JPS6186630A - Method for detecting water intrusion in communication cable using optical fiber - Google Patents

Method for detecting water intrusion in communication cable using optical fiber

Info

Publication number
JPS6186630A
JPS6186630A JP59209183A JP20918384A JPS6186630A JP S6186630 A JPS6186630 A JP S6186630A JP 59209183 A JP59209183 A JP 59209183A JP 20918384 A JP20918384 A JP 20918384A JP S6186630 A JPS6186630 A JP S6186630A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
communication cable
fiber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209183A
Other languages
Japanese (ja)
Inventor
Tetsuharu Abe
阿部 徹治
Yutaka Mitsunaga
満永 豊
Hiroaki Koga
古賀 広昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59209183A priority Critical patent/JPS6186630A/en
Publication of JPS6186630A publication Critical patent/JPS6186630A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To make it possible to detect the intrusion of water into communication cable readily, by twisting a linear body, which is dissolved or softened by the water, and optical fiber, arranging said product in the communication cable as a sensor, and measuring the optical transmission loss of the optical fiber. CONSTITUTION:A sensor 15 in communication cable 14 is taken out to the outside through a connecting part 18. One end of optical fiber 16 in the sensor 15 is connected to a light pulse tester 19. When a light pulse signal is inputted to the fiber 16 from the tester 19, the light pulse is transmitted in the reverse direction in the fiber 16 with back scattering light being generated. The change in detected light on the time axis is measured, and the distribution of the transmission loss in the longitudinal direction of the fiber 16 is measured. When a hole is opened in the outer coating of the cable 14 and the water comes in, dissolving fiber 17 is dissolved or softened. As a result, the twisting of the fiber 16 is returned and the curvature becomes zero. The transmission loss is reduced. The change in transmission loss is detected, and the intrusion of the water in the cable can be detected.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は通信用ケーブル内へ水が浸入した場合にこれ
を検知する通信用ケーブル浸水検知方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a communication cable water intrusion detection method for detecting water intrusion into a communication cable.

「従来の技術」 従来、通信用ケーブルの浸水を検知する方法としては、
2本の穴あき被覆銅線を通信用ケーブル内に配置し、こ
れら2本の銅線間の絶縁がケーブル内に浸入した水によ
り劣化することを利用した方法と、2本のPEF被覆銅
線を通信用ケーブル内に配し、これらPEF1ffl銅
線間の静電容置が浸入した水により変化することを利用
した方法とがある。これら両方法は共に検出感度が良好
でなく、前者については浸水位置を知ることができない
欠点があった。またこれら銅線を用いる浸水検知法は雷
の多い地域や高電圧送電線の近傍で用いられると、誘導
による絶縁破壊等の問題を生じる欠点もあった。
"Conventional technology" Conventionally, methods for detecting water intrusion in communication cables include:
A method that utilizes the fact that two perforated coated copper wires are placed inside a communication cable and the insulation between these two copper wires deteriorates due to water entering the cable, and two PEF coated copper wires. There is a method that utilizes the fact that the electrostatic capacitance between these PEF1ffl copper wires is changed by the infiltration of water by disposing the PEF in a communication cable. Both of these methods do not have good detection sensitivity, and the former has the disadvantage that it is not possible to determine the location of flooding. Furthermore, these water intrusion detection methods using copper wires have the disadvantage of causing problems such as dielectric breakdown due to induction when used in areas with frequent lightning or near high-voltage power transmission lines.

この発明の目的は銅線を用いることなく、比較的部用で
水の浸入を感度よく検知する通信用グープル浸水検知方
法を提供することにある。
An object of the present invention is to provide a water intrusion detection method for communications that can detect water intrusion with relatively high sensitivity without using copper wires.

「l出題点を騨決するための子役」 この発明によれば水により溶融または軟化するひも伏繊
iff: (腺状木)と光ファイバとを撚9合わせて少
なくとも光ファイバを弾性変形させて、通信用ケーブル
内に配置し、その光ファイバに光信号を(伝播させて1
伝送損失の変化を1測定し、その測定結果から1再信用
ケーブル内への浸水を検知する。
``Child role for determining the question points'' According to this invention, a string fiber IF: (glandular tree) that melts or softens with water and an optical fiber are twisted 9 together to elastically deform at least the optical fiber, It is placed inside a communication cable and transmits an optical signal (by propagating it to the optical fiber).
Changes in transmission loss are measured, and water intrusion into the re-trusted cable is detected from the measurement results.

この1伝送損失の変化の1ull定(は光ファイバの一
端に光拮号を入射し、光ファイバの曲端より出射される
光信号のレベルを測定する。あるいは光ファイバの一端
に光パルス信号を入射し、その光パルス信号により光フ
ァイバ内で発生し、その光パルス入射端に戻る後方散乱
光を検出し、その後方散乱光の時間軸上でのレベル変化
を検出して行う。この場合は浸水位置の検出もi:iT
能となる。
This 1ull determination of change in transmission loss is achieved by injecting a light signal into one end of an optical fiber and measuring the level of the optical signal output from the curved end of the optical fiber.Alternatively, by injecting an optical pulse signal into one end of the optical fiber. This is done by detecting the backscattered light that enters the optical fiber, is generated in the optical fiber by the light pulse signal, and returns to the light pulse input end, and detects the level change of the backscattered light on the time axis.In this case, i:iT also detects flooded locations
Becomes Noh.

「実施例」 以下この発明にζよる浸水検知方法を図面を参照して1
挽明する。第1図は通信用ケーブルの一例の11j〒曲
を示す。抗張力体11の外周に複数の光心線12が配さ
れ、これらは共通のケーブル外′fJ113内に収容さ
れて1m信用ケーブル14が構成されている。
``Example'' The method for detecting water intrusion using ζ according to the present invention will be described below with reference to the drawings.
Make amends. FIG. 1 shows an example of a communication cable. A plurality of optical fibers 12 are arranged around the outer periphery of the tensile strength member 11, and these are housed within a common cable outside 'fJ113' to constitute a 1-meter reliable cable 14.

この発明ではI…信用ケーブル14内に光ファイバを用
いたセンサ15を配置する。センサ15は例えば第2図
に示すように光ファイバ16と水溶性あるいは水により
軟化するひも状繊維17とを撚り合わせ、光ファイバ1
6にらせん状の曲がりを弾性変形により与える。このよ
うなセンサ15を第1図では光心線12とは\′同様の
太さとし、光心線120代9に1本乃至複数本を通信用
ケーブル14内に配す。複数本の七/す15を配する場
合はケーブル14の軸心には\゛等角間隔で位置させる
。水で溶融または軟化する繊維17としては、例えばカ
ルボキシメチルセルロース、ポリビニルアルコールテー
プ等がある。
In this invention, a sensor 15 using an optical fiber is disposed within the I... trust cable 14. For example, as shown in FIG. 2, the sensor 15 is made by twisting together an optical fiber 16 and a string-like fiber 17 that is water-soluble or softens with water.
6 is given a spiral bend by elastic deformation. In FIG. 1, such a sensor 15 has the same thickness as the optical fiber 12, and one or more sensors 15 are disposed in the communication cable 14 in the optical fiber 120 9. When a plurality of 7/s 15 are arranged, they are placed at equal angular intervals on the axis of the cable 14. Examples of the fibers 17 that melt or soften with water include carboxymethyl cellulose and polyvinyl alcohol tape.

第3図に示すように1m信用ケーブル14中のセンサ1
5’を接続部18を通じて外部へ導出し、センサ15中
の光ファイバ16の一端を光パルス試験器19に接続す
る。この光パルス試験器19の出力はデータ処理装置2
1に接続し、その処理結果は出力装置22に出力される
As shown in FIG. 3, the sensor 1 in the 1m trust cable 14
5' is led out to the outside through the connection part 18, and one end of the optical fiber 16 in the sensor 15 is connected to the optical pulse tester 19. The output of this optical pulse tester 19 is the data processing device 2.
1, and the processing results are output to the output device 22.

光パルス試験器19から光ファイバ16の一端に幅の狭
い光パルス信号を入射する。その光パルス信号は光ファ
イバ16内で逆方向に進行する後方散乱光を発生させな
がら通信用ケーブル14内の光ファイバ16内を伝播し
ていく。この後方散乱光七光ファイバ16の光パルス信
号入射端で検出し、その検出光の時間軸上での変化を測
定することにより、光ファイバ16の長手方向の1伝送
損失の分布を測定する。
A narrow optical pulse signal is input from the optical pulse tester 19 to one end of the optical fiber 16 . The optical pulse signal propagates within the optical fiber 16 within the communication cable 14 while generating backscattered light that travels in the opposite direction within the optical fiber 16. By detecting this backscattered light at the optical pulse signal input end of the optical fiber 16 and measuring the change in the detected light on the time axis, the distribution of one transmission loss in the longitudinal direction of the optical fiber 16 is measured.

セ/す15(でおける光ファイバ16の撚すの曲・着ρ
:I′:Jそのらせんのピンチをp、らせんの半径をr
とすると、 (2π)2r p 2 + (2πr)2 となる。このように曲が9を一光ファイバ16に加える
と、光ファイバ16を1云播する光信号の光伝送損失が
噌加することが知られている。これは例えば文:’r伏
り、MarCIJSe、’CLIrVatLjre 1
oss formulafor optical fi
bers” 、J、Qpt 、 Soc 、 Am 、
 55 (3)。
The twist of the optical fiber 16 at the center 15
:I':J The pinch of the spiral is p, the radius of the spiral is r
Then, it becomes (2π)2r p 2 + (2πr)2. It is known that when music 9 is added to one optical fiber 16 in this way, the optical transmission loss of the optical signal transmitted through one optical fiber 16 is increased. This is for example the sentence: 'r 下, MarCIJSe, 'CLIrVatLjre 1
oss formula for optical fi
bers”, J, Qpt, Soc, Am,
55 (3).

216(1976)に記載されている。216 (1976).

従って通信用ケーブル14のケーブル外波13に穴がお
いて水がケーブル14内に浸入すると、その浸水部分の
繊維17が溶けるか軟化する。その結果光ファイバ16
の撚シがもどシ、曲率ρが0になり伝送損失が誠少する
。この1伝送損失の変化を検出することにより通信用ケ
ーブル14の浸水を検知することができる。つまり第3
図に示した測定糸により光ファイバ16の伝送損失の変
化の監視を行い、通信ケーブルの浸水を適薙に検知し、
保守を行うことができる。例えば第4図に示すように光
ファイバ16の各単位長当シの光損失を測定し、これを
光ファイバ16の試験器19からの距離に対してプロッ
トすると、浸水点では番号23として示すように光損失
が誠少し、との誠少によ’)浸水が生じたことその位置
がこの例でには’;’ 50 mの点であることが検出
される。
Therefore, when a hole is made in the outer cable wave 13 of the communication cable 14 and water infiltrates into the cable 14, the fibers 17 in the water-infiltrated part melt or become soft. As a result, the optical fiber 16
When the twist is restored, the curvature ρ becomes 0 and the transmission loss becomes very small. By detecting this change in one transmission loss, it is possible to detect whether the communication cable 14 is submerged in water. In other words, the third
The measurement thread shown in the figure monitors the change in transmission loss of the optical fiber 16, appropriately detects water intrusion in the communication cable,
Maintenance can be carried out. For example, as shown in FIG. 4, when the optical loss per unit length of the optical fiber 16 is measured and plotted against the distance of the optical fiber 16 from the tester 19, the number 23 at the submersion point is shown. It is detected that the location of the water inundation is 50 m in this example, because the optical loss is very small.

なお水溶性あるいは水により軟化するひも伏の繊r+1
117と1然9合わされる光ファイバ16はその強度劣
化を防止するため用層もしくは多層のプラスチノクのf
皮;夏が9jHされていることがり干ましい。
In addition, water-soluble or water-softened fibers r+1
The optical fiber 16 that is combined with the optical fiber 117 is coated with a layer or multiple layers of plastic to prevent its strength from deteriorating.
Skin: Summer is 9JH so it's very dry.

またひも状、、′桟維17はは一直楳伏でその周囲に光
ファイバ16を巻きつけた伏Q3の撚り合わせ体でもよ
い。
Alternatively, the string-like fibers 17 may be a twisted body of folded fibers 17 around which the optical fibers 16 are wound in a straight folded manner.

「発明の効果」 以上説明したように、この発明は水により7容(′、独
−まf、)1軟化する線状体と光ファイバとを撚り合わ
せ念ものテセノサとして曲信甲ケーブル内に配置し、そ
の光ファイバの光1伝送損失をt測定することにより1
由信川7−プルの浸水を6易に+Qt知することができ
る。持に光(伝送損失を光パルス試験器を用いて後方散
乱光により測定するように構成すると、1受水位j青を
知ることができるため、1屯信用ケーブルの作守、監視
全行う上で前めて何効である。
``Effects of the Invention'' As explained above, this invention consists of twisting linear bodies and optical fibers that become soft with water into a cable as a temporary tescenosa. 1 by measuring the transmission loss of light 1 of the optical fiber at t.
The flooding of the Yushin River 7-pull can be easily detected by +Qt. By configuring the optical pulse tester to measure the transmission loss using backscattered light, it is possible to know the 1st receiving water level, making it easier to maintain and monitor the 1st trust cable. What effect does it have in advance?

4 図面の簡鼾11な1悦明 第1図(まこの発明の方法を適用するために光ファイバ
のセ/すを配置した1m信用ケーブルの例を示す油面1
゛1イl 、12図はこの発明の方法に使用する尤ファ
イバ分用いたセンサ15の例を示す斜視図、第3図はこ
の発明の方法の測定系の例を示す構成図、第4図はその
測定例を示す図である。
4 Simplification of drawings 11 Figure 1 (Oil level 1 showing an example of a 1m reliable cable with optical fiber sections arranged to apply the method of the present invention)
Figures 1 and 12 are perspective views showing an example of a sensor 15 using a special fiber used in the method of this invention, Figure 3 is a configuration diagram showing an example of a measurement system in the method of this invention, and Figure 4. is a diagram showing an example of the measurement.

11:抗張力体、12:光ファイバ心線、13:ケーブ
ル外波、14:!重信用ケーブル、15:光ファイバを
用いたセフす、16:光ファイバ、17:水溶性斗たは
水により軟化する線状体、19:光パルス試験gL21
:データ処理装置飾、22:出力装置。
11: Tensile strength body, 12: Optical fiber core wire, 13: Cable external wave, 14:! Heavy duty cable, 15: Cable using optical fiber, 16: Optical fiber, 17: Water-soluble fiber or linear body softened by water, 19: Optical pulse test gL21
: Data processing device decoration, 22: Output device.

特許出願人  日本笥信電話公社 代  浬  人   草   野      卓オ 1
 図 井 3 図 か 4 図 距 順(m)
Patent applicant Takuo Kusano, representative of Japan Telecommunications Telephone Corporation 1
Figure 3 Figure 4 Figure distance order (m)

Claims (2)

【特許請求の範囲】[Claims] (1)通信用ケーブル内に水により溶融または軟化する
ひも状の繊維と光ファイバを撚り合わせ、少なくとも光
ファイバを弾性変形させて配置し、その光ファイバの中
を伝播する光信号の伝送損失変化を測定して、その通信
用ケーブル内への浸水を検知する光ファイバを用いた通
信用ケーブル浸水検知方法。
(1) Transmission loss change of optical signal propagating through the optical fiber by twisting string-like fibers and optical fibers that melt or soften with water in a communication cable, and arranging the optical fibers so that at least the optical fibers are elastically deformed. A communication cable water intrusion detection method that uses optical fiber to measure water intrusion into the communication cable.
(2)上記光伝送損失の変化の測定は光ファイバの一端
から光パルス信号を入射し、その光パルス信号により光
ファイバ内で発生し、上記光パルス入射端に戻る後方散
乱光を時間軸上で検出して行うことを特徴とする特許請
求の範囲第1項記載の光ファイバを用いた通信用ケーブ
ル浸水検知方法。
(2) To measure the change in optical transmission loss, an optical pulse signal is input from one end of an optical fiber, and the backscattered light generated within the optical fiber by the optical pulse signal and returned to the optical pulse input end is measured on the time axis. A method for detecting water intrusion in a communication cable using an optical fiber according to claim 1, wherein the detection method is carried out by detecting water intrusion in a communication cable using an optical fiber.
JP59209183A 1984-10-04 1984-10-04 Method for detecting water intrusion in communication cable using optical fiber Pending JPS6186630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209183A JPS6186630A (en) 1984-10-04 1984-10-04 Method for detecting water intrusion in communication cable using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209183A JPS6186630A (en) 1984-10-04 1984-10-04 Method for detecting water intrusion in communication cable using optical fiber

Publications (1)

Publication Number Publication Date
JPS6186630A true JPS6186630A (en) 1986-05-02

Family

ID=16568712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209183A Pending JPS6186630A (en) 1984-10-04 1984-10-04 Method for detecting water intrusion in communication cable using optical fiber

Country Status (1)

Country Link
JP (1) JPS6186630A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173205U (en) * 1987-04-30 1988-11-10
JPH02130447A (en) * 1988-11-11 1990-05-18 Sumitomo Electric Ind Ltd Apparatus and method for monitoring optical fiber line
CN103278213A (en) * 2013-06-19 2013-09-04 天津亿利科能源科技发展股份有限公司 Generator oil-water detection alarming device
CN104198014A (en) * 2014-09-06 2014-12-10 中北大学 Dark field detection based optical-fiber macrobending coupling structure liquid-level probe
WO2016176707A1 (en) * 2015-05-05 2016-11-10 Ke Kelit Kunststoffwerk Gesellschaft M.B.H. Leak measurement arrangement for installation in a thermal insulation between an inner and an outer pipe of a water line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173205U (en) * 1987-04-30 1988-11-10
JPH02130447A (en) * 1988-11-11 1990-05-18 Sumitomo Electric Ind Ltd Apparatus and method for monitoring optical fiber line
CN103278213A (en) * 2013-06-19 2013-09-04 天津亿利科能源科技发展股份有限公司 Generator oil-water detection alarming device
CN103278213B (en) * 2013-06-19 2016-01-20 天津亿利科能源科技发展股份有限公司 A kind of generator profit detection alarm device
CN104198014A (en) * 2014-09-06 2014-12-10 中北大学 Dark field detection based optical-fiber macrobending coupling structure liquid-level probe
WO2016176707A1 (en) * 2015-05-05 2016-11-10 Ke Kelit Kunststoffwerk Gesellschaft M.B.H. Leak measurement arrangement for installation in a thermal insulation between an inner and an outer pipe of a water line

Similar Documents

Publication Publication Date Title
CA1248382A (en) Optical fiber tap
JPS5828636A (en) Manufacture of slender multiple-direction pressure sensor and distribution minute bending sensor cable
US7551810B2 (en) Segmented fiber optic sensor and method
CN103985466A (en) High-sensitivity optical fiber stress sensing photoelectric composite cable
CN110504063A (en) The optoelectronic composite cable of system is listened for distribution type fiber-optic water
JPS6186630A (en) Method for detecting water intrusion in communication cable using optical fiber
US7583865B2 (en) Segmented fiber optic sensor and method
JPS62837A (en) Optical fiber water immersion detection line and water immersion detection type optical fiber cable
US4350046A (en) Cable strain monitoring
CN206274416U (en) For the vibrating sensing optical cable and perimeter security system of circumferential surface
JP3224762B2 (en) Fiber optic cable
JPS60244908A (en) Cutless signal detector for optical fiber
JPS6255546A (en) Optical transmission line for detecting flood and optical cable
CN203839113U (en) High-sensitivity fiber stress sensing photoelectric composite cable
CN112729144B (en) Distributed optical fiber sensing-based multi-path photoelectric composite cable distinguishing method
JPH0926370A (en) Pressure sensor
JPS6013207A (en) Method for measuring elongation strain using optical fiber
JPS6252433A (en) Method for monitoring penetration of water in connection part of cable and optical fiber water penetration sensor
JPH0237310A (en) Multiple plastic optical fiber cord
JPH011934A (en) Oil leak detection sensor
JPH02228611A (en) Water infiltration detecting coated optical fiber
JPS6228634A (en) Inundation detecting sensor
JPS59148835A (en) Measuring method of optical fiber type physical quantity
JPH0949776A (en) Optical cable and pressure measuring system
JP2942270B2 (en) Water immersion sensor and water immersion detection method