JPH0597532A - Bonding composition - Google Patents

Bonding composition

Info

Publication number
JPH0597532A
JPH0597532A JP26064391A JP26064391A JPH0597532A JP H0597532 A JPH0597532 A JP H0597532A JP 26064391 A JP26064391 A JP 26064391A JP 26064391 A JP26064391 A JP 26064391A JP H0597532 A JPH0597532 A JP H0597532A
Authority
JP
Japan
Prior art keywords
metal
bonding
composition
ceramics
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26064391A
Other languages
Japanese (ja)
Inventor
Kazuo Ikeda
和男 池田
Naritaka Tamura
成敬 田村
Hironori Asai
博紀 浅井
Takayuki Naba
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26064391A priority Critical patent/JPH0597532A/en
Publication of JPH0597532A publication Critical patent/JPH0597532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a bonding composition permitting to efficiently produce a highly reliable ceramic-metal bonded product in a high yield in the state reduced in the generation of defeats caused by a thermal stress produced by a difference between the thermal expansion coefficients of the ceramic and the metal. CONSTITUTION:The objective bonding composition of this invention is characterized in that the composition is formed of a mixture substantially comprising 60-80wt.% of Cu, 5-15wt.% of at least one on In and Sn, 1-10wt.% of at least one of Ti and Zr, and the remaining amount substantially with Ag. 10-30wt.% of at least one of W and Mo may be added to the composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱膨脹係数が大きく異な
る金属とセラミックスとの接合体を形成する際に使用す
る接合用組成物に係り、特にクラック等の欠陥の発生が
少なく信頼性が高い接合体を形成することが可能な接合
用組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding composition for use in forming a bonded body of a metal and a ceramic having a large coefficient of thermal expansion, and in particular, a highly reliable bonding with few defects such as cracks. The present invention relates to a bonding composition capable of forming a body.

【0002】[0002]

【従来の技術】従来よりセラミックスと金属とを接合す
る方法として、一般に高融点金属法や活性金属法が広く
利用されている。すなわち高融点金属法は、Mo、W、
Mo−Mn等の高融点金属の微粉末をセラミックス表面
上で焼結してコーティング層を形成し、さらにろう材と
のなじみをもたせるためにコーティング層表面にNiめ
っき層を形成した後にろう材で金属と一体に接合する方
法である。
2. Description of the Related Art Conventionally, a refractory metal method or an active metal method has been widely used as a method for joining a ceramic and a metal. That is, the refractory metal method uses Mo, W,
A fine powder of refractory metal such as Mo-Mn is sintered on the surface of the ceramic to form a coating layer, and then a Ni plating layer is formed on the surface of the coating layer in order to have compatibility with the brazing material. This is a method of integrally joining with a metal.

【0003】また活性金属法は、Ti、ZrおよびHf
に代表される周期律表IVa族元素を用い、Ag−Cu
やNi等とともに高温度に加熱して発生する融液を介し
てセラミックスと金属とを一体に接合する方法である。
ここでTiは、セラミックスおよび金属に対して強い親
和力を有する元素であり、酸化物セラミックス、窒化物
セラミックス、炭化物セラミックスと各種金属とを強固
に接合することが可能である。
Further, the active metal method includes Ti, Zr and Hf.
Of the periodic table represented by Group IVa element, Ag-Cu
It is a method of integrally joining ceramics and metal through a melt generated by heating to a high temperature together with Ni, Ni or the like.
Here, Ti is an element having a strong affinity for ceramics and metals, and it is possible to firmly bond oxide ceramics, nitride ceramics, carbide ceramics and various metals.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記高融
点金属法や活性金属法によって接合体を形成しようとす
る場合には、いずれもセラミックスおよび金属の両部材
を高温度に加熱する必要があるため、冷却時に両部材の
熱膨脹係数差によって熱応力が発生し、これに起因して
セラミックスのクラックや接合面の剥離等の欠陥が発生
し易く、製品歩留りおよび信頼性が低下し易くなる問題
点があった。
However, in the case of forming a bonded body by the above-mentioned high melting point metal method or active metal method, both ceramics and metal members need to be heated to a high temperature. During cooling, thermal stress is generated due to the difference in coefficient of thermal expansion between the two members, and as a result, defects such as cracks in the ceramics and peeling of the joint surface are likely to occur, and the product yield and reliability tend to be reduced. It was

【0005】例えば、活性金属法において従来一般的に
使用されている接合用組成物として、AgとCuとの共
晶組成(72%Ag−28%Cu)を有するAg−Cu
ろう材に対して活性金属としてのTiを2重量%程度添
加した接合用組成物がある。しかしながら、この組成物
を使用して金属とセラミックスとを接合する際には共晶
化合物の液相を生成させるために820〜830℃程度
の高温度に加熱する必要があり、冷却時に作用する熱応
力によって、セラミックスにクラック等が発生し易い欠
点があった。
For example, as a bonding composition which has been conventionally generally used in the active metal method, Ag-Cu having a eutectic composition of Ag and Cu (72% Ag-28% Cu).
There is a bonding composition in which about 2% by weight of Ti as an active metal is added to a brazing material. However, when joining a metal and ceramics using this composition, it is necessary to heat to a high temperature of about 820 to 830 ° C. in order to generate a liquid phase of a eutectic compound, and the heat that acts during cooling is required. There was a defect that cracks were easily generated in the ceramics due to the stress.

【0006】また活性金属としてのTiとセラミックス
との接合強度が極めて強いために、却って熱応力の集中
によって割れを誘発し易いことも本発明者らの実験によ
って確認された。
It was also confirmed by the experiments by the present inventors that the bonding strength between Ti as an active metal and ceramics is extremely strong, so that cracks are likely to be induced by the concentration of thermal stress.

【0007】そこで冷却時に熱応力が衝撃的に作用する
ことを防止するために、加熱接合後、接合体を数10時
間以上かけて常温まで徐冷する方法も試行されたが、長
大な冷却時間を要し、製造効率が大幅に低下してしまう
問題点があった。
Therefore, in order to prevent thermal stress from impacting during cooling, a method of gradually cooling the bonded body to room temperature over several tens of hours after heating and bonding was also tried, but a long cooling time was also tried. Therefore, there is a problem that the manufacturing efficiency is significantly reduced.

【0008】本発明は上記の問題点を解決するためにな
されたものであり、セラミックスと金属との熱膨脹係数
差による熱応力に起因する欠陥の発生が少なく、信頼性
が高いセラミックス−金属接合体を高い歩留りで効率よ
く製造できる接合用組成物を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and the number of defects caused by thermal stress due to the difference in thermal expansion coefficient between ceramics and metal is small, and the ceramic-metal bonded body is highly reliable. An object of the present invention is to provide a bonding composition capable of efficiently producing a high yield.

【0009】[0009]

【課題を解決するための手段】本発明者は上記目的を達
成するため、各種の接合用組成物を調製し、その組成物
を接合剤として多数の接合体を製造し、各接合体の特性
を比較したところ下記のような知見を得た。
[Means for Solving the Problems] In order to achieve the above object, the present inventor prepared various bonding compositions, produced a large number of bonded structures using the compositions as a bonding agent, and characterized each bonded structure. The following findings were obtained by comparing.

【0010】すなわち、セラミックスと金属とを接合す
る場合に、接合時の加熱温度を低くすることによって、
熱膨脹差により発生する熱応力が小さく、割れの発生も
少くなる。そして、接合時の加熱温度を低くするために
は、所定量のIn、Snを添加すると有効である。
That is, in the case of joining ceramics and metal, by lowering the heating temperature during joining,
The thermal stress generated by the difference in thermal expansion is small, and the occurrence of cracks is small. Then, in order to lower the heating temperature at the time of joining, it is effective to add a predetermined amount of In and Sn.

【0011】また活性金属を添加した従来の銀−銅ろう
材と比較してCuの含有量を、Ag−Cu共晶組成より
多めに添加することによりAg−Cu共晶化合物を形成
する以外の過剰なCu成分が、固溶層を形成し、その軟
弾性によりセラミックスと金属との間の熱応力を緩和す
る作用を発揮し、割れの発生が少ない接合体を得ること
ができる。また過剰なCu相にTiが拡散してセラミッ
クスとTiとの反応に関与するTi成分量が制御される
ことにより、セラミックスとTiとの間において極端に
強固な接合が形成されることが防止される。そのため応
力集中による割れの発生が減少する。
In addition to forming an Ag-Cu eutectic compound by adding a Cu content higher than that of an Ag-Cu eutectic composition as compared with a conventional silver-copper brazing filler metal containing an active metal. Excessive Cu component forms a solid solution layer, and its soft elasticity exerts an action of relieving thermal stress between the ceramics and the metal, so that a bonded body with few cracks can be obtained. Further, by controlling the amount of the Ti component involved in the reaction between the ceramic and Ti by diffusing Ti into the excessive Cu phase, it is possible to prevent the formation of an extremely strong bond between the ceramic and Ti. It Therefore, the occurrence of cracks due to stress concentration is reduced.

【0012】さらにMo、Wなど、セラミックスに近い
熱膨脹係数を有する所定量の高融点金属を、接合用組成
物に添加することにより、金属とセラミックスとの接合
界面に発生する応力を効果的に低減できるという知見を
得た。
Furthermore, by adding a predetermined amount of refractory metal having a thermal expansion coefficient close to that of ceramics such as Mo and W to the bonding composition, the stress generated at the bonding interface between the metal and the ceramics can be effectively reduced. I got the knowledge that I can.

【0013】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る接合用組成物は、重量
比でCuを60〜80%、InおよびSnの少くとも一
方を5〜15%、TiおよびZrの少くとも一方を1〜
10%含有し、残部が実質的にAgから成る混合体で形
成されたことを特徴とする。
The present invention has been completed based on the above findings. That is, the bonding composition according to the present invention has a weight ratio of 60 to 80% Cu, 5 to 15% at least one of In and Sn, and 1 to 1 at least one of Ti and Zr.
It is characterized in that it is formed by a mixture containing 10% and the balance substantially consisting of Ag.

【0014】また、重量比でCuを60〜80%、Wお
よびMoの少くとも一方を10〜30%、InおよびS
nの少くとも一方を5〜15%、TiおよびZrの少く
とも一方を1〜10%含有し、残部が実質的にAgから
成る混合体で形成してもよい。
Further, by weight ratio, Cu is 60 to 80%, at least one of W and Mo is 10 to 30%, and In and S.
It may be formed of a mixture containing at least one of n of 5 to 15%, at least one of Ti and Zr of 1 to 10%, and the balance substantially of Ag.

【0015】本発明に係る接合用組成物を構成するCu
は、加熱時にAgと共晶組成物(72重量%Ag−28
重量%Cu)を生成し、セラミックスと金属とを強固に
接合するために添加される。従来から一般に市販されて
いるAg−Cuろう剤は、上記共晶組成物の液相の生成
量を最大にするために上記共晶組成物と同一組成比でC
u粉とAg粉とを混合して製造されていた。
Cu constituting the bonding composition according to the present invention
Is a eutectic composition with Ag when heated (72 wt% Ag-28
Wt% Cu) is produced and added to firmly bond the ceramic and the metal. Conventionally commercially available Ag-Cu brazing agents have the same composition ratio as that of the eutectic composition in order to maximize the production amount of the liquid phase of the eutectic composition.
It was manufactured by mixing u powder and Ag powder.

【0016】しかるに本願発明ではCuの添加量は重量
比で60〜80%に設定することがひとつの大きな特徴
である。すなわち接合剤として機能する硬いAg−Cu
の共晶化合物を生成するために必要な最少量のCu成分
に加えて、さらに過剰量のCu成分を添加し、この過剰
量のCu成分を含む軟弾性に富んだCuの固溶相によっ
て、接合面に作用する熱応力の緩衝吸収を行うことがで
きる。
However, one of the major features of the present invention is that the amount of Cu added is set to 60 to 80% by weight. That is, hard Ag-Cu that functions as a bonding agent
In addition to the minimum amount of Cu component necessary for producing the eutectic compound of, an excess amount of Cu component is further added, and a solid solution phase of Cu having a soft elasticity and containing this excess amount of Cu component, It is possible to absorb and absorb the thermal stress acting on the joint surface.

【0017】Cuの添加量が60wt%未満の場合に
は、上記緩衝作用が不充分である一方、添加量が80w
t%を越える場合には、金属とセラミックスとの接合強
度が低下してしまうため、Cuの添加量は60〜80w
t%の範囲に設定される。
When the added amount of Cu is less than 60 wt%, the above-mentioned buffer action is insufficient, while the added amount is 80 w.
If it exceeds t%, the bonding strength between the metal and the ceramic will be reduced, so that the addition amount of Cu is 60 to 80 w.
It is set in the range of t%.

【0018】InおよびSnは接合用組成物において液
相共晶化合物を生成する温度を低減するために5〜15
重量%添加されるものである。すなわち共晶組成を有す
る従来の銀−銅ろう材においては接合時に820℃程度
の高温度に加熱する必要があったが、本発明に係る接合
用組成物においては、Inおよび/またはSnによる液
相発生温度の低減作用によって接合時に加熱する温度を
700〜750℃程度まで低減できる。そのため、加熱
接合後の冷却工程における冷却温度幅が狭く接合体に発
生するクラックを大幅に低減することができる。
In and Sn are added in an amount of 5 to 15 in order to reduce the temperature at which a liquid phase eutectic compound is formed in the bonding composition.
% By weight. That is, in the conventional silver-copper brazing material having a eutectic composition, it was necessary to heat to a high temperature of about 820 ° C. at the time of bonding, but in the bonding composition according to the present invention, a liquid containing In and / or Sn was used. Due to the effect of reducing the phase generation temperature, the heating temperature at the time of joining can be reduced to about 700 to 750 ° C. Therefore, the cooling temperature width in the cooling step after heating and joining is narrow, and cracks generated in the joined body can be significantly reduced.

【0019】InおよびSnの少くとも一方の添加量が
5wt%未満である場合には、加熱温度の低減効果が不
充分となる一方、添加量が15wt%を越える過量とな
る場合には、金属とセラミックスとの接合強度の低下を
招く。
If the addition amount of at least one of In and Sn is less than 5 wt%, the effect of reducing the heating temperature is insufficient, while if the addition amount is an excessive amount exceeding 15 wt%, the metal content is increased. Causes a decrease in the bonding strength between the and ceramics.

【0020】またTiおよびZrは、セラミックスに対
する接合用組成物の濡れ性を高める活性金属として作用
し、セラミックスと金属との接合強度を高めるために1
〜10wt%の範囲で添加される。上記Tiなどの活性
金属を含有させた接合用組成物を使用することにより、
従来法のようにNiめっき層を形成することなく、金属
材をセラミックスに直接接合することができる。
Further, Ti and Zr act as an active metal for enhancing the wettability of the bonding composition with respect to the ceramics, and in order to enhance the bonding strength between the ceramics and the metal, 1
It is added in the range of 10 wt%. By using the bonding composition containing an active metal such as Ti described above,
The metal material can be directly bonded to the ceramics without forming the Ni plating layer as in the conventional method.

【0021】上記Ti等の活性金属の添加量が1wt%
未満と少ない場合には、濡れ性の改善効果が不充分とな
る一方、添加量が10wt%を越える過量となる場合に
は、Ag−Cuろう材が流れ易くなり、特に、導体回路
パターンを形成した金属板とセラミックス基板とを接合
してセラミックス回路基板を製造する場合には、ろう材
の流れによる短絡が生じ易く、回路基板の動作信頼性が
低下してしまう。
The addition amount of the active metal such as Ti is 1 wt%
If the amount is less than the above, the effect of improving the wettability will be insufficient, while if the amount added exceeds 10 wt%, the Ag-Cu brazing material will flow easily, and in particular, a conductor circuit pattern will be formed. When the ceramic circuit board is manufactured by joining the metal plate and the ceramic board, a short circuit easily occurs due to the flow of the brazing material, and the operation reliability of the circuit board deteriorates.

【0022】またWおよびMoは、セラミックスと金属
との接合部における応力緩和を図るために有効な成分で
あり、10〜30重量%添加される。すなわち熱膨脹係
数がセラミックスに比較的に近い高融点金属であるWお
よびMoを接合用組成物に添加することにより、金属と
セラミックスとの中間の熱膨脹係数を有する接合層を形
成することができ、金属とセラミックスとの接合層に熱
応力緩和作用を発揮させることができる。そのため、高
い接合強度を有し、かつヒートサイクル特性に優れたセ
ラミックス・金属接合体を得ることができる。
W and Mo are effective components for relaxing stress in the joint between ceramics and metal, and are added in an amount of 10 to 30% by weight. That is, by adding high melting point metals W and Mo having a thermal expansion coefficient relatively close to that of ceramics to the bonding composition, it is possible to form a bonding layer having a thermal expansion coefficient intermediate between those of the metal and the ceramic. It is possible to exert a thermal stress relaxation action on the bonding layer between the ceramic and the ceramic. Therefore, it is possible to obtain a ceramic / metal bonded body having high bonding strength and excellent heat cycle characteristics.

【0023】上記WおよびMoの少くとも一方の元素成
分添加量が10wt%未満の場合は、接合層における応
力緩和作用が不充分となる一方、添加量が30wt%を
越える過量となる場合には、接合強度が低下するととも
に本来のセラミックスの伝熱特性や絶縁特性が損なわれ
る。従ってWおよびMoの添加量は10〜30重量%の
範囲に設定される。
When the amount of addition of at least one of the above W and Mo is less than 10 wt%, the stress relaxation effect in the bonding layer becomes insufficient, while when the amount added exceeds 30 wt%, it becomes excessive. However, the joint strength decreases and the original heat transfer characteristics and insulation characteristics of ceramics are impaired. Therefore, the added amounts of W and Mo are set in the range of 10 to 30% by weight.

【0024】上記接合用組成物は、少量のバインダを添
加した後に加圧成形して薄板形状で接合面に介装して使
用してもよいが、通常は上記所定の組成に調整された混
合体を、溶媒としてのテレピネオール等にバインダーと
してのエチルセルロース等を溶解したバインダー溶液と
混練せしめてペースト状に調製して使用される。
The above-mentioned bonding composition may be used by adding a small amount of binder and then press-molding it to interpose it on the bonding surface in the form of a thin plate, but usually it is a mixture adjusted to the above-mentioned predetermined composition. The body is kneaded with a binder solution prepared by dissolving ethyl cellulose or the like as a binder in terpineol or the like as a solvent to prepare a paste to be used.

【0025】セラミックス材料としては窒化アルミニウ
ム(AlN)、アルミナ(Al2 3 )などが使用され
る一方、金属材料としてはCu、Fe、Cr、Fe−N
i合金などが使用される。そして上記金属材料とセラミ
ックス材料との接合面に上記薄板状またはペースト状の
接合用組成物を介在させた状態で、真空中あるいは
2 、Ar等の不活性ガス雰囲気、または非酸化性雰囲
気中において温度700〜750℃にて10〜30分間
加熱することによって、セラミックスと金属とが強固に
一体化した接合体が形成される。なお組成物に含有され
るTiは水素と反応し易いため、H2 ガスを加熱雰囲気
ガスとして使用することは好ましくない。
Aluminum nitride (AlN), alumina (Al 2 O 3 ) or the like is used as the ceramic material, while Cu, Fe, Cr or Fe-N is used as the metal material.
An i alloy or the like is used. Then, in a state where the thin plate-shaped or paste-shaped bonding composition is interposed on the bonding surface between the metal material and the ceramic material, in vacuum or in an inert gas atmosphere such as N 2 or Ar, or in a non-oxidizing atmosphere. By heating at a temperature of 700 to 750 ° C. for 10 to 30 minutes, a joined body in which ceramics and metal are firmly integrated is formed. Since Ti contained in the composition easily reacts with hydrogen, it is not preferable to use H 2 gas as the heating atmosphere gas.

【0026】[0026]

【作用】上記構成に係る接合用組成物によればInおよ
びSnを含有しているため、液相の生成温度が従来のA
g−Cuろう材と比較して低くなり、加熱接合温度を低
く抑制することができ、冷却工程において金属とセラミ
ックスとの熱膨脹係数差に起因するクラックの発生が効
果的に防止でき、信頼性が高い接合体を得ることができ
る。
Since the bonding composition having the above structure contains In and Sn, the liquid phase generation temperature is A
The temperature is lower than that of the g-Cu brazing material, the heating and joining temperature can be suppressed to be low, and the occurrence of cracks due to the difference in thermal expansion coefficient between the metal and the ceramics can be effectively prevented in the cooling process, and the reliability is improved. A high bonded body can be obtained.

【0027】また、従来のAg−Cuろう材と比較し
て、Cuを過剰に含有しているため、軟弾性に富むCu
相が接合面に形成され、接合面に作用する熱応力を吸収
する緩衝作用が発揮される。そのため金属とセラミック
スとの剥離等が少なく、ヒートサイクル特性が優れた接
合体を得ることができる。
Further, as compared with the conventional Ag—Cu brazing filler metal, since Cu is contained in excess, Cu which is rich in soft elasticity is used.
A phase is formed on the joint surface, and a buffering effect is absorbed to absorb thermal stress acting on the joint surface. Therefore, a bonded body having excellent heat cycle characteristics can be obtained with less peeling between metal and ceramics.

【0028】[0028]

【実施例】次に本発明に係る接合用組成物の一実施例に
ついて、下記の接合体に適用した例で説明する。
EXAMPLES Next, one example of the bonding composition according to the present invention will be described with an example applied to the following bonded body.

【0029】実施例1 実施例1として重量比でTi粉末を2%、Ag粉末を2
4%、Cu粉末を60%およびIn粉末を14%含有す
る粉末混合体100重量部に対して、溶媒としてのテレ
ピネオールにバインダーとしてのエチルセルロースを溶
解したバインダー溶液を20重量部添加して、擂回機で
混合後、三段ロールで混練してペースト状の接合用組成
物を調製した。
[0029] 2% of Ti powder in a weight ratio as in Example 1 Example 1, Ag powder 2
20 parts by weight of a binder solution prepared by dissolving ethyl cellulose as a binder in terpineol as a solvent was added to 100 parts by weight of a powder mixture containing 4%, 60% Cu powder and 14% In powder, and mixed. After mixing with a machine, the mixture was kneaded with a three-stage roll to prepare a paste-like bonding composition.

【0030】一方厚さ0.635mmの窒化アルミニウム
(AlN)製のセラミックス基板の両面に上記ペースト
状接合用組成物を介在させ、それぞれ厚さ0.3mmの銅
回路板を接触配置して3層構造の積層体を多数形成し
た。
On the other hand, the paste-like bonding composition is interposed on both sides of a ceramic substrate made of aluminum nitride (AlN) having a thickness of 0.635 mm, and a copper circuit board having a thickness of 0.3 mm is arranged in contact with each other to form three layers. A large number of laminates having a structure were formed.

【0031】次に得られた各積層体を加熱炉内に配置
し、炉内を10-4Torrの真空度に調整した後、温度73
0℃にて10分間加熱してAlNセラミックス基板と銅
回路板とを一体に接合し、多数の接合体を得た。
Next, each of the obtained laminated bodies was placed in a heating furnace, the inside of the furnace was adjusted to a vacuum degree of 10 -4 Torr, and then the temperature was adjusted to 73.
The AlN ceramic substrate and the copper circuit board were integrally joined by heating at 0 ° C. for 10 minutes to obtain a large number of joined bodies.

【0032】実施例2 また実施例2として重量比でTi粉末を2%、Cu粉末
を60%、W粉末を10%、In粉末を10%、Ag粉
末を18%含有する粉末混合体を使用した以外は、実施
例1と全く同一の処理条件で処理し、同一寸法の接合体
を多数製造した。
Example 2 As Example 2, a powder mixture containing 2% by weight of Ti powder, 60% by weight of Cu powder, 10% by weight of W powder, 10% by weight of In powder and 18% by weight of Ag powder was used. Except for the above, the treatment was performed under exactly the same treatment conditions as in Example 1, and a large number of joined bodies having the same dimensions were manufactured.

【0033】比較例 一方、比較例として、共晶組成(72wt%Ag−28
wt%Cu)を有する市販のAg−Cuろう材にTi粉
末を2wt%添加して、加圧成形した厚さ0.3mmの薄
板状接合用組成物を実施例1において用意したAlN製
セラミックス基板と銅回路板との間に介装して積層体を
多数調製した。そして得られた各積層体を真空中(10
-4Torr)で温度830℃で10分間加熱して比較例の接
合体を多数製造した。ここで、加熱温度(830℃)
は、Ag−Cu共晶化合物の作業温度である。
Comparative Example On the other hand, as a comparative example, a eutectic composition (72 wt% Ag-28
2% by weight of Ti powder was added to a commercially available Ag—Cu brazing filler metal having a wt% Cu), and a thin plate-like bonding composition having a thickness of 0.3 mm, which was pressure-molded, was prepared in Example 1 and made of an AlN ceramic substrate. A large number of laminates were prepared by interposing between the copper foil and the copper circuit board. Then, each of the obtained laminates was vacuumed (10
-4 Torr) at a temperature of 830 ° C. for 10 minutes to produce a large number of bonded joints of Comparative Examples. Here, heating temperature (830 ℃)
Is the working temperature of the Ag-Cu eutectic compound.

【0034】こうして加熱接合された実施例1〜2およ
び比較例に係る各接合体を常温まで冷却後、セラミック
ス基板の表面および断面について、肉眼および浸透探傷
法で検査し、クラック、剥離等の欠陥の発生割合を計測
した。その結果、実施例1に係る接合体では0.6%、
実施例2では0%であったが比較例の接合体では21%
であった。
After the heat-bonded joints of Examples 1 and 2 and Comparative Example were cooled to room temperature, the surface and cross section of the ceramic substrate were inspected by naked eyes and a penetrant flaw detection method to find defects such as cracks and peeling. Was measured. As a result, in the joined body according to Example 1, 0.6%,
It was 0% in Example 2 but was 21% in the joined body of Comparative Example.
Met.

【0035】すなわち実施例1においては、比較例の場
合と比較して、接合時の加熱温度が約100℃も低いた
め、冷却時に接合面に作用する熱応力も相対的に小さ
く、クラックの発生が少ない。さらに弾性の高いCuが
従来のAg−Cuろう材と比較して過量に添加されてい
るため、接合面に作用する熱応力が緩衝される結果、よ
り健全な接合体が得られる。また過量のCu中にTiの
一部が拡散するため、Tiの反応性が適度に抑制制御さ
れる。そのためTiNによって強固に接合された部位に
熱応力が集中することがなく、クラックの発生も少な
い。
That is, in Example 1, as compared with the case of the comparative example, since the heating temperature at the time of joining is lower by about 100 ° C., the thermal stress acting on the joining surface at the time of cooling is relatively small and cracks are generated. Less is. Since Cu having higher elasticity is added in an excessive amount as compared with the conventional Ag—Cu brazing filler metal, the thermal stress acting on the joint surface is buffered, and as a result, a more sound joint can be obtained. Further, since a part of Ti diffuses in an excessive amount of Cu, the reactivity of Ti is appropriately suppressed and controlled. Therefore, thermal stress does not concentrate on the portion strongly joined by TiN, and cracks are less likely to occur.

【0036】また実施例2においては、セラミックスに
近い熱膨脹係数を有するWが添加されているため、接合
層とセラミックス基板との熱膨脹係数を近似させること
ができ、熱膨脹係数差に起因する熱応力を低減すること
ができ、セラミックス基板の欠陥をほぼ解消することが
できた。
Further, in Example 2, since W having a coefficient of thermal expansion close to that of ceramics is added, the coefficient of thermal expansion between the bonding layer and the ceramic substrate can be approximated, and the thermal stress due to the difference in coefficient of thermal expansion can be reduced. It was possible to reduce the number of defects and almost eliminate the defects of the ceramic substrate.

【0037】また各接合体の耐久性および信頼性を評価
するため、実施例1〜2および比較例の各接合体を使用
して、−65℃〜+150℃の範囲で加熱し、引き続い
て+150℃〜−65℃に冷却する操作を1サイクルと
するヒートサイクル試験(TCT)を繰り返して実施し
たところ、実施例1〜2の接合体では1000サイクル
後においても、マイクロクラック、割れ、剥離等の欠陥
の発生率は0%であった。一方、比較例の接合体では1
00サイクル後に45%の割合でクラックが発生した。
Further, in order to evaluate the durability and reliability of each joined body, each joined body of Examples 1 and 2 and Comparative Example was used and heated in the range of -65 ° C to + 150 ° C, and subsequently +150. When the heat cycle test (TCT) in which the operation of cooling to 650C to -65C was set as one cycle was repeatedly performed, the joined bodies of Examples 1 and 2 showed microcracks, cracks, peeling, etc. even after 1000 cycles. The occurrence rate of defects was 0%. On the other hand, in the bonded body of the comparative example, 1
After 00 cycles, cracks occurred at a rate of 45%.

【0038】[0038]

【発明の効果】以上説明の通り本発明に係る接合用組成
物によればInおよびSnを含有しているため、液相の
生成温度が従来のAg−Cuろう材と比較して低くな
り、加熱接合温度を低く抑制することができ、冷却工程
において金属とセラミックスとの熱膨脹係数差に起因す
るクラックの発生が効果的に防止でき、信頼性が高い接
合体を得ることができる。
As described above, since the bonding composition according to the present invention contains In and Sn, the liquidus formation temperature is lower than that of the conventional Ag-Cu brazing material, It is possible to suppress the heating and joining temperature to a low level, effectively prevent the occurrence of cracks due to the difference in thermal expansion coefficient between the metal and the ceramic in the cooling step, and obtain a highly reliable joined body.

【0039】また、従来のAg−Cuろう材と比較し
て、Cuを過剰に含有しているため、軟弾性に富むCu
相が接合面に形成され、接合面に作用する熱応力を吸収
する緩衝作用が発揮される。そのため金属とセラミック
スとの剥離等が少なく、ヒートサイクル特性が優れた接
合体を得ることができる。
Further, as compared with the conventional Ag-Cu brazing material, since Cu is contained in excess, Cu which is rich in soft elasticity is used.
A phase is formed on the joint surface, and a buffering effect is absorbed to absorb thermal stress acting on the joint surface. Therefore, a bonded body having excellent heat cycle characteristics can be obtained with less peeling between metal and ceramics.

フロントページの続き (72)発明者 那波 隆之 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内Front page continuation (72) Inventor Takayuki Naba 4-4, 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Corporation Keihin Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でCuを60〜80%、Inおよ
びSnの少くとも一方を5〜15%、TiおよびZrの
少くとも一方を1〜10%含有し、残部が実質的にAg
から成る混合体で形成されたことを特徴とする接合用組
成物。
1. A Cu content of 60 to 80%, at least one of In and Sn of 5 to 15% and at least one of Ti and Zr of 1 to 10% by weight, with the balance being substantially Ag.
A bonding composition formed of a mixture of
【請求項2】 重量比でCuを60〜80%、Wおよび
Moの少くとも一方を10〜30%、InおよびSnの
少くとも一方を5〜15%、TiおよびZrの少くとも
一方を1〜10%含有し、残部が実質的にAgから成る
混合体で形成されたことを特徴とする接合用組成物。
2. A weight ratio of Cu is 60 to 80%, at least one of W and Mo is 10 to 30%, at least one of In and Sn is 5 to 15%, and at least one of Ti and Zr is 1. A bonding composition, characterized in that it is contained in an amount of 10% by weight and the balance is substantially Ag.
JP26064391A 1991-10-08 1991-10-08 Bonding composition Pending JPH0597532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26064391A JPH0597532A (en) 1991-10-08 1991-10-08 Bonding composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26064391A JPH0597532A (en) 1991-10-08 1991-10-08 Bonding composition

Publications (1)

Publication Number Publication Date
JPH0597532A true JPH0597532A (en) 1993-04-20

Family

ID=17350770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26064391A Pending JPH0597532A (en) 1991-10-08 1991-10-08 Bonding composition

Country Status (1)

Country Link
JP (1) JPH0597532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807626A (en) * 1995-07-21 1998-09-15 Kabushiki Kaisha Toshiba Ceramic circuit board
JP2003034585A (en) * 2001-07-19 2003-02-07 Toshiba Corp Joint body of nitride-based ceramic member and metal member, and nitride-based ceramic circuit board using the same
JPWO2019044752A1 (en) * 2017-08-29 2019-11-07 京セラ株式会社 Circuit board and electronic device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807626A (en) * 1995-07-21 1998-09-15 Kabushiki Kaisha Toshiba Ceramic circuit board
JP2003034585A (en) * 2001-07-19 2003-02-07 Toshiba Corp Joint body of nitride-based ceramic member and metal member, and nitride-based ceramic circuit board using the same
JPWO2019044752A1 (en) * 2017-08-29 2019-11-07 京セラ株式会社 Circuit board and electronic device having the same

Similar Documents

Publication Publication Date Title
JP4077888B2 (en) Ceramic circuit board
CN106944698B (en) SiC ceramic or SiC ceramic reinforced aluminum matrix composite material ultrasonic low-temperature direct brazing method based on thermal oxidation surface modification
RU2196683C2 (en) Substrate, method for its production (versions) and metallic compound of articles
JP3834351B2 (en) Ceramic circuit board
JP3095490B2 (en) Ceramic-metal joint
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JP3495051B2 (en) Ceramic-metal joint
JPH02196074A (en) Production of ceramics-metal joined body
US6131796A (en) Direct brazing of refractory metal features
JPH0597532A (en) Bonding composition
JPH08102570A (en) Ceramic circuit board
JPS62270483A (en) Ceramic metallizing composition, metallization and metallized product
JP3914648B2 (en) Metal-ceramic bonding substrate
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JPH10194860A (en) Brazing filler metal
JPH05201777A (en) Ceramic-metal joined body
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JPH06263554A (en) Jointed substrate of ceramics-metal
TWI850011B (en) Active metal brazing substrate material containing aluminum element and manufacturing method thereof
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH0574552B2 (en)
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JPS61283492A (en) Brazing filler metal for ceramics