屈折変化を検知し、浸水検知地点
における浸水の有無を検知するようにしてなる光ファイ
バの浸水検知方法である。
The solution to the above-mentioned problems can be achieved by incorporating the following novel characteristic methods and constituent means of the present invention. That is, the first feature of the method of the present invention is to dispose an optical fiber component equipped with a means for absorbing water to change the birefringence of the optical fiber at at least one required inundation detection point, and one end of the optical fiber. The optical pulse is repeatedly transmitted from the light source installed in the light source and any polarized component of the reflected light is selectively received, and the temporal change in the backscattering waveform from the optical fiber distant from the required immersion detection point is temporally changed. Is detected to detect the change in birefringence in the optical fiber component at a required position, and to detect the presence or absence of water immersion at the water immersion detection point.

【0009】本発明法の第二の特徴は、前記第一の特徴
において、光ファイバの一端に設置された光源から繰り
返し送出する光パルスを、任意の偏光状態にしてなる光
ファイバの浸水検知方法である。
The second feature of the method of the present invention is the method for detecting water immersion in an optical fiber according to the first feature, wherein an optical pulse repeatedly sent from a light source installed at one end of the optical fiber is made into an arbitrary polarization state. Is.

【0010】本発明装置の第一の特徴は、少なくとも1
つの所要の浸水検知地点まで配線した光ファイバと、当
該浸水検知地点において、前記光ファイバの複屈折を水
の吸収により変化させる手段を有する光ファイバ部品
と、前記光ファイバの一端に接続され、当該一端に光パ
ルスを繰り返し送出するとともに、その反射光のうち任
意の偏光成分を選択的に受光する光パルス試験器と、着
目する前記浸水検知地点より遠方の前記光ファイバから
の後方散乱波形における時間的変化を測定して、着目す
る前記光ファイバ部品での複屈折変化を検知し、着目す
る前記検知地点における浸水の有無を検知するデータ処
理手段とからなる光ファイバの浸水検知システム装置で
ある。
The first feature of the device of the present invention is at least one.
An optical fiber wired up to two required inundation detection points, an optical fiber component having means for changing the birefringence of the optical fiber by absorbing water at the inundation detection point, and connected to one end of the optical fiber, An optical pulse tester that repeatedly transmits an optical pulse to one end and selectively receives any polarized component of the reflected light, and the time in the backscattering waveform from the optical fiber far from the water immersion detection point of interest. And a data processing unit that detects the presence or absence of water immersion at the detection point of interest by measuring a dynamic change, detects a birefringence change in the optical fiber component of interest, and detects the presence or absence of water intrusion.

【0011】本発明装置の第二の特徴は、前記第一の特
徴において、光ファイバの一端から繰り返し送出する光
パルスを任意の偏光状態として送出してなる光ファイバ
の浸水検知システム装置である。
The second feature of the device of the present invention is, in the first feature, an optical fiber flooding detection system device in which an optical pulse repeatedly transmitted from one end of the optical fiber is transmitted in an arbitrary polarization state.

【0012】本発明装置の第三の特徴は、前記装置の第
一又は第二の特徴における光ファイバ部品が、水を吸収
することにより体積が膨張する吸水膨張性素材を光ファ
イバの周囲に配置して、光ファイバが浸水した時に当該
吸水膨張性素材が水を吸収して前記光ファイバに側圧,
曲げもしくは捩り等を付加することを可能としてなる光
ファイバの浸水検知システム装置である。
A third feature of the device of the present invention is that the optical fiber component according to the first or second feature of the device is arranged around the optical fiber with a water-absorptive material whose volume expands by absorbing water. Then, when the optical fiber is flooded, the water-swellable expansive material absorbs water to cause lateral pressure on the optical fiber,
This is an optical fiber water immersion detection system device that can add bending or twisting.

【0013】[0013]

【作用】本発明は、前記のような手法および手段を講じ
るため、光ファイバの一端より繰り返し送出された光パ
ルス及びこれにより発生する後方散乱光の偏光状態は、
光ファイバを伝達する際に光ファイバ内部に生じた複屈
折により変化する。このため、後方散乱光を受光する際
に特定の偏光成分のみを測定することにより、当該光フ
ァイバ内部の偏光状態の変化、ひいては、複屈折の変化
を検知することができる。
In the present invention, since the above-mentioned method and means are taken, the polarization state of the light pulse repeatedly transmitted from one end of the optical fiber and the backscattered light generated thereby is
It changes due to birefringence generated inside the optical fiber during transmission through the optical fiber. Therefore, by measuring only a specific polarization component when receiving the backscattered light, it is possible to detect a change in the polarization state inside the optical fiber, and thus a change in birefringence.

【0014】一方、浸水に起因して光ファイバの任意の
点で複屈折が変化すると、当該任意点より遠方の偏光状
態がすべて変化するため、この偏光状態の経時的変化の
有無を検知することにより、光ファイバの複屈折の変
化、すなわち浸水検知地点における浸水が検知される。
また、光ファイバ一端より繰り返し送出する光パルスの
偏光状態を任意に設定できるので、入射光と後方散乱光
との偏光状態の関連がより正確に測定でき、浸水に起因
する偏光状態の変化を検知することができる。
On the other hand, if the birefringence changes at an arbitrary point of the optical fiber due to water immersion, all the polarization states far from the arbitrary point change. Therefore, it is necessary to detect whether there is a change in this polarization state with time. Thus, the change in the birefringence of the optical fiber, that is, the water immersion at the water immersion detection point is detected.
In addition, the polarization state of the light pulse repeatedly sent from one end of the optical fiber can be set arbitrarily, so the relationship between the polarization states of the incident light and the backscattered light can be measured more accurately, and changes in the polarization state caused by flooding can be detected. can do.

【0015】また、データ処理手段により、後方散乱光
の偏光状態に関する経時的変化が正確に測定され、これ
によって、浸水検知点における浸水を正確に検知する。
また、光ファイバ一端より繰り返し送出する光パルスの
偏光状態を任意に設定できるので、入射光と後方散乱光
の偏光状態の関連がより正確に測定でき、さらにデータ
処理手段により後方散乱光の偏光状態に関する経時的変
化が正確に測定され、これによって浸水検知点における
浸水を正確に検知する。さらに、吸水膨張性素材を光フ
ァイバの周囲に配置し、光ファイバの周囲に浸水した時
に当該吸水膨張性素材の膨張により、光ファイバに側
圧,曲げもしくは捩り等を加えて当該光ファイバの複屈
折を変化することを可能とする。
Further, the data processing means accurately measures the change with time in the polarization state of the backscattered light, and thereby accurately detects the inundation at the inundation detection point.
Further, since the polarization state of the light pulse repeatedly transmitted from one end of the optical fiber can be arbitrarily set, the relation between the polarization states of the incident light and the backscattered light can be measured more accurately, and the polarization state of the backscattered light can be further measured by the data processing means. The change over time with respect to is accurately measured, thereby accurately detecting the inundation at the inundation detection point. Further, a water-absorbing expansive material is placed around the optical fiber, and when water is immersed around the optical fiber, the expansion of the water-absorbing expansive material causes lateral pressure, bending, or twisting to the optical fiber to cause birefringence of the optical fiber. It is possible to change.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明の第一実施例を図面につき説明す
る。図1は本実施例のシステム装置の全体構成図、図2
(a),(b)は偏光選択部を用いない場合と偏光選択
部を有する場合とのそれぞれの光ファイバの後方散乱光
の分布を示したグラフ、図3は浸水前後の後方散乱光分
布の変化を示すグラフ、図4は吸水膨張性素材を用いた
浸水検知用光ファイバ部品の一例を示す図、図5は浸水
検知用光ファイバ部品の別の実施例を示す図である。図
中、βは本実施例の浸水検知システム装置、aは光パル
ス試験器、8,8’は本実施例に適用する浸水検知用光
ファイバ部品、9はパルス光源、10は光出入力部、1
1は偏光選択部、12は受光部である。なお、従来例と
同一の部材には同一の符号を付した。
(Embodiment 1) A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a system device according to this embodiment, and FIG.
(A) and (b) are graphs showing the distribution of the backscattered light of each optical fiber in the case where the polarization selecting part is not used and the case where the polarization selecting part is provided, and FIG. FIG. 4 is a graph showing changes, FIG. 4 is a diagram showing an example of an optical fiber component for detecting water immersion using a water-swellable material, and FIG. 5 is a diagram showing another example of the optical fiber component for detecting water immersion. In the figure, β is the water immersion detection system device of this embodiment, a is an optical pulse tester, 8 and 8 ′ are optical fiber components for water immersion detection applied to this embodiment, 9 is a pulse light source, and 10 is a light output / input unit. 1
Reference numeral 1 is a polarization selecting unit, and 12 is a light receiving unit. The same members as those in the conventional example are designated by the same reference numerals.

【0017】図4は、本実施例における一例としての光
ファイバ部品8を示す図で、(a)は当該光ファイバ部
品8の全体の斜視図、(b)は(a)のIVb−IVb線視
断面図である。ケース13には水を内部に導くための穴
14と蓋15の凸状天面に取付けた吸水膨脹性素材3下
面に貼着する押さえ板16を設けている。浸水時には、
当該穴14より水が光ファイバ部品8内部にしみこみ、
吸水膨張性素材3に吸収される。この結果、吸水膨張性
素材3が膨張してケース13と押さえ板16により光フ
ァイバ1に側圧を加えて、当該光ファイバ1の偏光状態
に変化を生じさせる。
FIG. 4 is a diagram showing an optical fiber component 8 as an example in the present embodiment. (A) is a perspective view of the entire optical fiber component 8 and (b) is a line IVb-IVb in (a). FIG. The case 13 is provided with a hole 14 for guiding water inside and a pressing plate 16 attached to the lower surface of the water-absorbing expansive material 3 attached to the convex top surface of the lid 15. When flooded,
Water permeates the inside of the optical fiber component 8 through the hole 14,
It is absorbed by the water-swellable material 3. As a result, the water-absorptive material 3 expands, and lateral pressure is applied to the optical fiber 1 by the case 13 and the pressing plate 16 to change the polarization state of the optical fiber 1.

【0018】さらに、穴14及びケース13の内部にタ
ンパク質,デンプン,寒天,ゼラチンなどの親水素材を
塗布するなどの親水処理を施すと、より水の侵入が確実
となる。また、本実施例における光ファイバ部品8を示
す図4では、ケース13の内面と押さえ板16の面が平
らな場合を示しているが、特に両面が平らな面である必
要はなく、曲面であっても何等支障はない。この場合に
は、光ファイバ1に側圧と曲がりが加わるため、より大
きな偏光状態の変化が光ファイバ1に発生し、浸水の検
知が一層容易となる。
Further, if a hydrophilic treatment such as coating a hydrophilic material such as protein, starch, agar, gelatin or the like is applied to the inside of the hole 14 and the case 13, water can be more surely invaded. Further, FIG. 4 showing the optical fiber component 8 in the present embodiment shows the case where the inner surface of the case 13 and the surface of the pressing plate 16 are flat, but it is not necessary that both surfaces are flat surfaces, and curved surfaces are possible. There is no problem even if there is. In this case, since lateral pressure and bending are applied to the optical fiber 1, a larger change in the polarization state occurs in the optical fiber 1 and it becomes easier to detect water immersion.

【0019】図5は、本実施例における他例としての光
ファイバ部品8’を示す図で、(a)は蓋15とケース
13を取り除いた状態の斜視図、(b)は光ファイバ部
品8’の吸水前のVb−Vb線視断面図、(c)は吸水
後のVb−Vb線視断面図である。本実施例における光
ファイバ部品8’は、光ファイバ1に捩りを加えるもの
である。17は光ファイバ捩り部であり、当該光ファイ
バ捩り部17と光ファイバ1は固定されている。
5A and 5B are views showing an optical fiber component 8'as another example of the present embodiment. FIG. 5A is a perspective view with the lid 15 and the case 13 removed, and FIG. 'Is a Vb-Vb line sectional view before water absorption, and (c) is a Vb-Vb line sectional view after water absorption. The optical fiber component 8'in the present embodiment applies a twist to the optical fiber 1. Reference numeral 17 denotes an optical fiber twisting portion, and the optical fiber twisting portion 17 and the optical fiber 1 are fixed.

【0020】吸水による吸水膨張性素材3の寸法変化に
より、断面図(b)及び(c)に示すように、光ファイ
バ捩り部17が回転して、光ファイバ1に捩りが加わ
る。このため、光ファイバ1の偏光状態が変化して、前
記光ファイバ部品8と同様の効果が生じる。また、図5
では、光ファイバ1が光ファイバ捩り部17の回転中心
に固定されているが、この光ファイバ1は当該光ファイ
バ捩り部17の周囲に配置されていても良い。吸水時の
吸水膨張性素材3の膨張変化により、光ファイバ1に捩
りが加わる構造であれば、偏光状態の変化が発生し、浸
水を検知することが可能となる。
Due to the dimensional change of the water-swellable expansive material 3 due to water absorption, the optical fiber twisting portion 17 rotates and twists the optical fiber 1 as shown in the sectional views (b) and (c). Therefore, the polarization state of the optical fiber 1 changes, and the same effect as the optical fiber component 8 is produced. Also, FIG.
Then, the optical fiber 1 is fixed to the rotation center of the optical fiber twisting portion 17, but the optical fiber 1 may be arranged around the optical fiber twisting portion 17. With the structure in which the optical fiber 1 is twisted due to the expansion change of the water-absorbent expansive material 3 at the time of absorbing water, a change in the polarization state occurs and it becomes possible to detect water immersion.

【0021】しかして本実施例の仕様は、このような具
体的実施態様であって、図1によりその動作を説明す
る。光ファイバ部品8は浸水時に光ファイバ1に側圧を
加えるものであり、光ファイバ部品8′は浸水時に光フ
ァイバ1に捩りを加えるものである。パルス光源9より
出射されたパルス化されたほぼ直線偏光の光は、光出入
力部10を経て前記浸水検知用光ファイバ1に入射さ
れ、当該光ファイバ1からの後方散乱光は光出入力部1
0により偏光選択部11に導かれる。当該偏光選択部1
1は、後方散乱光のうち任意の偏光成分のみを透過し、
この透過した光が受光部12にて受光され光量が測定さ
れる。データ処理部7は、各光ファイバ部品8,8′後
方の光ファイバ1における後方散乱光の経時的な変化の
有無を測定し、当該変化の有無から光ファイバ1の複屈
折変化を検知し、各浸水検知点における浸水の有無を検
知する。
The specification of this embodiment is such a concrete embodiment, and its operation will be described with reference to FIG. The optical fiber component 8 applies a lateral pressure to the optical fiber 1 when it is flooded, and the optical fiber component 8 ′ applies a twist to the optical fiber 1 when it is flooded. The pulsed substantially linearly polarized light emitted from the pulse light source 9 is incident on the water detection optical fiber 1 via the light output / input unit 10, and the backscattered light from the optical fiber 1 is the light output / input unit. 1
It is guided to the polarization selection unit 11 by 0. The polarization selection unit 1
1 transmits only an arbitrary polarized component of the backscattered light,
The transmitted light is received by the light receiving unit 12 and the amount of light is measured. The data processing unit 7 measures whether or not there is a change with time in the backscattered light in the optical fiber 1 behind each of the optical fiber components 8 and 8 ', and detects the birefringence change of the optical fiber 1 from the presence or absence of the change. The presence or absence of inundation at each inundation detection point is detected.

【0022】次いで、本発明の原理を図2及び図3につ
き説明する。図2(a)は、図1中の偏光選択部11を
具備しない、通常の光パルス試験器6を用いた場合の光
ファイバ1の後方散乱光分布を示したグラフである。本
図から明らかなように、後方散乱光は光ファイバ1長に
比例して単調にその強度が低下している。一方、偏光選
択部11を具備する光パルス試験器aの場合に、前記光
ファイバ1の後方散乱光分布を測定した結果を図2
(b)に示す。この場合、図2(a)と同様に、後方散
乱光は光ファイバ1長に比例してその強度が低下してい
るものの、単調な減少ではなく、大きな揺らぎが認めら
れる。
Next, the principle of the present invention will be described with reference to FIGS. FIG. 2A is a graph showing the backscattered light distribution of the optical fiber 1 in the case of using the normal optical pulse tester 6 that does not include the polarization selection unit 11 in FIG. As is apparent from this figure, the intensity of the backscattered light monotonically decreases in proportion to the length of the optical fiber 1. On the other hand, in the case of the optical pulse tester a including the polarization selecting unit 11, the result of measuring the backscattered light distribution of the optical fiber 1 is shown in FIG.
It shows in (b). In this case, as in the case of FIG. 2A, the intensity of the backscattered light decreases in proportion to the length of the optical fiber 1, but a large fluctuation is recognized instead of a monotonous decrease.

【0023】この原因は、光ファイバ1が局部的に曲げ
やねじりといった外乱を受けたり、また光ファイバ1内
部の局部的な寸法不均一性により、内部を伝達する光の
偏光方向が変化することに起因している。即ち、特定の
偏光方向しか透過しない偏光選択部11を使用すると、
当該偏光選択部11と偏光方向の一致する後方散乱光の
場合は大きな光量が測定されるが、直交する後方散乱光
の場合は小さな光量しか測定されない。従って、光ファ
イバ1長の違いにより後方散乱光量の揺らぎが観測さ
れ、図2(b)に示した後方散乱光分布が得られる。
The cause is that the optical fiber 1 is locally subjected to a disturbance such as bending or twisting, or the polarization direction of the light transmitted through the inside of the optical fiber 1 changes due to the local dimensional nonuniformity. Due to. That is, when the polarization selection unit 11 that transmits only a specific polarization direction is used,
A large amount of light is measured in the case of backscattered light whose polarization direction matches that of the polarization selection unit 11, but only a small amount of light is measured in the case of orthogonal backscattered light. Therefore, fluctuations in the amount of backscattered light are observed due to the difference in length of the optical fiber 1, and the backscattered light distribution shown in FIG. 2B is obtained.

【0024】本実施例では、光ファイバ部品8,8’に
より、浸水時に周囲から浸水検知用の光ファイバ1に側
圧を加え、内部を伝達する光の偏光方向に変化を与え
る。従って、図3に示すように、当該光ファイバ部品
8,8’より遠方の光ファイバ1の後方散乱光分布に、
浸水前後で変化が生じ、当該変化の有無を検知すること
により浸水の有無を検知することができる。以上のよう
に、本実施例では、従来用いていた損失増加を必要とし
ないので、長尺の光線路においても浸水を検知し得る利
点を有している。
In the present embodiment, the optical fiber parts 8 and 8'apply a lateral pressure to the optical fiber 1 for detecting water immersion from the surroundings when the water is inundated to change the polarization direction of the light transmitted inside. Therefore, as shown in FIG. 3, in the backscattered light distribution of the optical fiber 1 farther from the optical fiber components 8 and 8 ′,
A change occurs before and after the inundation, and the presence or absence of the inundation can be detected by detecting the presence or absence of the change. As described above, the present embodiment does not require the increase in loss, which has been conventionally used, and thus has an advantage of being able to detect water immersion even in a long optical line.

【0025】以上の説明は、ほぼ直線偏光の特性を有す
るパルス光源9(例えばレーザダイオード)の使用を仮
定しているが、現実には必ずしもそうではない。例え
ば、スーパールミネッセントダイオードのような無偏光
状態の高出力光源を使用する場合では、浸水検知用の光
ファイバ1への入射光が無偏光であるため、光ファイバ
1各部からの後方散乱光も無偏光となり、たとえ偏光選
択部11を使用しても光ファイバ1の偏光状態を測定す
ることはできない。このような場合でも、浸水による偏
光状態の変化を検知し得る場合を、次に説明する。
Although the above description assumes the use of the pulsed light source 9 (for example, a laser diode) having the characteristic of substantially linearly polarized light, this is not always the case in reality. For example, when a non-polarized high-power light source such as a super luminescent diode is used, the incident light to the optical fiber 1 for detecting water immersion is non-polarized, and therefore the backscattered light from each part of the optical fiber 1 is unpolarized. Also becomes non-polarized, and the polarization state of the optical fiber 1 cannot be measured even if the polarization selector 11 is used. Even in such a case, the case where the change of the polarization state due to the water immersion can be detected will be described below.

【0026】(実施例2)本発明の第二実施例を図面に
つき説明する。図6は本実施例のシステムの全体構成図
である。図中、γは本実施例の浸水検知システム装置、
bは光パルス試験器、18はポラライザである。ポララ
イザ18は、無偏光状態のパルス光源9出力のうち、任
意の直線偏光成分のみを透過する。従って、直線偏光の
光源を使用することを仮定している前記第一の実施例と
同様に、浸水による偏光状態の変化を検出することがで
きる。
(Second Embodiment) A second embodiment of the present invention will be described with reference to the drawings. FIG. 6 is an overall configuration diagram of the system of this embodiment. In the figure, γ is the infiltration detection system device of this embodiment,
Reference numeral b is an optical pulse tester, and 18 is a polarizer. The polarizer 18 transmits only an arbitrary linearly polarized light component of the output of the pulse light source 9 in the non-polarized state. Therefore, it is possible to detect the change in the polarization state due to the water immersion, as in the first embodiment, which assumes that a linearly polarized light source is used.

【0027】[0027]

【発明の効果】以上のように本発明によれば、水の吸収
により光ファイバの複屈折を変化させる手段を具備する
光ファイバ部品を少なくとも1つの浸水検知地点に配置
し、前記光ファイバの一端より光パルスを繰り返し送出
するとともに、その反射光のうち任意の偏光成分を選択
的に受光し、着目する浸水検知地点より遠方の光ファイ
バからの後方散乱波形における時間的変化を測定して、
着目する光ファイバ部品での複屈折変化を検知し、着目
する浸水検知地点における浸水の有無を検知するように
なしたため、従来の吸水膨張性素材を用いたセンサによ
る検知方法に比較して、作業性に優れており、また、浸
水後の光線路損失増や反射の変動がないため、1本の浸
水検知用の光ファイバで多数の浸水検知地点における浸
水の有無を検知できる。
As described above, according to the present invention, an optical fiber component having means for changing the birefringence of an optical fiber by absorbing water is arranged at at least one of the water immersion detection points, and one end of the optical fiber is provided. While repeatedly sending an optical pulse, selectively receive any polarized component of the reflected light, and measure the temporal change in the backscattering waveform from the optical fiber far from the inundation detection point of interest,
By detecting the birefringence change in the optical fiber component of interest and detecting the presence or absence of water intrusion at the water intrusion detection point of interest, compared with the conventional detection method using a sensor using water-absorbing expansive material, In addition, since there is no increase in optical line loss or fluctuations in reflection after flooding, one optical fiber for flooding detection can detect the presence or absence of flooding at many flooding detection points.

【0028】また、水の吸収により光ファイバの複屈折
を変化させる手段を具備する光ファイバ部品を少なくと
も1つの浸水検知地点に配置し、前記光ファイバの一端
より任意の偏光状態の光パルスを繰り返し送出するとと
もに、その反射光のうち任意の偏光成分を選択的に受光
し、着目する浸水検知地点より遠方の光ファイバからの
後方散乱波形における時間的変化を測定して、着目する
光ファイバ部品での複屈折変化を検知し、着目する浸水
検知地点における浸水の有無を検知するようになしたた
め、パルス光源の種類に依存せず、浸水を正確に検知す
ることができる。
Further, an optical fiber component having a means for changing the birefringence of the optical fiber by absorbing water is arranged at at least one of the water immersion detection points, and an optical pulse having an arbitrary polarization state is repeated from one end of the optical fiber. While sending out, it selectively receives any polarized component of the reflected light, measures the temporal change in the backscattering waveform from the optical fiber far from the inundation detection point of interest, and Since the change in birefringence is detected to detect the presence / absence of water intrusion at a water intrusion detection point of interest, it is possible to detect water intrusion accurately regardless of the type of pulse light source.

【0029】さらに、データ処理部により経時的な後方
散乱光情報を処理し、正確な浸水検知システム装置を提
供できる。それとともに、任意のパルス光源を使用でき
る経済的な浸水検知システム装置を実現できる。そし
て、水を吸収することにより体積が膨張する吸水膨張性
素材を光ファイバの周囲に配置したため、侵入した水が
吸水膨張性素材に伝わり、浸水を確実に検知し得る光フ
ァイバ部品を提供することができる等、優れた有用性・
至便性・経済性を発揮する。
Further, it is possible to process the backscattered light information over time by the data processing unit and provide an accurate inundation detection system device. At the same time, it is possible to realize an economical inundation detection system device that can use an arbitrary pulse light source. Further, since the water absorbing expansive material whose volume expands by absorbing water is arranged around the optical fiber, the invading water is transmitted to the water absorbing expansive material, and it is possible to provide an optical fiber component capable of reliably detecting water infiltration. Excellent usefulness such as
Demonstrate convenience and economy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した第一実施例のシステムの全体
構成図である。
FIG. 1 is an overall configuration diagram of a system of a first embodiment to which the present invention is applied.

【図2】本発明の原理を説明するためのグラフで、
(a)は偏光選択部を用いない場合、(b)は偏光選択
部を有する場合のそれぞれの光ファイバの後方散乱光の
分布を示したグラフである。
FIG. 2 is a graph for explaining the principle of the present invention,
FIG. 6A is a graph showing the distribution of backscattered light of each optical fiber when the polarization selection unit is not used and FIG.

【図3】同上・浸水前後の後方散乱光分布の変化を示す
グラフである。
FIG. 3 is a graph showing a change in backscattered light distribution before and after flooding as above.

【図4】本発明の吸水膨張性素材を用いた浸水検知用光
ファイバ部品の一例を示す図で、(a)は全体の斜視
図、(b)は(a)のIVb−IVb線視断面図である。
4A and 4B are views showing an example of an optical fiber component for water immersion detection using the water-absorptive expandable material of the present invention, FIG. 4A is a perspective view of the whole, and FIG. 4B is a sectional view taken along line IVb-IVb of FIG. 4A. It is a figure.

【図5】同上・浸水検知用光ファイバ部品の別例を示す
図で、(a)は蓋とケースを取り除いた状態の全体の斜
視図、(b)は吸水前の(a)のVb−Vb線視断面
図、(c)は吸水後のVb−Vb線視断面図である。
FIG. 5 is a diagram showing another example of the optical fiber component for detecting water in the same as above, (a) is a perspective view of the entire structure with the lid and case removed, and (b) is Vb- of (a) before water absorption. Vb line sectional view, (c) is a Vb-Vb line sectional view after water absorption.

【図6】本発明を適用した第二実施例のシステム装置の
全体構成図である。
FIG. 6 is an overall configuration diagram of a system device of a second embodiment to which the present invention is applied.

【図7】従来の吸水膨張性素材を用いた浸水検知用セン
サを示す断面図で、(a)は浸水前、(b)は浸水後の
状態である。
7A and 7B are cross-sectional views showing a conventional sensor for detecting water immersion using a water-absorbing expansive material. FIG.

【図8】従来の浸水検知用センサを用いた従来の浸水検
知システム装置を示す構成図である。
FIG. 8 is a configuration diagram showing a conventional water infiltration detection system device using a conventional water infiltration detection sensor.

【図9】従来のシステム装置による光損失の測定結果を
示すグラフである。
FIG. 9 is a graph showing measurement results of optical loss by a conventional system device.

【符号の説明】[Explanation of symbols]

A…従来例の浸水検知用センサ α…従来例の浸水検知システム装置 β,γ…本実施例の浸水検知システム装置 1…光ファイバ 2…凸状押圧ガイド 2′…凹状受ガイド 3…吸水膨張性素材 4,15…蓋 5,13…ケース 6,a,b…光パルス試験器 7…データ処理部 8,8’…光ファイバ部品 9…パルス光源 10…光出入力部 11…偏光選択部 12…受光部 14…穴 16…押さえ板 17…光ファイバ捩り部 18…ポラライザ A ... Inundation detection sensor of conventional example α ... Infiltration detection system device of conventional example β, γ ... Infiltration detection system device of this embodiment 1 ... Optical fiber 2 ... Convex pressing guide 2 '... Concave receiving guide 3 ... Water absorption expansion Material 4,15 ... Lid 5, 13 ... Case 6, a, b ... Optical pulse tester 7 ... Data processing unit 8, 8 '... Optical fiber component 9 ... Pulse light source 10 ... Light output input unit 11 ... Polarization selection unit 12 ... Light receiving part 14 ... Hole 16 ... Pressing plate 17 ... Optical fiber twisting part 18 ... Polarizer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 眞一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shinichi Furukawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水を吸収して光ファイバの複屈折を変化さ
せる手段を具備した光ファイバ部品を少なくとも1つの
所要の浸水検知地点に配置し、前記光ファイバの一端に
設置された光源より光パルスを繰り返し送出するととも
にその反射光のうち任意の偏光成分を選択的に受光し、
所要の前記浸水検知地点より遠方の前記光ファイバから
の後方散乱波形における時間的変化を測定して所要箇所
の前記光ファイバ部品での複屈折変化を検知し、前記浸
水検知地点における浸水の有無を検知するようにしたこ
とを特徴とする光ファイバの浸水検知方法
1. An optical fiber component equipped with means for absorbing water to change the birefringence of the optical fiber is arranged at at least one required inundation detection point, and light is emitted from a light source installed at one end of the optical fiber. Repeatedly sends out pulses and selectively receives any polarized component of the reflected light,
Detect the birefringence change in the optical fiber parts at the required location by measuring the temporal change in the backscattering waveform from the optical fiber far from the required inundation detection point, and check the presence or absence of water at the inundation detection point. A method for detecting water ingress of an optical fiber, characterized in that
【請求項2】光ファイバの一端に設置された光源から繰
り返し送出する光パルスを、任意の偏光状態にしたこと
を特徴とする請求項1記載の光ファイバの浸水検知方法
2. A method for detecting water immersion in an optical fiber according to claim 1, wherein an optical pulse repeatedly sent from a light source installed at one end of the optical fiber is set in an arbitrary polarization state.
【請求項3】少なくとも1つの所要の浸水検知地点まで
配線した光ファイバと、当該浸水検知地点において、前
記光ファイバの複屈折を水の吸収により変化させる手段
を有する光ファイバ部品と、前記光ファイバの一端に接
続され、当該一端に光パルスを繰り返し送出するととも
に、その反射光のうち任意の偏光成分を選択的に受光す
る光パルス試験器と、着目する前記浸水検知地点より遠
方の前記光ファイバからの後方散乱波形における時間的
変化を測定して、着目する前記光ファイバ部品での複屈
折変化を検知し、着目する前記検知地点における浸水の
有無を検知するデータ処理手段とからなる光ファイバの
浸水検知システム装置
3. An optical fiber wired to at least one required inundation detection point, an optical fiber component having means for changing birefringence of the optical fiber at the inundation detection point by absorbing water, and the optical fiber. An optical pulse tester that is connected to one end of the optical pulse and repeatedly transmits an optical pulse to the one end, and selectively receives an arbitrary polarization component of the reflected light, and the optical fiber far from the inundation detection point of interest. Of the optical fiber comprising a data processing means for detecting the presence or absence of water immersion at the detection point of interest by measuring the temporal change in the backscattering waveform from Flood detection system device
【請求項4】光パルス試験器は、光ファイバの一端から
繰り返し送出する光パルスを任意の偏光状態として送出
することを特徴とする請求項3記載の光ファイバの浸水
検知システム装置
4. The optical fiber inundation detection system device according to claim 3, wherein the optical pulse tester sends the optical pulse repeatedly sent from one end of the optical fiber as an arbitrary polarization state.
【請求項5】光ファイバ部品は、水を吸収することによ
り体積が膨張する吸水膨張性素材を光ファイバの周囲に
配置して、光ファイバが浸水した時に当該吸水膨張性素
材が水を吸収して前記光ファイバに側圧,曲げもしくは
捩り等を付加することを可能としたことを特徴とする請
求項3または4記載の光ファイバの浸水検知システム装
5. An optical fiber component has a water absorbing expandable material whose volume expands by absorbing water disposed around the optical fiber, and when the optical fiber is submerged, the water absorbing expandable material absorbs water. 5. The optical fiber immersion detection system device according to claim 3, wherein lateral pressure, bending or twisting can be applied to the optical fiber.
JP26404991A 1991-10-11 1991-10-11 Water entrance detection method and system device of optical fiber Pending JPH0599783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26404991A JPH0599783A (en) 1991-10-11 1991-10-11 Water entrance detection method and system device of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26404991A JPH0599783A (en) 1991-10-11 1991-10-11 Water entrance detection method and system device of optical fiber

Publications (1)

Publication Number Publication Date
JPH0599783A true JPH0599783A (en) 1993-04-23

Family

ID=17397839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26404991A Pending JPH0599783A (en) 1991-10-11 1991-10-11 Water entrance detection method and system device of optical fiber

Country Status (1)

Country Link
JP (1) JPH0599783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128018A (en) * 2007-11-19 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Immersion detection device and immersion detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128018A (en) * 2007-11-19 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Immersion detection device and immersion detection method

Similar Documents

Publication Publication Date Title
US4421979A (en) Microbending of optical fibers for remote force measurement
US4459477A (en) Microbending of optical fibers for remote force measurement
US4477725A (en) Microbending of optical fibers for remote force measurement
US5430815A (en) Optical fiber water sensor
US4463254A (en) Microbending of optical fibers for remote force measurement
US4692610A (en) Fiber optic aircraft load relief control system
JPH0783792A (en) Device for detecting occurrence of disturbance of optical fiber
US8731342B2 (en) Fiber-optic sensor for liquid-immersion detection and fiber-optic detection system for liquid-immersion detection
KR970048662A (en) Optical communication method and apparatus, and optical fiber identification method
JPH0599783A (en) Water entrance detection method and system device of optical fiber
CN111740775B (en) Method for improving event blind area performance of optical time domain reflectometer and application
CN110648481B (en) Calibration method and perimeter alarm device
FR2630565A1 (en) Device for locating and/or identifying persons or objects
JP2878778B2 (en) Inundation detection method and system, and connector used therefor
GB2204204A (en) Deformation location in optical fibres
JP3224762B2 (en) Fiber optic cable
JPS63236938A (en) Method for detecting water immersion of optical fiber cable connection part
CN210243096U (en) Water seepage detection system for optical cable splice closure
KR940011962A (en) Water penetration detection device using optical fiber
CN111219602A (en) Sensing device for gas leakage detection
JP2942270B2 (en) Water immersion sensor and water immersion detection method
JPS6186630A (en) Method for detecting water intrusion in communication cable using optical fiber
JPH07128185A (en) Otdr measuring apparatus
JP2001004463A (en) Method for measuring stress acting on structure
US5903221A (en) Method and apparatus for determining the moisture level in a buried splice