JPH059659A - Austenitic stainless steel having excellent corrosion resistance at high temperature - Google Patents

Austenitic stainless steel having excellent corrosion resistance at high temperature

Info

Publication number
JPH059659A
JPH059659A JP16594691A JP16594691A JPH059659A JP H059659 A JPH059659 A JP H059659A JP 16594691 A JP16594691 A JP 16594691A JP 16594691 A JP16594691 A JP 16594691A JP H059659 A JPH059659 A JP H059659A
Authority
JP
Japan
Prior art keywords
high temperature
creep rupture
stainless steel
austenitic stainless
rupture strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16594691A
Other languages
Japanese (ja)
Other versions
JPH0826439B2 (en
Inventor
Satoshi Araki
敏 荒木
Tsunetoshi Takahashi
常利 高橋
Mizuo Sakakibara
瑞夫 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3165946A priority Critical patent/JPH0826439B2/en
Publication of JPH059659A publication Critical patent/JPH059659A/en
Publication of JPH0826439B2 publication Critical patent/JPH0826439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide austenitic stainless steel having excellent corrosion resistance at high temp. to molten chloride, gaseous hydrogen chloride, etc., in an environment in which waste is burned. CONSTITUTION:This austenitic stainless steel consists of, by weight, 0.02-0.15% C, 0.3-2.0% Mn, 18-25% Cr, 17-50% Ni, 0.5-3.0% Mo, 0.03-0.3% Ti, 0.05-0.6% Nb, 0.003-0.01% B, <=0.04% P, <=0.005% S, 0.02-0.3% N, 0.0005-0.05% Ca, 0.5-6.0% Al and/or 0.7-3.0% Si and the balance of Fe with inevitable impurities and has excellent corrosion resistance at high temp., excellent creep rupture strength and hot workability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は廃棄物燃焼環境等の溶融
塩化物および塩化水素(HCl)ガス等に対して優れた
高温腐食特性を有するオーステナイト系ステンレス鋼に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel having excellent high temperature corrosion characteristics against molten chloride such as waste combustion environment and hydrogen chloride (HCl) gas.

【0002】[0002]

【従来の技術】現在、一般廃棄物および産業廃棄物の中
で、廃棄プラスチック類および自動車シュレッダーダス
ト等の燃焼により発生する高濃度の溶融塩化物およびH
Clガス等に対し、優れた高温腐食特性を有する焼却炉
および燃焼ボイラ用鉄鋼材料はない。そのために、現状
では、上記廃棄物は高い発熱量を持ちながら、不燃・燃
焼不適物として分別・収集され、主に埋め立てられてい
る。また、一部分別・収集されずに、一般廃棄物に混入
してボイラで燃焼される前記廃棄物は、腐食性環境条件
が厳しいためボイラの蒸気条件は圧力294.2N/c
2 、温度350℃程度以下に抑えられ、効率の良い低
公害の燃料源として活用されていない。
2. Description of the Related Art Currently, in general waste and industrial waste, high-concentration molten chloride and H generated by combustion of waste plastics and automobile shredder dust, etc.
There is no steel material for incinerators and combustion boilers that has excellent high-temperature corrosion properties for Cl gas and the like. For this reason, at present, the wastes have a high calorific value, but are sorted and collected as non-combustible / incombustible substances, and are mainly landfilled. Further, since the waste that is mixed into general waste and burned in the boiler without being separated and collected partly has severe corrosive environmental conditions, the steam condition of the boiler is pressure 294.2 N / c.
m 2, is suppressed to below a temperature of about 350 ° C., it is not used as a source of fuel efficient low emission.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記問題点を
解決するという観点にたって、廃棄物燃焼環境中の溶融
塩化物およびHClガス等に対して優れた耐高温腐食性
を有し、かつクリープ破断強度および製造時の熱間加工
性の良好なオーステナイト系ステンレス鋼を提供するこ
とを目的とする。
In view of solving the above problems, the present invention has excellent high temperature corrosion resistance against molten chloride and HCl gas in a waste combustion environment, and An object is to provide an austenitic stainless steel having good creep rupture strength and hot workability during production.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量%にて、C;0.02〜0.15%、Mn;
0.3〜2.0%、Cr;18〜25%、Ni;17〜
50%、Mo;0.5〜3.0%、Ti;0.03〜
0.3%、Nb;0.05〜0.6%、B;0.003
〜0.01%、P;0.04%以下、S;0.005%
以下、N;0.02〜0.3%、Ca;0.0005〜
0.05%を含有し、かつAl;0.5〜6.0%、S
i;0.7〜3.0%のうち1種以上を含み、残部がF
eおよび不可避的不純物からなるオーステナイト系ステ
ンレス鋼にあり、廃棄物燃焼環境での高温腐食特性とク
リープ破断強度および製造時の熱間加工性が良好なステ
ンレス鋼である。
The gist of the present invention is that, in% by weight, C: 0.02 to 0.15%, Mn;
0.3-2.0%, Cr; 18-25%, Ni; 17-
50%, Mo; 0.5 to 3.0%, Ti; 0.03 to
0.3%, Nb; 0.05 to 0.6%, B; 0.003
~ 0.01%, P; 0.04% or less, S; 0.005%
Hereinafter, N: 0.02-0.3%, Ca: 0.0005-
0.05% and Al: 0.5-6.0%, S
i; contains at least one of 0.7 to 3.0% and the balance is F
It is an austenitic stainless steel consisting of e and unavoidable impurities, and has good high temperature corrosion characteristics in a waste combustion environment, creep rupture strength, and hot workability during manufacturing.

【0005】[0005]

【作用】以下に成分の限定理由について説明する。先
ず、塩化物およびHClガスに対して高温腐食特性を向
上させる合金元素として、Ni、AlおよびSiが有効
であることを見出した。Ni含有量増大により高温腐食
深さが減少する(図1)。これはスケール中に生成する
Ni富化層が塩化物およびHClガスに対する保護性を
有するためと考えられる。その効果は17%未満では十
分ではないため下限を17%とした。なお、Ni量が多
くなると熱間での加工硬化が起こりやすく熱間加工性が
劣化すること、またコストの面でもNi量が多くなると
高価になるのでNiの上限を50%とした。したがって
Niの量を17〜50%と限定した。
The reason for limiting the components will be described below. First, it was found that Ni, Al and Si are effective as alloying elements for improving the high temperature corrosion characteristics with respect to chloride and HCl gas. The hot corrosion depth decreases with increasing Ni content (Fig. 1). It is considered that this is because the Ni-rich layer formed in the scale has protection against chloride and HCl gas. If the effect is less than 17%, the lower limit is set to 17%. It should be noted that the upper limit of Ni is set to 50% because if the Ni content increases, hot work hardening easily occurs and the hot workability deteriorates, and in terms of cost, if the Ni content increases, it becomes expensive. Therefore, the amount of Ni is limited to 17 to 50%.

【0006】AlおよびSiはその添加により高温腐食
深さが減少する(図2)。これはスケール中にそれぞれ
Al2 3 およびSiO2 系の保護性スケールが生成す
るためと考えられる。その効果はAl;0.5%未満、
Si;0.7%未満では十分ではないため、Alの下限
を0.5%、Siの下限を0.7%とした。なお、Al
およびSi量が増加すると熱間加工性および高温クリー
プ破断強度が低下するので、両特性を確保するためにA
l量を6.0%以下、Si量を3.0%以下にすること
が必要である。これらの理由によってAlの量を0.5
〜6.0%、Siの量を0.7〜3.0%とした。
The addition of Al and Si reduces the hot corrosion depth (FIG. 2). It is considered that this is because protective scales of Al 2 O 3 type and SiO 2 type are generated in the scale. The effect is Al; less than 0.5%,
Si; less than 0.7% is not sufficient, so the lower limit of Al was 0.5% and the lower limit of Si was 0.7%. In addition, Al
Since the hot workability and the high temperature creep rupture strength decrease as the amount of Si and Si increases, in order to secure both properties, A
It is necessary that the amount of 1 be 6.0% or less and the amount of Si be 3.0% or less. For these reasons, the amount of Al is 0.5
˜6.0% and the amount of Si was 0.7˜3.0%.

【0007】Al、Siは単独添加または複合添加して
も同様の効果が得られるが、熱間加工性確保の観点か
ら、複合添加の場合の上限はAl、Siの合計5.0%
が望ましい。次に、上記以外の成分について述べる。C
は、炭化物形成元素としてクリープ破断強度やクリープ
破断伸びに大きな影響を与えるので、C量はクリープ特
性に効果的なCr、Mo、Ti、Nb、Bの炭化物を形
成するに必要な量を最小限添加する必要がある。一方、
溶接時高温割れを防止するためにはC量をできる限り下
げる必要がある。以上の観点からCの下限を0.02
%、上限を0.15%と定めた。
Similar effects can be obtained even if Al and Si are added alone or in combination, but from the viewpoint of ensuring hot workability, the upper limit in the case of compound addition is 5.0% in total of Al and Si.
Is desirable. Next, components other than the above will be described. C
Has a great effect on creep rupture strength and creep rupture elongation as a carbide-forming element, so the C content is the minimum necessary to form carbides of Cr, Mo, Ti, Nb, and B that are effective for creep properties. Need to be added. on the other hand,
In order to prevent hot cracking during welding, it is necessary to reduce the C content as much as possible. From the above viewpoint, the lower limit of C is 0.02.
%, And the upper limit was set to 0.15%.

【0008】Mnは、脱酸を十分行い健全な鋳片を得る
ために必要であり、鋼中に不純物として含有されるS成
分を固定し、熱間脆性を防止し、溶接性、熱間加工性を
向上させるので0.3%以上は必要である。しかし添加
量が多過ぎると耐酸化性を損なうので上限を2.0%と
した。Crは高温クリープ破断強度、硫酸塩等に対する
耐高温腐食性および耐高温酸化性等を向上させるので耐
熱合金にとっては必須の元素である。SUS347H
(18Cr−12Ni−0.7Nb)と同等以上の耐高
温酸化性が必要なので、Cr量の下限をSUS347H
のCr量と同量の18%とした。しかしCr量が多いと
長時間加熱によりσ脆化が起こりやすくなる。25Cr
−20Niのオーステナイト系ステンレス鋼SUS31
0S以上の耐σ脆化性を確保するためにCr量の上限を
25%とした。
Mn is necessary for sufficient deoxidation to obtain a sound cast piece, and fixes the S component contained as an impurity in steel to prevent hot brittleness, weldability and hot working. 0.3% or more is necessary to improve the property. However, if the addition amount is too large, the oxidation resistance is impaired, so the upper limit was made 2.0%. Cr improves the high temperature creep rupture strength, the high temperature corrosion resistance to sulfates and the like, the high temperature oxidation resistance and the like, and is an essential element for the heat resistant alloy. SUS347H
Since high temperature oxidation resistance equal to or higher than (18Cr-12Ni-0.7Nb) is required, the lower limit of Cr content is SUS347H.
18%, which is the same as the Cr content of Cr. However, if the amount of Cr is large, σ embrittlement easily occurs due to long-term heating. 25Cr
-20Ni austenitic stainless steel SUS31
In order to secure σ embrittlement resistance of 0 S or more, the upper limit of Cr content was set to 25%.

【0009】Moは固溶体硬化作用や析出硬化作用によ
ってクリープ破断強度を高めるのに必要な元素であるの
で下限を0.5%とした。しかしMoはσ相の形成を促
進し、長時間使用脆化を起こしやすいので添加量の上限
を3.0%とした。Ti、Nbは炭・窒化物形成元素で
クリープ破断強度の向上に効果があり、複合添加でその
炭・窒化物が微細分散化する場合に最もクリープ破断強
度が高くなる。炭・窒化物の析出量はTi量が0.03
%未満、Nb量が0.05%未満では十分でなく、一
方、Ti量が0.3%、Nb量が0.6%を超えてのT
i、Nb複合添加では炭・窒化物が凝集粗大化し、クリ
ープ破断強度が低下する。以上の点を考慮してTiの量
を0.03〜0.3%、Nbの量を0.05〜0.6%
とした。
Since Mo is an element necessary for increasing the creep rupture strength by the solid solution hardening action and the precipitation hardening action, the lower limit was made 0.5%. However, since Mo promotes the formation of the σ phase and easily causes embrittlement during long-term use, the upper limit of the amount added is set to 3.0%. Ti and Nb are charcoal / nitride forming elements and are effective in improving the creep rupture strength, and the creep rupture strength becomes highest when the carbon / nitride is finely dispersed by complex addition. The amount of precipitation of carbon / nitride is 0.03 of Ti
%, Nb content less than 0.05% is not sufficient, while Ti content exceeding 0.3% and Nb content exceeding 0.6% results in T
When i and Nb are added together, carbon / nitride agglomerates and coarsens, and the creep rupture strength decreases. Considering the above points, the amount of Ti is 0.03 to 0.3% and the amount of Nb is 0.05 to 0.6%.
And

【0010】Bはクリープ破断強度を高めるのに0.0
03%以上は必要であるが添加量が多いと溶接性および
延性が劣化するので添加量の上限を0.010%とし
た。Pは添加量が多いと高温クリープ中に析出を促進
し、クリープ中脆化を促進させるので上限を0.04%
とした。Sも粒界に偏析し高温クリープ中に粒界の脆化
を促進させるので上限を0.005%とした。
B is 0.0 to increase the creep rupture strength.
It is necessary to add 03% or more, but if the addition amount is large, the weldability and ductility deteriorate. Therefore, the upper limit of the addition amount is set to 0.010%. When P is added in a large amount, it promotes precipitation during high temperature creep and embrittlement during creep, so the upper limit is 0.04%.
And S also segregates at the grain boundaries and promotes embrittlement of the grain boundaries during high temperature creep, so the upper limit was made 0.005%.

【0011】Nは高Cr、高Ni系オーステナイト合金
の高温クリープ破断強度を高めることが知られている。
Nは窒化物の形成によりクリープ破断強度を高めるが、
そのためには0.02%以上にする必要がある。しかし
N量が増加するとクリープ破断伸びが減少し、またN量
が0.3%を超えても長時間のクリープ破断強度の増加
は少ない。したがってN量の上限を0.3%とした。
N is known to increase the high temperature creep rupture strength of high Cr, high Ni austenitic alloys.
N increases creep rupture strength by forming a nitride,
For that purpose, it is necessary to make it 0.02% or more. However, when the N content increases, the creep rupture elongation decreases, and even when the N content exceeds 0.3%, the increase in the creep rupture strength for a long time is small. Therefore, the upper limit of the amount of N is set to 0.3%.

【0012】Caは脱酸・脱硫作用を有し、OおよびS
の粒界偏析を減少させることによって熱間加工性および
クリープ破断強度を向上させる。その効果は0.000
5%未満では十分でないので、Ca量の下限を0.00
05%とした。また、Ca量が0.05%を超えると鋼
の清浄性を劣化し、熱間加工性を低下する。したがって
Ca量の上限を0.05%とした。
Ca has a deoxidizing / desulfurizing action, and O and S
The hot workability and creep rupture strength are improved by reducing the grain boundary segregation of. The effect is 0.000
Since less than 5% is not sufficient, the lower limit of Ca content should be 0.00
It was set to 05%. Further, if the amount of Ca exceeds 0.05%, the cleanliness of steel deteriorates and the hot workability deteriorates. Therefore, the upper limit of the amount of Ca is set to 0.05%.

【0013】[0013]

【実施例】次に本発明の実施例についてさらに具体的に
述べる。表1、表2(表1のつづき)に本発明例の化学
組成、高温腐食深さ、クリープ破断強度および熱間加工
性を、また、表3、表4(表3のつづき)に比較例の化
学組成、高温腐食深さ、クリープ破断強度および熱間加
工性を示す。
EXAMPLES Next, examples of the present invention will be described more specifically. Tables 1 and 2 (continued from Table 1) show the chemical composition, high temperature corrosion depth, creep rupture strength and hot workability of the examples of the present invention, and Tables 3 and 4 (continued from Table 3) show comparative examples. Shows the chemical composition, high temperature corrosion depth, creep rupture strength and hot workability.

【0014】いずれも45kg真空溶製し、熱間押出、
固溶化熱処理の後、高温腐食試験およびクリープ破断試
験を行った。高温腐食試験は37%NaCl+63%F
eCl2 合成灰を板状試験片表面に塗布し、0.2%H
Cl+0.5%SO2 +5%O2 +15%CO2 +ba
l.N2 ガス中で550℃×30h加熱し、試験片縦断
面の腐食深さを測定した。クリープ破断試験はゲージ部
φ6×l 30mmの試験片で温度550℃、応用44
1.3N/mm2 の条件で行い、その破断時間でクリー
プ破断強度を評価した。また熱間加工性を熱間押出時の
割れ有無で評価した。
In each case, 45 kg was vacuum melted, hot extruded,
After the solution heat treatment, a high temperature corrosion test and a creep rupture test were performed. High temperature corrosion test is 37% NaCl + 63% F
eCl 2 synthetic ash was applied to the surface of the plate-shaped test piece, and 0.2% H
Cl + 0.5% SO 2 + 5% O 2 + 15% CO 2 + ba
l. The sample was heated in N 2 gas at 550 ° C. for 30 hours, and the corrosion depth of the vertical cross section of the test piece was measured. The creep rupture test is a test piece with a gauge of φ6 × l 30mm, temperature 550 ℃, application 44
The creep rupture strength was evaluated by the rupture time under the condition of 1.3 N / mm 2 . The hot workability was evaluated by the presence or absence of cracks during hot extrusion.

【0015】表1、表2に示す本発明例A〜Cは20C
r−25Ni−1.5Moを基本成分として、Alをそ
れぞれ1%、3%および5%含有したものであり、D〜
Fは同一基本成分にSiをそれぞれ1%、2%および3
%含有したものである。また、本発明例G〜Iは24C
r−35Ni−1.5Moを基本成分とし、Alをそれ
ぞれ1%、3%および5%含有したものであり、Jは同
一基本成分にSiを2%含有したものである。
The invention examples A to C shown in Tables 1 and 2 are 20C.
r-25Ni-1.5Mo as a basic component, containing 1%, 3% and 5% of Al, respectively.
F contains 1%, 2% and 3% of Si in the same basic component, respectively.
% Contained. The invention examples G to I are 24C.
r-35Ni-1.5Mo is a basic component, Al is contained by 1%, 3% and 5% respectively, and J is the same basic component by containing Si by 2%.

【0016】次に、K、Lは20Cr−25Ni−1.
5Moを基本成分として、Al、SiをKはそれぞれ3
%、1%、Lはそれぞれ1%、2%複合で含有したもの
であり、M、Nは24Cr−35Ni−1.5Moを基
本成分とし、Al、SiをMはそれぞれ3%、1%、N
はそれぞれ1%、2%複合で含有したものである。本発
明例OはBの20Cr−25Ni−1.5Mo−3Al
に対し、Niが18%と低く、PはGの24Cr−35
Ni−1.5Mo−1Alに対し、Niが46%と高
い。Q〜SはBの20Cr−25Ni−1.5Mo−3
Alに対し、それぞれMoが2.7%、Tiが0.25
%およびNbが0.51%と高い。
Next, K and L are 20Cr-25Ni-1.
With 5Mo as the basic component, Al and Si are each 3 K
%, 1%, and L are 1% and 2% respectively, and M and N are 24Cr-35Ni-1.5Mo as a basic component, and Al and Si are 3% and 1%, respectively. N
Are those containing 1% and 2% respectively. Inventive Example O is B of 20Cr-25Ni-1.5Mo-3Al.
On the other hand, Ni is as low as 18%, and P is 24Cr-35 of G.
Ni is as high as 46% with respect to Ni-1.5Mo-1Al. Q to S are 20Cr-25Ni-1.5Mo-3 of B
Mo is 2.7% and Ti is 0.25 with respect to Al.
% And Nb are as high as 0.51%.

【0017】本発明例A〜Sはいずれも高温腐食深さ5
0μm以下の良好な高温腐食特性、200h以上の良好
なクリープ破断強度および熱間押出時に割れの見られな
い良好な熱間加工性を有している。一方、表3、表4に
示す比較例HA〜HGはNiをそれぞれ8.9%、1
3.0%、17.5%、25.1%、34.8%、4
6.3%および54.0%を含有するオーステナイト系
ステンレス鋼であり、いずれの鋼もAlおよびSiが本
発明の成分範囲下限である0.5%および0.7%より
低い。なお、HAはSUS304相当であり、Niが本
発明の成分範囲(17〜50%)より低い。
In each of Examples A to S of the present invention, the high temperature corrosion depth was 5
It has a good high temperature corrosion property of 0 μm or less, a good creep rupture strength of 200 h or more, and a good hot workability in which no crack is observed during hot extrusion. On the other hand, in Comparative Examples HA to HG shown in Tables 3 and 4, Ni was 8.9% and 1 respectively.
3.0%, 17.5%, 25.1%, 34.8%, 4
It is an austenitic stainless steel containing 6.3% and 54.0%, and both Al and Si are lower than 0.5% and 0.7% which are the lower limits of the composition range of the present invention. HA is equivalent to SUS304, and Ni is lower than the component range (17 to 50%) of the present invention.

【0018】HHはAlを3%含有するが、Niが13
%で本発明の成分範囲より低い。次に、HI、HJは2
4Cr−35Ni−1.5Moを基本成分として、HI
はAlが6.7%、HJはSiが3.6%で、いずれも
本発明の成分範囲を超えて含有した鋼である。さらに、
HKは24Cr−35Ni−1.5Moを基本成分とし
て、AlおよびSiをそれぞれ6.8%および3.5%
含有し、両成分共に本発明の成分範囲を超えた鋼であ
る。
HH contains 3% Al, but Ni is 13%.
%, Lower than the component range of the present invention. Next, HI and HJ are 2
With 4Cr-35Ni-1.5Mo as the basic component, HI
Is 6.7% Al, and HJ is 3.6% Si, both of which are steels containing more than the composition range of the present invention. further,
HK has 24Cr-35Ni-1.5Mo as a basic component and Al and Si at 6.8% and 3.5%, respectively.
It is a steel that contains both components and exceeds both the components of the present invention.

【0019】また、HL〜HOは20Cr−25Ni−
1.5Moを基本成分として、Alを3%含有するが、
HLはMoが0.10%で本発明の成分範囲より低く、
HMはTiとNbが共に無添加、HNはTiが無添加、
HOはNbが無添加でいずれも本発明の成分範囲外の鋼
である。これらの比較例は、本発明例と対比して、高温
腐食特性、クリープ破断強度あるいは熱間加工性の少な
くともいずれか一特性に問題点を有している。
HL to HO are 20Cr-25Ni-
It contains 1.5Mo as a basic component and 3% Al,
HL has a Mo content of 0.10%, which is lower than the component range of the present invention.
Both Ti and Nb are not added to HM, Ti is not added to HN,
HO is a steel which does not contain Nb and is outside the composition range of the present invention. Compared with the examples of the present invention, these comparative examples have a problem in at least one of high temperature corrosion properties, creep rupture strength and hot workability.

【0020】すなわち、AlおよびSiが共に本発明の
成分範囲下限より低いHA〜HGと、Alを3%含有す
るがNiが本発明の成分範囲下限より低いHHは高温腐
食深さが50μmを超えて、高温腐食特性が本発明鋼よ
り劣る。Alが6.7%のHIおよびSiが3.6%の
HJはAl、Siがそれぞれ本発明の成分範囲上限より
高く、クリープ破断強度が本発明例より低い。また、A
lおよびSiを共に本発明の成分範囲を超えて含有する
HKは熱間押出時に大きな割れが発生し、高温腐食特性
およびクリープ破断強度評価用試験片が採取できなかっ
た。
That is, HA to HG in which Al and Si are both lower than the lower limit of the composition range of the present invention, and HH which contains 3% of Al but Ni is lower than the lower limit of the composition range of the present invention has a high temperature corrosion depth of more than 50 μm. Therefore, the high temperature corrosion property is inferior to that of the steel of the present invention. HI with Al of 6.7% and HJ with Si of 3.6% each have Al and Si higher than the upper limits of the component ranges of the present invention and a lower creep rupture strength than the inventive examples. Also, A
For HK containing both 1 and Si in excess of the component ranges of the present invention, large cracks were generated during hot extrusion, and test pieces for evaluating high temperature corrosion characteristics and creep rupture strength could not be collected.

【0021】次に、Alを3%含有するが、Mo、Ti
およびNbのうち1種以上が本発明の成分範囲下限より
低いHL〜HOはクリープ破断強度が本発明例より低
い。なお、熱間加工性評価では、熱間押出時に大きな割
れが発生した上述のHKの他に、Niを本発明の成分範
囲を超えて54%含有するHG、AlあるいはSiが本
発明の成分範囲上限より高いHI、HJで熱間押出時に
ヘゲ状疵が発生した。
Next, although containing 3% Al, Mo, Ti
And HL to HO in which at least one of Nb is lower than the lower limit of the component range of the present invention, the creep rupture strength is lower than that of the present invention. In addition, in the hot workability evaluation, in addition to the above-mentioned HK in which large cracks occurred during hot extrusion, HG, Al or Si containing 54% of Ni in excess of the composition range of the present invention is the composition range of the present invention. With HI and HJ higher than the upper limit, bald defects occurred during hot extrusion.

【0022】[0022]

【表1】 【table 1】

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【発明の効果】本発明によれば、廃棄プラスチック類お
よび自動車シュレッダーダスト等の廃棄物燃焼ボイラの
過熱器管等に用いられる、燃焼環境中の溶融塩化物およ
び塩化水素(HCl)ガス等に対して優れた高温腐食特
性を有し、かつクリープ破断強度の良好なオーステナイ
ト系ステンレス鋼を供給することが可能になり、エネル
ギーおよび環境分野に極めて有用な効果がもたらされ
る。
EFFECTS OF THE INVENTION According to the present invention, for molten chloride and hydrogen chloride (HCl) gas in a combustion environment, which is used in waste plastic boilers and superheater tubes of waste combustion boilers such as automobile shredder dust, etc. It becomes possible to supply an austenitic stainless steel having excellent high temperature corrosion characteristics and excellent creep rupture strength, which brings a very useful effect in the fields of energy and environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温腐食深さに及ぼすNi含有量の影響を示す
図である。
FIG. 1 is a diagram showing the effect of Ni content on high temperature corrosion depth.

【図2】高温腐食深さに及ぼすAlおよびSi含有量の
影響を示す図である。
FIG. 2 is a diagram showing the influence of Al and Si contents on high temperature corrosion depth.

Claims (1)

【特許請求の範囲】 【請求項1】 重量%にて、 C ;0.02〜0.15%、 Mn;0.3〜2.0%、 Cr;18〜25%、 Ni;17〜50%、 Mo;0.5〜3.0%、 Ti;0.03〜0.3%、 Nb;0.05〜0.6%、 B ;0.003〜0.01%、 P ;0.04%以下、 S ;0.005%以下、 N ;0.02〜0.3%、 Ca;0.0005〜0.05%を含有し、かつ Al;0.5〜6.0%、 Si;0.7〜3.0%のうち1種以上を含み、 残部がFeおよび不可避的不純物からなることを特徴と
する高温腐食特性に優れたオーステナイト系ステンレス
鋼。
Claims: 1. C .: 0.02 to 0.15%, Mn: 0.3 to 2.0%, Cr: 18 to 25%, Ni: 17 to 50 in% by weight. %, Mo; 0.5 to 3.0%, Ti; 0.03 to 0.3%, Nb; 0.05 to 0.6%, B; 0.003 to 0.01%, P; 04% or less, S; 0.005% or less, N; 0.02-0.3%, Ca; 0.0005-0.05%, and Al; 0.5-6.0%, Si An austenitic stainless steel excellent in high-temperature corrosion characteristics, characterized by containing at least one of 0.7 to 3.0% and the balance being Fe and unavoidable impurities.
JP3165946A 1991-07-05 1991-07-05 Austenitic stainless steel with excellent high temperature corrosion properties Expired - Lifetime JPH0826439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165946A JPH0826439B2 (en) 1991-07-05 1991-07-05 Austenitic stainless steel with excellent high temperature corrosion properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165946A JPH0826439B2 (en) 1991-07-05 1991-07-05 Austenitic stainless steel with excellent high temperature corrosion properties

Publications (2)

Publication Number Publication Date
JPH059659A true JPH059659A (en) 1993-01-19
JPH0826439B2 JPH0826439B2 (en) 1996-03-13

Family

ID=15822026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165946A Expired - Lifetime JPH0826439B2 (en) 1991-07-05 1991-07-05 Austenitic stainless steel with excellent high temperature corrosion properties

Country Status (1)

Country Link
JP (1) JPH0826439B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325754B2 (en) 2002-09-20 2008-02-05 Toto Ltd. Shower nozzle
JP2008545889A (en) * 2005-06-03 2008-12-18 エイティーアイ・プロパティーズ・インコーポレーテッド Austenitic stainless steel
EP2016031A1 (en) * 2006-05-02 2009-01-21 Sandvik Intellectual Property AB A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143913A (en) * 1976-05-25 1977-11-30 Nippon Steel Corp Two phases stainless steel
JPS5424214A (en) * 1977-07-27 1979-02-23 Daido Steel Co Ltd Heattresistant steel having good heat fatigue characteristic
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143913A (en) * 1976-05-25 1977-11-30 Nippon Steel Corp Two phases stainless steel
JPS5424214A (en) * 1977-07-27 1979-02-23 Daido Steel Co Ltd Heattresistant steel having good heat fatigue characteristic
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325754B2 (en) 2002-09-20 2008-02-05 Toto Ltd. Shower nozzle
JP2008545889A (en) * 2005-06-03 2008-12-18 エイティーアイ・プロパティーズ・インコーポレーテッド Austenitic stainless steel
EP2016031A1 (en) * 2006-05-02 2009-01-21 Sandvik Intellectual Property AB A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy
EP2016031A4 (en) * 2006-05-02 2011-03-16 Sandvik Intellectual Property A component for supercritical water oxidation plants, made of an austenitic stainless steel alloy

Also Published As

Publication number Publication date
JPH0826439B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
JP4946242B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welded material
US6060180A (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
US20100119404A1 (en) Ferritic Stainless Steel for Use as Conduit Members For Emission of Automotive Exhaust Gas
CA3019556C (en) Welding structure member
JP5169532B2 (en) Ferritic heat resistant steel
JPH03274245A (en) Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP2004090045A (en) Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP6212920B2 (en) Metal material
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JPH06248393A (en) Alustenitic stainless steel excellent in high temperature corrosion resistance
KR20210124464A (en) Covered arc welding rod for high-Cr ferritic heat-resistant steel
JPH059659A (en) Austenitic stainless steel having excellent corrosion resistance at high temperature
JPH07278757A (en) Austenitic stainless steel excellent in high temperature corrosion characteristic and toughness after aging
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP5880338B2 (en) Metal materials and boiler materials
JP2521579B2 (en) Alloy and multi-layer steel pipe having corrosion resistance in a combustion environment in the presence of V, Na, S and Cl
JP2021030231A (en) Weld material
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same
JP2006016669A (en) Austenitic stainless steel for inner side of dual structure exhaust manifold
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JP3300747B2 (en) Corrosion and heat resistant Ni-based alloy for waste incinerator
JPH10183305A (en) High strength, corrosion resistant and heat resistant alloy
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960903