JPH0596181A - Photocatalyst - Google Patents

Photocatalyst

Info

Publication number
JPH0596181A
JPH0596181A JP3285421A JP28542191A JPH0596181A JP H0596181 A JPH0596181 A JP H0596181A JP 3285421 A JP3285421 A JP 3285421A JP 28542191 A JP28542191 A JP 28542191A JP H0596181 A JPH0596181 A JP H0596181A
Authority
JP
Japan
Prior art keywords
photocatalyst
synthetic resin
catalyst
semiconductor
impact force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285421A
Other languages
Japanese (ja)
Inventor
Takeaki Abe
武明 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Titanium Industry Co Ltd
Original Assignee
Fuji Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co Ltd filed Critical Fuji Titanium Industry Co Ltd
Priority to JP3285421A priority Critical patent/JPH0596181A/en
Publication of JPH0596181A publication Critical patent/JPH0596181A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photocatalyst which can be used for photolysis of waste water, org. soln. etc., and can be easily dispersed and recovered by embedding and depositing a semiconductor photocatalyst uniformly on the surface of a synthetic resin powder body with impact force. CONSTITUTION:A semiconductor photocatalyst (e.g. titanium oxide) is uniformly embedded and deposited on the surface of a synthetic resin (e.g. polyethylene) powder body by impact force, using a ball mill or the like. This photocatalyst can be used for various photolyses. Especially, when this photocatalyst is used for harmful matters such as hydrocarbon halides, organophosphrous agricultural chemicals, etc., it can change these harmful matters into harmless ones with good efficiency in an industrial scale, which is useful for environmental preservation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は廃水、有機物溶液等の光
分解反応に用いられる光触媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst used for photodecomposition reaction of waste water, organic matter solution and the like.

【0002】[0002]

【従来の技術】近年、水,ハロゲン化炭化水素,フェノ
ール,界面活性剤,有機リン農薬等を酸化チタン,チタ
ン酸ストロンチウム等の半導体触媒を用いて光分解する
試みが注目されている。これに用いられる半導体光触媒
は比表面積が大きいものが効率が高いため、平均粒径1
μ以下の微粒径のものが用いられており、分解しようと
する液体に添加し、水銀灯等の光源を用いて照射して分
解が行われている。
2. Description of the Related Art In recent years, attention has been paid to attempts to photolyze water, halogenated hydrocarbons, phenols, surfactants, organophosphorus pesticides and the like using a semiconductor catalyst such as titanium oxide or strontium titanate. Since the semiconductor photocatalyst used for this has a large specific surface area and high efficiency, an average particle size of 1
A fine particle having a particle size of μ or less is used, and it is decomposed by adding it to a liquid to be decomposed and irradiating it with a light source such as a mercury lamp.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の微粒径
の半導体触媒は凝集力が強く、凝集すると受光面積が小
さくなって効率が低下するため、撹拌を強くして液中に
充分に分散させる必要があった。また、器壁に付着した
り、濾過が困難になって触媒の回収に支障を来たすとい
う問題もあり、この触媒の凝集は工業的スケールで実施
しようとする際の大きな障害となっていた。本発明はこ
のような問題点を改良するためになされたもので、凝集
を起こさず、分散,回収が容易な光触媒を提供すること
を目的とする。
However, the conventional semiconductor catalyst having a fine particle size has a strong cohesive force, and when coagulating, the light receiving area becomes small and the efficiency is lowered. Had to let. In addition, there are problems that the catalyst adheres to the wall of the vessel and filtration becomes difficult, which hinders the recovery of the catalyst, and the aggregation of the catalyst has been a major obstacle in attempting to carry it out on an industrial scale. The present invention has been made to improve such problems, and an object thereof is to provide a photocatalyst that does not cause aggregation and is easily dispersed and recovered.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するための光触媒を提供するものであり、その要旨は合
成樹脂粉体の表面に半導体触媒を均一に衝撃力で埋め込
んで付着させたものを光触媒とすることにある。このよ
うな構造にすることによって凝集はまったく生じなくな
り、かつ、見掛比重が小さくなるため液中に容易に分散
することができ、装置への付着がなくなり、回収が容易
になる等の効果が生じた。
SUMMARY OF THE INVENTION The present invention provides a photocatalyst for solving the above-mentioned problems, and the gist thereof is to embed a semiconductor catalyst uniformly on the surface of a synthetic resin powder by impact force to adhere the same. The thing is to use a photocatalyst. With such a structure, agglomeration does not occur at all, and since the apparent specific gravity is small, it can be easily dispersed in the liquid, the adhesion to the device is eliminated, and recovery is facilitated. occured.

【0005】合成樹脂粉体の表面に半導体触媒を衝撃力
で埋め込むが、その合成樹脂としてはポリエチレン,ポ
リプロピレン,ポリスチレン,ポリアミド,ポリメチル
メタクリレート等の熱可塑性樹脂が好ましい。材質は分
解対象物質、および分解生成物に冒されないものを選択
するのが良い。例えば、トリクロロエタン,テトラクロ
ロエチレン等の塩素系溶剤にはポリアミドが適してい
る。
The semiconductor catalyst is embedded in the surface of the synthetic resin powder by impact force, and the synthetic resin is preferably a thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyamide, polymethylmethacrylate. It is better to select a material that is not affected by the decomposition target substance and decomposition products. For example, polyamide is suitable for chlorine-based solvents such as trichloroethane and tetrachloroethylene.

【0006】これらの粉体に半導体触媒を衝撃力で付着
させるには、具体的には合成樹脂粉体と半導体触媒をボ
ールミル等で充分に混合することによって行うことがで
きる。特に好ましくは例えば(株)奈良機械製作所のハ
イブリダイゼーションシステムやホソカワミクロン
(株)のメカノフュージョンシステム等の装置を用い
る。これらの装置により容易に目的物を得ることができ
る。合成樹脂粉体の平均粒径は大きすぎると効率が低下
するため、1mm以下が好ましい。形状は球状,棒状,
針状或いは不定形でも制限は受けない。
To attach the semiconductor catalyst to these powders by impact force, specifically, it is possible to sufficiently mix the synthetic resin powder and the semiconductor catalyst with a ball mill or the like. Particularly preferably, a device such as a hybridization system manufactured by Nara Machinery Co., Ltd. or a mechanofusion system manufactured by Hosokawa Micron Co., Ltd. is used. The object can be easily obtained by these devices. If the average particle size of the synthetic resin powder is too large, the efficiency decreases, so 1 mm or less is preferable. The shape is spherical, rod-shaped,
It is not limited to a needle shape or an irregular shape.

【0007】光触媒として用いられる半導体触媒は、酸
化チタン,チタン酸ストロンチウム,硫化カドミウム,
酸化亜鉛,テルル化カドミウム,セレン化カドミウム,
珪素,酸化タングステン,酸化鉄,硫化モリブデン等が
挙げられ、目的に応じて選択される。例えば水を分解し
て水素と酸素を得るには酸化チタン,チタン酸ストロン
チウム,硫化カドミウム,酸化亜鉛等が、塩素系溶剤を
分解するには酸化チタン,酸化タングステンが適してい
る。また、触媒効率を上げるため、白金や酸化ルテニウ
ムをこれらの触媒に担持してもよい。本発明は上記のい
ずれの触媒にも応用することができる。
Semiconductor catalysts used as photocatalysts include titanium oxide, strontium titanate, cadmium sulfide,
Zinc oxide, cadmium telluride, cadmium selenide,
Examples thereof include silicon, tungsten oxide, iron oxide, molybdenum sulfide, etc., which are selected according to the purpose. For example, titanium oxide, strontium titanate, cadmium sulfide, zinc oxide and the like are suitable for decomposing water to obtain hydrogen and oxygen, and titanium oxide and tungsten oxide are suitable for decomposing chlorine-based solvents. In addition, platinum or ruthenium oxide may be supported on these catalysts in order to increase the catalyst efficiency. The present invention can be applied to any of the above catalysts.

【0008】[0008]

【作用】一般に、担体表面に光触媒を付着させると接触
面積が減じるため効率の低下が予想されるが、驚くべき
ことに本発明の光触媒は全く効率の低下が起こらないこ
とを見出した。その理由は明らかではないが、機械的に
半導体を埋め込んでいるために合成樹脂粉体との間に微
細な間隙が生じ、そこから液が入りこむのも1つの要因
となっていると推測される。又、本発明の光触媒を用い
れば液中の分散が良好になり、光分解が効率的に行え、
且つ、触媒の液からの分離が容易となる。
In general, when the photocatalyst is attached to the surface of the carrier, the contact area is reduced and the efficiency is expected to decrease. However, it was surprisingly found that the photocatalyst of the present invention does not cause any decrease in efficiency. The reason for this is not clear, but it is speculated that one of the factors is that a minute gap is created between the semiconductor powder and the synthetic resin powder due to the mechanical embedding of the semiconductor, and the liquid enters from there. .. Further, when the photocatalyst of the present invention is used, dispersion in the liquid becomes good, and photolysis can be efficiently performed,
Moreover, the catalyst can be easily separated from the liquid.

【0009】[0009]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 参考例 微粒径高純度酸化チタン(富士チタン工業(株)製TP
−2。平均粒径0.3μ)10gとポリアミド粉体(ダ
イセル・ヒュルス(株)製ダイアミドVESTOSINT 1111。
平均粒径100μ)190gを混合し、(株)奈良機械
製作所のハイブリダイゼーションシステムNHS−1型
に供給し、気相中に分散させながら装置を5600rp
mで5分間作動させて衝撃を与え、ポリアミドの表面が
完全に酸化チタンで被覆されたものを得た。この復合体
は5重量%の酸化チタンを含んでいることになる。これ
を光触媒として以下の実施例に用いた。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Reference example Fine particle size high purity titanium oxide (TP manufactured by Fuji Titanium Industry Co., Ltd.)
-2. 10 g of average particle size 0.3 μ) and polyamide powder (DAIAMIDE VESTOSINT 1111 manufactured by Daicel Hüls KK).
190 g of which the average particle size is 100 μ) is mixed and supplied to the hybridization system NHS-1 type manufactured by Nara Machinery Co., Ltd., and the device is dispersed at 5600 rp while being dispersed in the gas phase.
After being operated for 5 minutes at m. and subjected to impact, a polyamide having the surface completely covered with titanium oxide was obtained. This composite will contain 5% by weight of titanium oxide. This was used as a photocatalyst in the following examples.

【0010】実施例1 トリクロロエチレン1000ppm水溶液2500ミリ
リットルを3リットルの3つ口フラスコに入れ、参考例
で得た光触媒50g(酸化チタンを2.5g含む)を投
入し、電動撹拌器、水冷コンデンサーを装備して撹拌し
つつフラスコの下部から125Wの水銀灯で20mmの
距離から照射して光分解を行った。PHは発生する塩化
水素のため初期の6.2から3時間後には2.7まで低
下した。
Example 1 2500 ml of 1000 ppm aqueous solution of trichlorethylene was placed in a 3-liter three-necked flask, 50 g of the photocatalyst obtained in Reference Example (including 2.5 g of titanium oxide) was charged, and an electric stirrer and a water-cooled condenser were equipped. Then, while stirring, irradiation was carried out from the bottom of the flask with a 125 W mercury lamp from a distance of 20 mm for photolysis. PH dropped from 6.2 in the initial stage to 2.7 after 3 hours because of hydrogen chloride generated.

【0011】液中のトリクロロエチレン濃度がガスクロ
マトグラフで分析したところ、3時間後で210pp
m、24時間後には50ppmであった。撹拌速度を1
00〜800ppmの範囲で変化させて実験したとこ
ろ、低速でも触媒の沈降、器壁への付着がなく、同様の
分解結果を得た。また、水溶液から触媒を分離するため
濾紙を用いて濾過を行ったところ、濾紙の目詰まりを起
こすことなく、スムースに濾過分離ができた。
When the concentration of trichlorethylene in the liquid was analyzed by gas chromatography, it was 210 pp after 3 hours.
It was 50 ppm after 24 hours. Stirring speed 1
When the experiment was carried out by changing the range from 00 to 800 ppm, the catalyst was not settled and adhered to the vessel wall even at a low speed, and the same decomposition result was obtained. Further, when filtration was carried out using a filter paper to separate the catalyst from the aqueous solution, the filter paper could be smoothly separated without being clogged.

【0012】実施例2 トリクロロエチレンの代わりにテトラクロロエチレンを
用いて実施例1と同様に実験を行った。PHは初期の
6.2から9時間後には2.4まで低下した。テトラク
ロロエチレン濃度は9時間後には200ppm、24時
間後には70ppmであった。撹拌速度を100〜80
0rpmの範囲で変化させて実験したところ、低速でも
触媒の沈降、器壁への付着がなく、同様の分解速度を得
た。また、水溶液から触媒を分離するため濾紙を用いて
濾過を行ったところ、濾紙の目詰まりを起こすことな
く、スムースに濾過分離ができた。
Example 2 An experiment was conducted in the same manner as in Example 1 except that tetrachloroethylene was used instead of trichlorethylene. PH dropped from 6.2 at the beginning to 2.4 after 9 hours. The tetrachloroethylene concentration was 200 ppm after 9 hours and 70 ppm after 24 hours. Stirring speed 100-80
When the experiment was carried out by changing the range of 0 rpm, no decomposition of the catalyst or deposition on the vessel wall was observed even at a low speed, and a similar decomposition rate was obtained. Further, when filtration was carried out using a filter paper to separate the catalyst from the aqueous solution, the filter paper could be smoothly separated without being clogged.

【0013】比較例 光触媒に微粒径高純度酸化チタン(富士チタン工業
(株)製TP−2。平均粒径0.3μ)そのものを2.
5gを用いた他は実施例1と同様にして行った。撹拌速
度を600rpm以上にしないと触媒が凝集して沈降を
起こし、分解速度が低下した。沈降しない状態での分解
速度は実施例1と同様であった。水溶液から触媒を分離
するため濾紙を用いて濾過しようとしたが、濾紙の目詰
まりを起こして濾過分離が非常に困難であった。
Comparative Example 2. As a photocatalyst, fine particle size high-purity titanium oxide (TP-2 manufactured by Fuji Titanium Industry Co., Ltd .; average particle size 0.3 μ) itself was used.
The same procedure as in Example 1 was carried out except that 5 g was used. If the stirring speed was not 600 rpm or more, the catalyst aggregated and settled, and the decomposition speed decreased. The decomposition rate without sedimentation was the same as in Example 1. An attempt was made to filter using a filter paper to separate the catalyst from the aqueous solution, but the filter paper was clogged and it was very difficult to separate by filtration.

【0014】[0014]

【発明の効果】本発明の光触媒は各種光分解反応に利用
できるが、特にハロゲン化炭化水素、有機リン農薬等の
有害物質に適用したとき、工業的スケールで効率良く無
害化することができ、環境の保護に大いに有用である。
INDUSTRIAL APPLICABILITY The photocatalyst of the present invention can be utilized for various photodecomposition reactions, but when applied to harmful substances such as halogenated hydrocarbons and organophosphorus pesticides, it can be effectively detoxified on an industrial scale. It is very useful for environmental protection.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂粉体の表面に半導体光触媒を均
一に衝撃力で埋め込んで付着させたことを特徴とする光
触媒。
1. A photocatalyst characterized in that a semiconductor photocatalyst is uniformly embedded and attached to the surface of a synthetic resin powder by impact force.
【請求項2】 合成樹脂が熱可塑性樹脂である請求項1
記載の光触媒。
2. The synthetic resin is a thermoplastic resin.
The photocatalyst described.
JP3285421A 1991-10-07 1991-10-07 Photocatalyst Pending JPH0596181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285421A JPH0596181A (en) 1991-10-07 1991-10-07 Photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285421A JPH0596181A (en) 1991-10-07 1991-10-07 Photocatalyst

Publications (1)

Publication Number Publication Date
JPH0596181A true JPH0596181A (en) 1993-04-20

Family

ID=17691306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285421A Pending JPH0596181A (en) 1991-10-07 1991-10-07 Photocatalyst

Country Status (1)

Country Link
JP (1) JPH0596181A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144137A (en) * 1993-06-01 1995-06-06 Natl Res Inst For Metals Method for decomposing halogenated hydrocarbon
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
US5981426A (en) * 1995-03-02 1999-11-09 University Technologies International Inc. Photocatalyst having an x-ray diffraction pattern which is substanially free of characteristic reflections associated with crystalline TiO2
JP2010058092A (en) * 2008-09-05 2010-03-18 Chiba Univ Manufacturing method of composite photocatalyst, and composite photocatalyst manufactured thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144137A (en) * 1993-06-01 1995-06-06 Natl Res Inst For Metals Method for decomposing halogenated hydrocarbon
US5981426A (en) * 1995-03-02 1999-11-09 University Technologies International Inc. Photocatalyst having an x-ray diffraction pattern which is substanially free of characteristic reflections associated with crystalline TiO2
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
JP2010058092A (en) * 2008-09-05 2010-03-18 Chiba Univ Manufacturing method of composite photocatalyst, and composite photocatalyst manufactured thereby

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
Liga et al. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment
KR101650875B1 (en) Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
Rana et al. Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles
US9079166B2 (en) Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
Li et al. Simultaneous oxidation of 4-aminophenylarsonic acid and adsorption of the produced inorganic arsenic by a combination of Co3O4-La2CO5@ RSBC with peroxymonosulfate
KR101107450B1 (en) Iron composite particles for purifying soil or ground water, process for producing the same, purifying agent containing the same, process for producing the purifying agent and method for purifying soil or ground water
JPH0596181A (en) Photocatalyst
JPH11246901A (en) Production of metallic particulate and method for depositing the particular on porous carrier
JPH0741250B2 (en) How to treat water with ozone
Mishra et al. A critical review on In2S3-based nanomaterial for emerging contaminants elimination through integrated adsorption-degradation technique: Effect of reaction parameters and co-existing species
JP4258622B2 (en) Purification agent for soil and groundwater contaminated with organic halogen compounds, its production method, and purification method for soil and groundwater contaminated with organic halogen compounds
JPH06182218A (en) Method for oxidation and reduction using composite photocatalyst powder
JP3612552B2 (en) Photoreaction catalyst
Subhadarshini et al. Facile fabrication of plasmonic Ag/ZIF-8: an efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics
JPH07124464A (en) Oxidation-reduction method using powdery photocatalyst
JP2000051709A (en) New catalyst for photoreaction and photocatalytic reaction using that
Kaneva et al. Photocatalytic degradation of the pharmaceuticals Paracetamol and Chloramphenicol by Ln–modified ZnO photocatalysts
US11400438B2 (en) Synthesis and immobilization of a ferrous sulfite catalyst and method of degrading fluorinated organic chemicals in aqueous media
JPH07241475A (en) Photocatalyst body, its production and method for removing harmful substance using the same
JP4257942B2 (en) A method for reductive deposition on metal surfaces.
Melanie et al. Impacts and physico-chemical behavior of inorganic nanoparticles in the environment
JP3646905B2 (en) Water purification method using photocatalyst
JP2002066306A (en) Fluid bed type powder and grain fluidized bed reactor
Tabana et al. Photocatalytic degradation of efavirenz and nevirapine using visible light-activated Ag-AgBr-LDH nanocomposite catalyst