JPH07124464A - Oxidation-reduction method using powdery photocatalyst - Google Patents

Oxidation-reduction method using powdery photocatalyst

Info

Publication number
JPH07124464A
JPH07124464A JP3313224A JP31322491A JPH07124464A JP H07124464 A JPH07124464 A JP H07124464A JP 3313224 A JP3313224 A JP 3313224A JP 31322491 A JP31322491 A JP 31322491A JP H07124464 A JPH07124464 A JP H07124464A
Authority
JP
Japan
Prior art keywords
powder
semiconductor material
photocatalyst
composite photocatalyst
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3313224A
Other languages
Japanese (ja)
Inventor
Norimune Yamazaki
典宗 山崎
Katsuji Arisawa
克二 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP3313224A priority Critical patent/JPH07124464A/en
Publication of JPH07124464A publication Critical patent/JPH07124464A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the contact area of a powdery semiconductor with a reactive phase and to produce a significant. catalytic effect by facilitating the recovery and removal of a powdery catalyst from a liq. after a reaction. CONSTITUTION:A powdery semiconductor such as TiO2, CdS, CdSe or GaP is uniformly fixed on the surface of core powder of nylon, polyethylene, etc., in a hardly flocculated state to form a powder combined photocatalyst and a reactive phase such as waste water is brought into a redox reaction by irradiation with light while dispersing the photocatalyst in the reactive phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は反応相中に半導体物質を
分散させ、この半導体物質に光を照射することにより半
導体物質を光触媒として使用する酸化・還元方法に関す
るものであり、更に詳しくは核粉体表面にこの核粉体よ
り粒子径の小さな半導体物質の粉体を固定化した複合化
光触媒粉体を用いることにより、酸化・還元反応による
排水中の難分解有機物質の分解、金属イオンの分離回
収、水の分解、アミノ酸の生成などの各種化学反応に好
適に用いることができる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation / reduction method in which a semiconductor material is dispersed in a reaction phase and the semiconductor material is irradiated with light to use the semiconductor material as a photocatalyst. By using a composite photocatalyst powder in which a powder of a semiconductor material having a particle size smaller than that of the core powder is immobilized on the surface of the powder, decomposition of hardly decomposable organic substances in wastewater due to oxidation / reduction reaction, decomposition of metal ions The present invention relates to a method that can be suitably used for various chemical reactions such as separation and recovery, water decomposition, and amino acid production.

【0002】[0002]

【従来の技術】従来、半導体物質を光触媒に用いる方法
は知られており、水の光分解に始まり廃水中の難分解有
機物質の分解、金属イオンの分離回収、アミノ酸の生成
などの各種化学反応へと多くの応用が検討されている。
ここで半導体物質を光触媒として用いる方法としては
反応相中に半導体物質の粉体をそのまま分散させ、反応
させる物質を半導体物質の粉体と接触させ光を照射し用
いるかメンブランフィルタ−などに半導体物質の粉体
の懸濁液を数回ろ過することにより付着させたり、樹脂
溶液中に半導体物質の粉体を分散しそれをフィルム膜化
しそのフィルム膜を反応相中に入れ光を照射し用いる方
法が試みられていた。
2. Description of the Related Art Conventionally, a method of using a semiconductor material as a photocatalyst is known, and various chemical reactions such as photolysis of water, decomposition of hardly decomposable organic substances in wastewater, separation and recovery of metal ions, production of amino acids, etc. Many applications are being considered.
Here, as a method of using a semiconductor substance as a photocatalyst, a powder of a semiconductor substance is dispersed as it is in a reaction phase, and the substance to be reacted is brought into contact with the powder of the semiconductor substance and irradiated with light. Method in which the suspension of the above powder is attached by filtering it several times, or the powder of the semiconductor substance is dispersed in a resin solution and formed into a film, which is put into the reaction phase and irradiated with light to be used. Was being attempted.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記方法の
反応相中に半導体物質の粉体をそのまま分散させ用いる
方法においては、用いる粉体の触媒効果を高めるために
比表面積を大きくし、反応相と粉体との接触面積を大き
くするために粒子径の小さな粉体を用いようとするが、
粒子径が小さくなると粉体同士の凝集力が大きくなり反
応相中で一次粒子径まで分散せず、結果として反応相と
粉体との接触面積が少なり、触媒効果を十分に発揮でき
なかった。また、反応後、ろ過や遠心分離などにより反
応液中から粉体を回収または除去しようとしても粒子径
が小さいため困難であるという問題点を有していた。ま
た、の半導体物質の粉体をメンブンランフィルタ−に
付着させたり、樹脂溶液中に分散させフィルム膜化して
用いる方法においては、反応後、ろ過や遠心分離などに
よる反応液中からの粉体の回収や除去は必要ないが、触
媒効果に寄与する粉体はフィルタ−及びフィルム膜表面
に露出していて光が照射される部分のみである。このた
め同量の粉体をそのまま分散させ用いる方法と比較する
と触媒効果は著しく低下する。また実質上困難ではある
が、たとえ粉体をフィルム膜表面に単粒子分散状態で固
定化したフィルム膜ができたとしても粉体をそのまま分
散させ用いる方法と同様の接触面積を得ようとした場
合、はなはだ大きな面積のフィルムとなり実用上困難で
あるという問題点を有していた。
However, in the method in which the powder of the semiconductor material is directly dispersed in the reaction phase of the above method, the specific surface area is increased in order to enhance the catalytic effect of the powder used, and the reaction phase is increased. In order to increase the contact area between the powder and the powder, we try to use powder with a small particle size.
When the particle size is small, the cohesive force between the powders is large and the primary particle size is not dispersed in the reaction phase, and as a result, the contact area between the reaction phase and the powder is small, and the catalytic effect cannot be sufficiently exhibited. . Further, after the reaction, it is difficult to collect or remove the powder from the reaction solution by filtration or centrifugation, because the particle size is small. Further, in the method of attaching the powder of the semiconductor material to a membrane filter or dispersing it in a resin solution to form a film, the powder from the reaction solution obtained by filtration or centrifugation after the reaction is used. However, the powder that contributes to the catalytic effect is only exposed on the filter and the film surface of the film and irradiated with light. Therefore, the catalytic effect is remarkably reduced as compared with the method in which the same amount of powder is directly dispersed. Also, although it is practically difficult, when trying to obtain a contact area similar to the method in which the powder is dispersed as it is and used, even if a film membrane in which the powder is immobilized on the film membrane surface in a single particle dispersion state is formed However, the film has a large area and is difficult to use in practice.

【0004】[0004]

【課題を解決するための手段】本発明は、反応相中に半
導体物質を分散させ、この半導体物質に光を照射するこ
とにより半導体物質を光触媒として使用する酸化・還元
方法において、前記半導体物質をこの半導体物質よりも
粒子径の大きな核粉体の表面に固定化して複合化光触媒
とし、反応相中に分散させ、光を照射することを特徴と
した複合化光触媒粉体を用いた酸化・還元方法を要旨と
するものである。以下本発明を詳述する。本発明に係る
複合化光触媒粉体は核粉体表面に半導体物質の粉体が均
一に凝集の少い状態で固定化されている状態が好まし
い。これは核粉体表面に前記核粉体より粒子径の小さな
半導体物質の粉体を混合し、混合摩砕力及び/又は機械
的衝撃力を加えることにより得られる。
The present invention relates to an oxidation / reduction method in which a semiconductor material is dispersed in a reaction phase, and the semiconductor material is used as a photocatalyst by irradiating the semiconductor material with light. Oxidation / reduction using a composite photocatalyst powder characterized by being immobilized on the surface of a nuclear powder having a particle size larger than this semiconductor material to form a composite photocatalyst, which is dispersed in the reaction phase and irradiated with light. The method is the gist. The present invention will be described in detail below. The composite photocatalyst powder according to the present invention is preferably in a state in which the powder of the semiconductor material is uniformly immobilized on the surface of the core powder in a state with less aggregation. This is obtained by mixing a powder of a semiconductor material having a particle size smaller than that of the core powder on the surface of the core powder and applying a mixing grinding force and / or a mechanical impact force.

【0005】核粉体は、その表面に半導体物質の粉体を
固定化するためのものである。この核粉体は、反応させ
る物質の酸化・還元反応に直接的に関与するものではな
いため、反応相中の物質に溶解するものでなければ有機
物や無機物に関係なく使用することができる。具体的に
は、ナイロン、ポリエチレン、ポリスチレン、ポリメチ
ルメタアクリレ−ト、セルロ−ス、フッ素樹脂、シリコ
−ン樹脂、エポキシ樹脂、フェノ−ル樹脂、メラミン樹
脂、シリコ−ンゴムなどの合成樹脂粉体や金、白金、
銀、銅、鉛、ニッケル、アルミニュウム、タングステ
ン、ジルコニュウム、亜鉛などの金属粉体やその酸化
物、炭化物、窒化物、ガラス及びその焼結物などの無機
粉体が挙げられ1種又は2種以上の混合物としても使用
できる。形状は球状にこだわる必要はなく、破砕型のも
のでもよい。粒子径は核粉体表面に半導体物質の粉体を
固定化するため半導体物質の粉体より大きいことが必要
であり、半導体物質の粉体の粒子径に対し10倍以上で
あることがより好ましい。また、本発明に係る複合化光
触媒粉体に用いられる半導体物質の粉体としてはTiO
2、WO3 、ZnO、Fe23 、SrTiO2 などの金
属酸化物、CdS、ZnS、InSなどの金属硫化物、
CdSe、ZnSeなどの金属セレン、GaP、InPな
どの金属リンなどが挙げられ1種又は2種以上の混合物
としても使用できる。核粉体に対する半導体物質の配合
量は核粉体の粒子径、比重、半導体物質の粉体の粒子
径、比重及びその組み合わせにより適宜選択するが核粉
体表面を単一層で均一に完全被覆する配合量が好適と考
えられる。
The core powder is for immobilizing powder of a semiconductor material on the surface thereof. Since this nuclear powder is not directly involved in the oxidation / reduction reaction of the substance to be reacted, it can be used regardless of whether it is an organic substance or an inorganic substance as long as it does not dissolve in the substance in the reaction phase. Specifically, synthetic resin powder such as nylon, polyethylene, polystyrene, polymethylmethacrylate, cellulose, fluororesin, silicone resin, epoxy resin, phenol resin, melamine resin, silicone rubber, etc. Body, gold, platinum,
One or more kinds of metal powder such as silver, copper, lead, nickel, aluminum, tungsten, zirconium, zinc and the like, and inorganic powders such as oxides, carbides, nitrides, glass and sintered products thereof can be mentioned. Can also be used as a mixture. The shape does not need to be spherical and may be a crush type. The particle size needs to be larger than that of the semiconductor substance powder in order to fix the powder of the semiconductor substance on the surface of the core powder, and it is more preferable to be 10 times or more the particle size of the powder of the semiconductor substance. . Further, as the powder of the semiconductor material used in the composite photocatalyst powder according to the present invention, TiO is used.
2 , metal oxides such as WO 3 , ZnO, Fe 2 O 3 and SrTiO 2 , metal sulfides such as CdS, ZnS and InS,
Examples thereof include metallic selenium such as CdSe and ZnSe, metallic phosphorus such as GaP and InP, and one or a mixture of two or more thereof can be used. The compounding amount of the semiconductor material with respect to the core powder is appropriately selected depending on the particle size and specific gravity of the core powder, the particle size of the powder of semiconductor material, the specific gravity and a combination thereof, but the core powder surface is uniformly and completely covered with a single layer. The compounding amount is considered to be suitable.

【0006】本発明に係る複合化光触媒粉体を得るため
には上記成分を混合し、混合摩砕力及び/又は機械的衝
撃力を加えることにより核粉体表面に半導体物質の粉体
を固定化する。混合摩砕力を加えるための機器としては
自動乳鉢、ボ−ルミル、ジェットミル、メカノミル(岡
田精工(株)製)、メカノフュ−ジョン(ホソカワミク
ロン(株)製)などが好適に使用でき、機械的衝撃力を
加える機器としてはアトマイザ−、ハンマ−ミル、ハイ
ブリダイザ−(奈良機械製作所(株)製)などが好適に
使用できる。ここで、核粉体表面へ半導体物質の粉体を
固定化するための機器選定及びその固定化条件は使用す
る核粉体、半導体物質の粉体の粒子径及び材質の組み合
わせ、処理量により適宜選定するが、核粉体表面に均一
に凝集のないように固定化され半導体物質の粉体が反応
相中に分散させたときに脱離しないことが重要である。
In order to obtain the composite photocatalyst powder according to the present invention, the above-mentioned components are mixed and the powder of the semiconductor material is fixed on the surface of the core powder by applying a mixing grinding force and / or a mechanical impact force. Turn into. Automatic mortar, ball mill, jet mill, mechanomill (manufactured by Okada Seiko Co., Ltd.), mechanofusion (manufactured by Hosokawa Micron Co., Ltd.), etc. can be suitably used as a device for applying the mixing and grinding force, and mechanical An atomizer, a hammer mill, a hybridizer (manufactured by Nara Machinery Co., Ltd.) or the like can be preferably used as a device for applying an impact force. Here, the selection of equipment for immobilizing the powder of the semiconductor material on the surface of the nuclear powder and the immobilization conditions are appropriately selected depending on the combination of the particle diameter and the material of the powder of the semiconductor material to be used, and the treatment amount. It is important to select it, but it is important that it is uniformly immobilized on the surface of the core powder so as not to agglomerate and the powder of the semiconductor material is not desorbed when dispersed in the reaction phase.

【0007】上記で得た複合化光触媒粉体は反応相中に
てスタ−ラ−や超音波分散機などをを用いて分散させ用
い、その濃度は適宜選択できるが濃度が薄すぎると反応
に時間がかかるため0.1重量%以上で用いると好適で
ある。照射する光は使用する半導体物質の粉体を励起す
る波長(可視及び/又は紫外)を含むものであれば使用
でき、具体的には高圧水銀灯、キセノンランプ、ハロゲ
ンランプなどや太陽光が使用可能である。光照射時間は
反応相中の物質の濃度、分散させた複合化光触媒粉体の
濃度、照射光の強さによっても異なるため適宜選択す
る。
The composite photocatalyst powder obtained above is dispersed in a reaction phase by using a stirrer or an ultrasonic disperser, and its concentration can be appropriately selected. Since it takes time, it is preferable to use 0.1 wt% or more. Any light can be used as long as it has a wavelength (visible and / or ultraviolet) that excites the powder of the semiconductor material used. Specifically, a high pressure mercury lamp, a xenon lamp, a halogen lamp, or sunlight can be used. Is. The light irradiation time varies depending on the concentration of the substance in the reaction phase, the concentration of the dispersed composite photocatalyst powder, and the intensity of the irradiation light, and is appropriately selected.

【0008】[0008]

【作用】本発明に係る複合化光触媒粉体を用いた酸化・
還元方法は、光照射により半導体物質の粉体は励起され
粉体表面に電子と正孔が生じる。そして反応相中の物質
はこの電子により還元され、正孔により酸化される。こ
れらを式1及び式2にて示す。
[Operation] Oxidation using the composite photocatalyst powder according to the present invention
In the reduction method, the semiconductor material powder is excited by light irradiation to generate electrons and holes on the powder surface. Then, the substance in the reaction phase is reduced by the electrons and oxidized by the holes. These are shown in Equation 1 and Equation 2.

【0009】[0009]

【式1】Red+h+(正孔) →Ox[Formula 1] Red + h + (hole) → Ox

【0010】[0010]

【式2】Ox+e-(電子) →Red[Formula 2] Ox + e- (electron) → Red

【0011】複合化光触媒粉体は核粉体表面に固定化す
ることにより見かけの粒子径を大きくすることができ、
反応後の液中からの粉体の除去は容易にでき、また、粒
子径の小さな半導体物質の粉体を用いてもこの半導体物
質は複合化されているので凝集することが少なく、核粉
体表面に均一に凝集少なく固定化されているため、半導
体物質の粉体と反応相との接触面積を十分に大きくする
ことが可能となり大きな触媒効果を得ることができる。
By immobilizing the composite photocatalyst powder on the surface of the core powder, the apparent particle diameter can be increased,
The powder can be easily removed from the liquid after the reaction, and even if a powder of a semiconductor material having a small particle size is used, since this semiconductor material is compounded, it is less likely to aggregate. Since the particles are uniformly immobilized on the surface with less aggregation, the contact area between the powder of the semiconductor material and the reaction phase can be sufficiently increased, and a large catalytic effect can be obtained.

【0012】[0012]

〔複合化光触媒粉体の製造例〕[Production Example of Composite Photocatalyst Powder]

製造例(a) ナイロン粉体(平均粒子径5.0μm、東レ(株)製) 22.5部 TiO2 粉体(平均粒子径0.4μm、KA−15、チタン工業(株)製) 24.5部 上記成分を自動乳鉢にて20分間処理し、複合化光触媒
粉体を得た。
Production Example (a) Nylon powder (average particle size 5.0 μm, manufactured by Toray Industries, Inc.) 22.5 parts TiO 2 powder (average particle size 0.4 μm, KA-15, manufactured by Titanium Industry Co., Ltd.) 24 0.5 parts The above components were treated in an automatic mortar for 20 minutes to obtain a composite photocatalyst powder.

【0013】製造例(b) ポリエチレン粉体(平均粒子径18.7μm、住友精化(株)製) 38.5部 TiO2 粉体(平均粒子径0.4μm、KR−310、チタン工業(株)製) 11.5部 上記成分を自動乳鉢にて20分間処理し、更にハイブリ
ダイザ−にて5分間処理し複合化光触媒粉体を得た。
Production Example (b) Polyethylene powder (average particle size 18.7 μm, manufactured by Sumitomo Seika Chemicals, Ltd.) 38.5 parts TiO 2 powder (average particle size 0.4 μm, KR-310, titanium industry ( Co., Ltd.) 11.5 parts The above components were treated in an automatic mortar for 20 minutes, and further treated in a hybridizer for 5 minutes to obtain a composite photocatalyst powder.

【0014】製造例(c) ガラス粉体(平均粒子径10.0μm、東芝バロティ−ニ(株)製)41.2部 TiO2 粉体(平均粒子径0.4μm、TM−1、富士チタン工業(株)製) 5.5部 WO3 粉体(平均粒子径0.08μm、東京鉄鋼(株)製) 3.3部 上記成分をボ−ルミルにて3時間処理し、更にハイブリ
ダイザ−にて3分間処理し複合化光触媒粉体を得た。
Production Example (c) Glass powder (average particle size 10.0 μm, manufactured by Toshiba Ballotini Co., Ltd.) 41.2 parts TiO 2 powder (average particle size 0.4 μm, TM-1, Fuji titanium) Industrial Co., Ltd. 5.5 parts WO 3 powder (average particle size 0.08 μm, Tokyo Steel Co., Ltd.) 3.3 parts The above components are treated with a ball mill for 3 hours, and further into a hybridizer. For 3 minutes to obtain a composite photocatalyst powder.

【0015】製造例(d) シリコ−ン樹脂粉体(平均粒子径4.5μm東芝シリコ−ン(株)製) 38.3部 WO3 粉体(平均粒子径0.08μm、東京鉄鋼(株)製) 11.7部 上記成分をハイブリダイザ−にて10分間処理し、複合
化光触媒粉体を得た。製造例(a)〜(d)で得た複合
化光触媒粉体を電子顕微鏡で観察したところ半導体物質
の粉体は核粉体表面に均一に凝集することなく固定化さ
れていた。
Production Example (d) Silicone resin powder (average particle size 4.5 μm, manufactured by Toshiba Silicone Co., Ltd.) 38.3 parts WO 3 powder (average particle size 0.08 μm, Tokyo Steel Co., Ltd.) )) 11.7 parts The above components were treated with a hybridizer for 10 minutes to obtain a composite photocatalyst powder. When the composite photocatalyst powders obtained in Production Examples (a) to (d) were observed with an electron microscope, the powder of the semiconductor material was immobilized on the surface of the core powder without being uniformly aggregated.

【0016】実施例1 製造例(a)の複合化光触媒粉体0.41部(酸化チタ
ン量換算0.20部)をパイレックスガラスビンに入れ
た40mlの100ppmトリクロロエチレン水溶液中
に分散し密封後、回転子により撹拌しながら100W高
圧水銀灯を照射しトリクロロエチレンの酸化・還元反応
による光分解を行った。反応終了後No5C(アドバン
テック東洋(株)製)濾紙にて複合化光触媒粉体を溶液
より濾過し、回収した。
Example 1 0.41 part of the composite photocatalyst powder of Production Example (a) (0.20 part in terms of titanium oxide) was dispersed in 40 ml of 100 ppm trichloroethylene aqueous solution contained in a Pyrex glass bottle, sealed, and then rotated. While stirring with a child, a 100 W high-pressure mercury lamp was irradiated to perform photolysis by oxidation / reduction reaction of trichlorethylene. After completion of the reaction, the composite photocatalyst powder was filtered from the solution with No5C (manufactured by Advantech Toyo Corp.) filter paper and collected.

【0017】実施例2 製造例(b)の複合化光触媒粉体0.67部(酸化チタ
ン量換算0.20部)を用いる以外は実施例1と同様に
光分解を行い、複合化光触媒を回収した。
Example 2 Photolysis was carried out in the same manner as in Example 1 except that 0.67 part of the composite photocatalyst powder of Production Example (b) (0.20 part in terms of titanium oxide) was used to prepare the composite photocatalyst. Recovered.

【0018】実施例3 製造例(c)の複合化光触媒粉体0.60部を用いる以
外は実施例1と同様に光分解を行い、複合化光触媒を回
収した。
Example 3 Photolysis was carried out in the same manner as in Example 1 except that 0.60 part of the composite photocatalyst powder of Production Example (c) was used, and the composite photocatalyst was recovered.

【0019】実施例4 製造例(d)の複合化光触媒粉体0.43部(酸化タン
グステン量換算0.10部)を用いる以外は実施例1と
同様に光分解を行い、複合化光触媒を回収した。
Example 4 Photolysis was carried out in the same manner as in Example 1 except that 0.43 parts of the composite photocatalyst powder of Production Example (d) (0.10 part in terms of the amount of tungsten oxide) was used to prepare the composite photocatalyst. Recovered.

【0020】比較例1 製造例(a)に使用した酸化チタン0.20部を複合化
せずにそのまま分散させて用いる以外は実施例1と同様
に光分解を行い、複合化光触媒を回収した。
Comparative Example 1 Photolysis was carried out in the same manner as in Example 1 except that 0.20 parts of the titanium oxide used in Production Example (a) was used as it was without being compounded and used, and the compounded photocatalyst was recovered. .

【0021】比較例2 製造例(b)の酸化チタン0.20部を複合化せずにそ
のまま分散させて用いる以外は実施例1と同様に光分解
を行い、複合化光触媒を回収した。
Comparative Example 2 Photolysis was carried out in the same manner as in Example 1 except that 0.20 part of titanium oxide of Production Example (b) was used as it was without being compounded and used as it was, and the compounded photocatalyst was recovered.

【0022】比較例3 製造例(d)の酸化タングステン0.10部を複合化せ
ずにそのまま分散させて用いる以外は実施例1と同様に
光分解を行い、複合化光触媒を回収した。
Comparative Example 3 Photolysis was carried out in the same manner as in Example 1 except that 0.10 part of the tungsten oxide of Production Example (d) was used as it was without being compounded and dispersed, and the compounded photocatalyst was recovered.

【0023】比較例4 製造例(d)の酸化タングステン0.10部をイオン交
換水40mlに分散させこの分散液をメンブランフィル
タ−(孔径0.1μm、直径90mm、アドバンテック
東洋(株)製)でろ過を3回繰り返しメンブランフィル
タ−の孔中及び表面に付着させた。これを40mlの1
00ppmトリクロロエチレン水溶液の入ったパイレッ
クスビンに入れ用いる以外は実施例1と同様に光分解を
行った。
Comparative Example 4 0.10 parts of tungsten oxide of Production Example (d) was dispersed in 40 ml of ion-exchanged water, and this dispersion was filtered with a membrane filter (pore size 0.1 μm, diameter 90 mm, manufactured by Advantec Toyo Corp.). Filtration was repeated 3 times to attach the membrane filter in the pores and on the surface thereof. 40 ml of this
Photolysis was performed in the same manner as in Example 1 except that the product was placed in a Pyrex bottle containing a 00 ppm trichloroethylene aqueous solution.

【0024】[0024]

【発明の効果】実施例1〜4及び比較例1〜4で光分解
反応を2時間行った後のトリクロロエチレンの残存率を
ガスクロマトグラフを用いヘッドスペ−ス法により測定
した。トリクロロエチレンの残存率の計算式を式3に、
結果を表1に示す。
EFFECTS OF THE INVENTION In Examples 1 to 4 and Comparative Examples 1 to 4, the residual rate of trichlorethylene after the photolysis reaction was carried out for 2 hours was measured by a head space method using a gas chromatograph. The formula for calculating the residual rate of trichlorethylene is shown in Equation 3.
The results are shown in Table 1.

【0025】[0025]

【式3】 [Formula 3]

【0026】[0026]

【表1】 [Table 1]

【0027】この結果より比較例に対し同量の半導体物
質の粉体を用いた複合化光触媒粉体においては、トリク
ロロエチレンの残存率が低くなっており、高い触媒効果
を示している。特に、実施例2と比較例2で用いた酸化
チタンにおいては、実施例2で複合化光触媒粉体を用い
た時との触媒効果の差が大きく表れている。これは、両
者の凝集性の差によって酸化チタンを単体で用いた時の
トリクロロエチレンとの接触面積に差ができたためと考
えられる。また実施例4と比較例4の比較においても比
較例4では十分な接触面積が得られず、表面に露出して
いる酸化チタンにしか光照射されないため触媒効果に大
きな差が表れている。尚、複合化光触媒を回収した後の
液は、実施例1から4は無色透明な液体となり、比較例
1から3は光触媒が完全には除去できなかったため濁っ
た状態であった。
From the results, in the composite photocatalyst powder using the same amount of the powder of the semiconductor material as in the comparative example, the residual rate of trichlorethylene was low, and a high catalytic effect was shown. In particular, in the titanium oxide used in Example 2 and Comparative Example 2, the difference in the catalytic effect between the case where the composite photocatalyst powder was used in Example 2 was large. It is considered that this is because the difference in the cohesiveness between the two caused a difference in the contact area with trichlorethylene when titanium oxide was used alone. Also in the comparison between Example 4 and Comparative Example 4, in Comparative Example 4, a sufficient contact area was not obtained, and only titanium oxide exposed on the surface was irradiated with light, so that a large difference was observed in the catalytic effect. In addition, the liquid after recovering the composite photocatalyst was a colorless and transparent liquid in Examples 1 to 4, and the liquids in Comparative Examples 1 to 3 were turbid because the photocatalyst could not be completely removed.

【0028】以上詳細に説明したように本発明に係る複
合化光触媒粉体を用いた酸化・還元方法は、反応後の液
中からの触媒粉体の回収や除去を容易にし、更に半導体
物質の粉体と反応相との接触面積を大きくすることが可
能となり、大きな触媒効果を得ることができる。
As described in detail above, the oxidation / reduction method using the composite photocatalyst powder according to the present invention facilitates the recovery and removal of the catalyst powder from the liquid after the reaction, and further, the semiconductor substance The contact area between the powder and the reaction phase can be increased, and a large catalytic effect can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応相中に半導体物質を分散させ、この
半導体物質に光を照射することにより半導体物質を光触
媒として使用する酸化・還元方法において、前記半導体
物質をこの半導体物質よりも粒子径の大きな核粉体の表
面に固定化して複合化光触媒とし、反応相中に分散さ
せ、光を照射することを特徴とした複合化光触媒粉体を
用いた酸化・還元方法。
1. An oxidation / reduction method in which a semiconductor material is dispersed in a reaction phase and the semiconductor material is used as a photocatalyst by irradiating the semiconductor material with light, wherein the semiconductor material has a particle size smaller than that of the semiconductor material. An oxidation / reduction method using a composite photocatalyst powder characterized by immobilizing it on the surface of a large nuclear powder to form a composite photocatalyst, dispersing it in the reaction phase, and irradiating with light.
JP3313224A 1991-10-31 1991-10-31 Oxidation-reduction method using powdery photocatalyst Pending JPH07124464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3313224A JPH07124464A (en) 1991-10-31 1991-10-31 Oxidation-reduction method using powdery photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3313224A JPH07124464A (en) 1991-10-31 1991-10-31 Oxidation-reduction method using powdery photocatalyst

Publications (1)

Publication Number Publication Date
JPH07124464A true JPH07124464A (en) 1995-05-16

Family

ID=18038609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3313224A Pending JPH07124464A (en) 1991-10-31 1991-10-31 Oxidation-reduction method using powdery photocatalyst

Country Status (1)

Country Link
JP (1) JPH07124464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975745A (en) * 1995-09-14 1997-03-25 Agency Of Ind Science & Technol Novel catalyst for photoreaction and photocatalytic reaction method using same
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JP2006239641A (en) * 2005-03-07 2006-09-14 Qe Research Japan:Kk Dioxin decomposing apparatus and its manufacturing method, and decomposition-treatment method of dioxin
JP2014193433A (en) * 2013-03-28 2014-10-09 Yokohama National Univ Visible light-responsive hybrid photocatalyst and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975745A (en) * 1995-09-14 1997-03-25 Agency Of Ind Science & Technol Novel catalyst for photoreaction and photocatalytic reaction method using same
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
US6576344B1 (en) 1998-09-30 2003-06-10 Nippon Sheet Glass Co., Ltd. Photocatalyst article, anti-fogging, anti-soiling articles, and production method of anti-fogging, anti-soiling articles
JP2006239641A (en) * 2005-03-07 2006-09-14 Qe Research Japan:Kk Dioxin decomposing apparatus and its manufacturing method, and decomposition-treatment method of dioxin
JP4572129B2 (en) * 2005-03-07 2010-10-27 有限会社 キュー イー リサーチ ジャパン DIOXIN DECOMPOSING DEVICE, ITS MANUFACTURING METHOD, AND DIOXIN DECOMPOSING METHOD
JP2014193433A (en) * 2013-03-28 2014-10-09 Yokohama National Univ Visible light-responsive hybrid photocatalyst and production method thereof

Similar Documents

Publication Publication Date Title
Jorfi et al. A new approach in sono-photocatalytic degradation of recalcitrant textile wastewater using MgO@ Zeolite nanostructure under UVA irradiation
Kormann et al. Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe2O3, ZnO, TiO2
Dionysiou et al. Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water
JP5710518B2 (en) Recyclable porous body / metal nanoparticle composite and method for producing the same
CN103648984B (en) Method for treating arsenic-containing aqueous solution
Abazari et al. Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core–shell structure via a novel and mild route for photocatalytic degradation of toxic dyes
Tabasum et al. Fe3O4-GO composite as efficient heterogeneous photo-Fenton’s catalyst to degrade pesticides
US9802841B2 (en) Method for treating hexavalent chromium-containing aqueous solution
Gautam et al. Advanced nanomaterials for wastewater remediation
Ghodrati et al. Phenol decomposition under sunlight using a sonochemically synthesized CdSe/TiO 2 nanocatalyst
JPH06182218A (en) Method for oxidation and reduction using composite photocatalyst powder
Khalid et al. A practical method for incorporation of Fe (III) in Titania matrix for photocatalytic applications
Jin et al. Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis
US9290394B2 (en) Method for decomposing organic compound contained in aqueous solution
JPH07124464A (en) Oxidation-reduction method using powdery photocatalyst
WO2014038713A1 (en) Radioactive cesium decontaminating agent and method for producing same, and method for removing radioactive cesium
Ökte et al. Characteristics of iron‐loaded TiO2‐supported montmorillonite catalysts: β‐Naphthol degradation under UV‐A irradiation
JP2005334737A (en) Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
Maham et al. Green synthesis of palladium/titanium dioxide nanoparticles and their application for the reduction of methyl orange, congo red and rhodamine B in aqueous medium
JPH09290165A (en) Photocatalyst and water treatment using the same
JP5298282B2 (en) Method for producing titanium oxide particles
CN106268860B (en) A kind of Au/Fe3O4Nano load catalyst and its preparation method and application
JP4757593B2 (en) photocatalyst
Sanuki et al. Photocatalytic reduction of Se ions using suspended anatase powders
Jassby Impact of particle aggregation on nanoparticle reactivity