JP4757593B2 - photocatalyst - Google Patents

photocatalyst Download PDF

Info

Publication number
JP4757593B2
JP4757593B2 JP2005288290A JP2005288290A JP4757593B2 JP 4757593 B2 JP4757593 B2 JP 4757593B2 JP 2005288290 A JP2005288290 A JP 2005288290A JP 2005288290 A JP2005288290 A JP 2005288290A JP 4757593 B2 JP4757593 B2 JP 4757593B2
Authority
JP
Japan
Prior art keywords
silica
photocatalyst
hydrogen fluoride
ultrafine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005288290A
Other languages
Japanese (ja)
Other versions
JP2007098206A (en
Inventor
信明 小松
朋子 伊藤
Original Assignee
Bnt株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bnt株式会社 filed Critical Bnt株式会社
Priority to JP2005288290A priority Critical patent/JP4757593B2/en
Publication of JP2007098206A publication Critical patent/JP2007098206A/en
Application granted granted Critical
Publication of JP4757593B2 publication Critical patent/JP4757593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光触媒に関し、さらに詳しくは広い波長領域にわたる照射光に感応し、さらに従来にない高効率で環境汚染物質を除去しうる超微粒子状光触媒に関する。   The present invention relates to a photocatalyst, and more particularly to an ultrafine photocatalyst that is sensitive to irradiation light over a wide wavelength region and that can remove environmental pollutants with unprecedented efficiency.

従来、環境汚染物質を除去する光触媒として酸化チタンが幅広く使用されてきているが、酸化チタンが光触媒能を発揮するのは、光の波長が400nm付近域のみであり、それ以外の波長域では光触媒能を発揮できないので、利用範囲が制限されていた。
最近、紫外光から可視光領域の波長(200nm〜800nm)域まで光触媒能が発揮できるハロゲン化水素酸処理した溶融石英からなる新規な光触媒が提案されている(例えば、特許文献1)。
Conventionally, titanium oxide has been widely used as a photocatalyst for removing environmental pollutants. However, titanium oxide exhibits a photocatalytic activity only in the region where the wavelength of light is around 400 nm, and in other wavelength regions, it is a photocatalyst. Since the performance could not be demonstrated, the range of use was limited.
Recently, a novel photocatalyst made of hydrohalic acid-treated fused quartz that can exhibit photocatalytic activity from the ultraviolet light to the visible light wavelength (200 nm to 800 nm) has been proposed (for example, Patent Document 1).

しかしながら、可視光波長での光触媒能がまだ十分でなく、特に酸化窒素以外の有害物質、例えばトルエン、アセトアルデヒド、エタンジチオール等に対する分解率が高くなく、実用化するにはまだ十分満足できるものとはいえない。   However, the photocatalytic ability at the visible light wavelength is not yet sufficient, and particularly the decomposition rate for harmful substances other than nitric oxide, such as toluene, acetaldehyde, ethanedithiol, etc. is not high, and it is still sufficiently satisfactory for practical use. I can't say that.

特開2004−290747号公報JP 2004-290747 A

本発明は、広い波長領域において高効率で、酸化窒素はもちろん、それ以外の環境汚染物質をも分解しうる光触媒を提供することを目的とする。   An object of the present invention is to provide a photocatalyst that is highly efficient in a wide wavelength region and can decompose not only nitric oxide but also other environmental pollutants.

本発明者らは、あらゆる環境汚染物質を高効率で分解できる光触媒を開発すべく鋭意研究を重ねた結果、本発明に到達した。
すなわち、本発明は、
フッ化水素で処理されたシリカを含有する、平均粒子径が1μm未満の超微粒子からなることを特徴とする光触媒;
該超微粒子の光触媒が粒状の無機物もしくは有機物に担持されてなることを特徴とする光触媒;
該光触媒が樹脂に分散されてなることを特徴とするコーティング剤である。
As a result of intensive studies to develop a photocatalyst capable of decomposing all environmental pollutants with high efficiency, the present inventors have reached the present invention.
That is, the present invention
A photocatalyst comprising ultrafine particles having an average particle diameter of less than 1 μm, containing silica treated with hydrogen fluoride;
A photocatalyst comprising the ultrafine photocatalyst supported on a particulate inorganic or organic material;
A coating agent, wherein the photocatalyst is dispersed in a resin.

本発明の光触媒は下記の効果を奏する。
(1)200nm〜800nmの広い波長領域においても高効率でも環境汚染物質を分解しうる。
(2)酸化窒素はもちろん、それ以外の環境汚染物質、例えばトルエン、アセトアルデヒド、エタンジチオール等も実用的に分解しうる。
(3)微粒子であり容易に種々の樹脂に分散が可能であり、コーティング剤等に好適に使用できる。
The photocatalyst of the present invention has the following effects.
(1) Environmental pollutants can be decomposed with high efficiency even in a wide wavelength range of 200 nm to 800 nm.
(2) Nitrogen oxide as well as other environmental pollutants such as toluene, acetaldehyde, ethanedithiol and the like can be practically decomposed.
(3) Fine particles that can be easily dispersed in various resins and can be suitably used for coating agents and the like.

本発明におけるフッ化水素で処理されるシリカは、SiOで示される無機化合物であり、これがフッ化水素と反応することにより光触媒として活性な部分が形成される。SiOの1分子が存在してもフッ化水素と反応して活性部分を形成することができる。シリカの純度が高い程多くの活性部分を形成できるので、シリカの純度は高いほどよく、好ましくは90%以上であり、より好ましくは99%以上であり、特に好ましくは99.9%以上であり、最も好ましくは99.99%以上である。 The silica treated with hydrogen fluoride in the present invention is an inorganic compound represented by SiO 2 and reacts with hydrogen fluoride to form a portion active as a photocatalyst. Even if one molecule of SiO 2 is present, it can react with hydrogen fluoride to form an active moiety. The higher the purity of the silica, the more active moieties can be formed. Therefore, the higher the purity of the silica, the better, preferably 90% or more, more preferably 99% or more, and particularly preferably 99.9% or more. Most preferably, it is 99.99% or more.

シリカは、自然界で最も多い無機化合物であり、その具体例は非常に多いが、例えば珪砂、砂岩、珪石、珪岩、石英、アベンチュリン、カルセドニー、ジャスパー天然シリカガラス、グラスウール、シリカゲル、シリカゾル、光ファイバー、溶融石英等の人工シリカが挙げられる。
これらの内で好ましくは人工シリカである。より好ましくは溶融石英、シリカゾルである。
Silica is the most inorganic compound in nature, and there are many specific examples. For example, silica sand, sandstone, silica stone, quartzite, quartz, aventurine, chalcedony, jasper , natural silica , glass, glass wool, silica gel, silica sol, optical fiber And artificial silica such as fused silica.
Of these, artificial silica is preferable. More preferred are fused silica and silica sol.

例えば、溶融石英は、天然由来の酸化ケイ素源、例えば石英又はケイ砂を原料として、不純分濃度が50ppm以下になるように厳格に制御された条件下で溶融し、固化させて得られる透明な溶融ガラスである。このような溶融石英は、ジェネラルエレクトリック社(GE社)から、製品名クオーツGE124、144、214、219、224、254などとして市販されている。
人工水晶も多く市販されており、市販品が適用できる。
For example, fused quartz is a transparent material obtained by melting and solidifying a raw material silicon oxide source such as quartz or silica sand under a strictly controlled condition so that the impurity concentration is 50 ppm or less. Molten glass. Such fused quartz is commercially available from General Electric Company (GE) under the product names Quartz GE124, 144, 214, 219, 224, 254, and the like.
Many artificial quartz crystals are also commercially available, and commercially available products can be applied.

そして本発明における超微粒子状のシリカとは、これらの粉砕品、その精製品であり、またクロルシラン等のハロゲン化シランからの合成品等も適用できる。粉砕は、乳鉢法、ボールミル法、ジェットミル法等公知の粉砕法が適用できる。合成はクロルシラン等のハロゲン化シランからシリカゾルを合成した後乾燥した物、フュームド物等も使用できる。   The ultrafine silica in the present invention is a pulverized product or a refined product thereof, and a synthetic product from a halogenated silane such as chlorosilane is also applicable. For the pulverization, a known pulverization method such as a mortar method, a ball mill method, or a jet mill method can be applied. For the synthesis, a silica sol synthesized from a halogenated silane such as chlorosilane and then dried or a fumed product can be used.

本発明における超微粒子状のシリカの形状は特に限定はないが、粉砕品は球状とは限らず角張ったものでも、楕円状等でもよい。一次粒子の平均粒子径は通常1μm未満である。好ましくは800nm以下、より好ましくは500nm以下、さらに好ましくは300nm以下、特に好ましくは100nm以下である。ここで平均粒子径とは体積平均粒子径をいう。体積平均粒子径は、JIS R1629−1997 ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法に準拠して測定するものである。一次粒子とは最も小さい均一粒子であることを意味し、一次粒子の集塊または凝集により形成できる二次粒子と区別される。本発明では一次粒子の他に二次粒子の存在も否定しない。   The shape of the ultrafine silica in the present invention is not particularly limited, but the pulverized product is not necessarily spherical but may be angular or elliptical. The average particle size of the primary particles is usually less than 1 μm. Preferably it is 800 nm or less, More preferably, it is 500 nm or less, More preferably, it is 300 nm or less, Most preferably, it is 100 nm or less. Here, the average particle diameter refers to the volume average particle diameter. The volume average particle diameter is measured according to a particle diameter distribution measuring method by a laser diffraction / scattering method of a JIS R1629-1997 fine ceramic raw material. The primary particles mean the smallest uniform particles, and are distinguished from secondary particles that can be formed by agglomeration or aggregation of primary particles. In the present invention, the presence of secondary particles in addition to primary particles is not denied.

本発明で用いられるフッ化水素は気体状、液状でも限定はないが、好ましくはその水溶液であるフッ化水素酸である。例えば、気体はシリカと接触することによって容易に反応する。フッ化水素酸処理は、例えば上記のシリカを、フッ化水素酸水溶液に浸漬したのち、水洗乾燥することによって行われる。フッ化水素はSiOの1モルに対して最大1モル反応することができるので、フッ化水素を過剰に用いて残ったフッ化水素を除去すればよい。しかし、粒子の場合は微粒子であっても表面が反応しても内部とは反応しにくい。微粒子の表面のみが反応しても表面が活性化して光触媒効果を奏することができるので、結局シリカに対してフッ化水素の量は任意でよい。フッ化水素酸を用いる場合の水溶液の濃度は、好ましくは1〜50質量%、より好ましくは5〜20質量%であると使用しやすい。シリカゾルをフッ化水素酸処理する場合も、シリカの固形分以外の濃度が上記の範囲内にあれば好ましい。例えば、フッ化水素酸の量は微粒子状の体積に対して3〜20倍が好ましく、より好ましくは5〜10倍である。 The hydrogen fluoride used in the present invention is not limited even if it is gaseous or liquid, but is preferably hydrofluoric acid which is an aqueous solution thereof. For example, gas reacts easily by contact with silica. The hydrofluoric acid treatment is performed, for example, by immersing the above silica in a hydrofluoric acid aqueous solution, followed by washing with water and drying. Since hydrogen fluoride can react at a maximum of 1 mol with respect to 1 mol of SiO 2 , the remaining hydrogen fluoride may be removed by using excessive hydrogen fluoride. However, in the case of particles, even if they are fine particles, they hardly react with the inside even if the surface reacts. Even if only the surface of the fine particles reacts, the surface is activated and a photocatalytic effect can be exerted, so that the amount of hydrogen fluoride relative to silica may be arbitrary. The concentration of the aqueous solution in the case of using hydrofluoric acid is preferably 1 to 50% by mass, more preferably 5 to 20% by mass, which is easy to use. In the case where the silica sol is treated with hydrofluoric acid, it is preferable that the concentration other than the solid content of silica is within the above range. For example, the amount of hydrofluoric acid is preferably 3 to 20 times, more preferably 5 to 10 times the volume of fine particles.

フッ化水素酸処理に要する時間は、温度、濃度によって異なるが、一般に高濃度の水溶液を用いれば短時間でよく、低濃度の水溶液を用いれば長時間を要し、好ましくは5〜60分間の範囲で選ばれる。反応温度は好ましくは0℃以上50℃以下であり、より好ましくは5℃以上30℃以下である。   The time required for the hydrofluoric acid treatment varies depending on the temperature and concentration, but in general, a high concentration aqueous solution may be used for a short time, and a low concentration aqueous solution may be used for a long time, preferably 5 to 60 minutes. Selected by range. The reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower, more preferably 5 ° C. or higher and 30 ° C. or lower.

フッ化水素酸処理の場合は、固形分を水溶液から分離し、固形分を乾燥する。この場合は蒸留水で2〜5回水洗してもよい。分離する方法は静置した後デカンテーションにより液を取り除く、遠心分離により液を取り除く、フィルターを用いてろ過する方法が挙げられる。乾燥は常圧乾燥法から減圧乾燥法〜真空乾燥法が用いられる。乾燥温度は好ましくは0〜100℃であり、より好ましくは10〜60℃である。乾燥時間は好ましくは10分〜10時間である。
フッ化水素処理の方法は、1μm未満の粒径の超微粒子状をフッ化水素処理するか、1μm以上の粒径のフッ化水素処理乾燥後に1μm未満の粒径に粉砕してもよい。好ましくは前者である。
In the case of hydrofluoric acid treatment, the solid content is separated from the aqueous solution, and the solid content is dried. In this case, you may wash with distilled water 2-5 times. Examples of the separation method include a method of removing the liquid by decantation after standing, removing a liquid by centrifugation, and filtering using a filter. Drying is performed from atmospheric drying to reduced pressure drying to vacuum drying. The drying temperature is preferably 0 to 100 ° C, more preferably 10 to 60 ° C. The drying time is preferably 10 minutes to 10 hours.
In the method of hydrogen fluoride treatment, ultrafine particles having a particle size of less than 1 μm may be treated with hydrogen fluoride, or may be pulverized to a particle size of less than 1 μm after drying with a hydrogen fluoride treatment having a particle size of 1 μm or more. The former is preferred.

このように、フッ化水素処理によりシリカが活性化するのは、SiOとHFが接触すると、表面のSiがFと結合し、これにより結合電子がF側に引き寄せられ、バックボンド結合が弱まる結果、そこが分離したH分子で攻撃され、バックボンドが切断され、最表面Siがフッ素化されると同時に、すぐ下の層のボンドの一つが水素化される。このような状態が次々と伝播し、最後に最表面SiはSiFの形で分離し、SiHラジカルが表面に残留する。
ところがこのSiHラジカルは、次の層のSiとの間のSi−Si結合が非常に弱く、さらに結合電子がH側に弱く引き寄せられるため簡単に切断され、HF分子のHにより容易に置換され、SiHの形になることによりSi(111)表面にHが露出し、活性化状態になるものと考えられる。
このようにして、フッ化水素処理したシリカ光触媒が得られる。
Thus, the silica is activated by the hydrogen fluoride treatment because when SiO 2 and HF come into contact with each other, Si on the surface is bonded to F, whereby the bonding electrons are attracted to the F side, and the back bond bond is weakened. As a result, it is attacked by the separated H + F molecules, the back bond is cut, the outermost surface Si is fluorinated, and at the same time, one of the bonds in the immediately lower layer is hydrogenated. Such a state propagates one after another, and finally, the outermost surface Si is separated in the form of SiF 4 , and SiH 3 radicals remain on the surface.
However, the SiH 3 radical has a very weak Si—Si bond with Si in the next layer, and since the bond electrons are weakly attracted to the H side, it is easily cleaved and easily replaced by H of the HF molecule. It is considered that H is exposed to the Si (111) surface by being in the form of SiH, and is activated.
In this way, a silica photocatalyst treated with hydrogen fluoride is obtained.

本発明の超微粒子状の光触媒は、容易に種々の樹脂に分散が可能であり、コ一ティング剤等として使用することができる。樹脂としては、好ましくは重量平均分子量1万以上、より好ましくは10万以上の熱可塑性樹脂、熱硬化性樹脂が好ましく、例えばアクリル樹脂、ポリカーボネート、ポリスチレン、ポリウレタン、ポリエステル、フッ素樹脂、シリコーン樹脂、ポリイミド、ポリ塩化ビニル、エポキシ樹脂等及びこれらの混合又は複合樹脂等の通常の塗料、コーティング剤として用いられるものが挙げられる。重量平均分子量はGPC法(ゲルパーミエーションクロマトグラフィー法)で測定できる。樹脂中の本発明の超微粒子状の光触媒の含有量は樹脂100重量部に対して好ましくは1〜200gであり、5〜100gがより好ましい。超微粒子状の光触媒を樹脂中に分散する方法は従来公知の分散方法が適用できる。   The ultrafine photocatalyst of the present invention can be easily dispersed in various resins and can be used as a coating agent or the like. The resin is preferably a thermoplastic resin or thermosetting resin having a weight average molecular weight of 10,000 or more, more preferably 100,000 or more. For example, acrylic resin, polycarbonate, polystyrene, polyurethane, polyester, fluororesin, silicone resin, polyimide , Polyvinyl chloride, epoxy resins, and the like, and mixtures thereof, composite resins, and the like are used as usual paints and coating agents. The weight average molecular weight can be measured by GPC method (gel permeation chromatography method). The content of the ultrafine photocatalyst of the present invention in the resin is preferably 1 to 200 g, more preferably 5 to 100 g, relative to 100 parts by weight of the resin. A conventionally known dispersion method can be applied as a method of dispersing the ultrafine photocatalyst in the resin.

また、本発明の超微粒子の光触媒を無機物もしくは有機物の粒状体に担持させてもよい。粒状の無機物としては限定はなく用途によって選択されるが、例えばゼオライト、ケイソウ土、タルク、酸化チタン、酸化亜鉛、ラポナイト、カオリナイト、バーミキュライト、雲母、セラミック金属酸化物、アルミナ、アロフェン、粒状炭、粒子径1mm以上のシリカゲル等のシリカ等が挙げられる。粒状の有機物としては上記の樹脂の粒状物が適用できる。   The ultrafine photocatalyst of the present invention may be supported on an inorganic or organic granular material. There is no limitation as the granular inorganic material, but it is selected depending on the application, for example, zeolite, diatomaceous earth, talc, titanium oxide, zinc oxide, laponite, kaolinite, vermiculite, mica, ceramic metal oxide, alumina, allophane, granular charcoal, Examples thereof include silica such as silica gel having a particle diameter of 1 mm or more. As the granular organic material, the above-mentioned resin granular material can be applied.

粒状物の粒子径は、好ましくは1mm〜20mm、より好ましくは2mm〜10mmである。好ましくはこれらの多孔質体である。
粒状物の表面積は好ましくは20m/g以上、より好ましくは50m/g以上、特に好ましくは100m/g以上、最も好ましくは200m/g以上である。比表面積は気体(例えば窒素ガス)の吸着量測定により得られる吸着等温線から計算式、例えばBET法の計算によって求めることができる。
光触媒の担持量は担体1gに対して好ましくは0.1〜100mg、より好ましくは1〜50mgである。
The particle diameter of the granular material is preferably 1 mm to 20 mm, more preferably 2 mm to 10 mm. These porous bodies are preferred.
The surface area of the granular material is preferably 20 m 2 / g or more, more preferably 50 m 2 / g or more, particularly preferably 100 m 2 / g or more, and most preferably 200 m 2 / g or more. The specific surface area can be obtained from an adsorption isotherm obtained by measuring the amount of adsorption of a gas (for example, nitrogen gas) by a calculation formula, for example, the BET method.
The supported amount of the photocatalyst is preferably 0.1 to 100 mg, more preferably 1 to 50 mg with respect to 1 g of the carrier.

これらの粒状物に本発明の超微粒子の光触媒を担持する方法としては、例えば、
(1)超微粒子の光触媒と上記粒状物(以下両者という)を公知の混合装置で単に混合する、
(2)液状物の中で両者を混合した後、液状物を除去する、
(3)両者をすり潰しながら混合する、
(4)シリカの合成中に粒状物に担持した後、フッ化水素処理する、
(5)フッ化水素処理中に担持する
等の方法が挙げられるが、これらに限定されず用途によって随時最適な方法が用いられる。
As a method for supporting the photocatalyst of ultrafine particles of the present invention on these granular materials, for example,
(1) Simply mixing the photocatalyst of ultrafine particles and the above granular material (hereinafter referred to as both) with a known mixing device,
(2) After both are mixed in the liquid material, the liquid material is removed.
(3) Mix while grinding both,
(4) Hydrogen fluoride treatment after being supported on the particulate matter during the synthesis of silica.
(5) The method of carrying | supporting during a hydrogen fluoride process is mentioned, However It is not limited to these, The optimal method is used at any time according to a use.

本発明の光触媒は、光線の照射により環境汚染物質を酸化分解して除去する。環境汚染物質には、例えば亜酸化窒素NO、一酸化窒素NO、三酸化二窒素N、二酸化窒素NOのような大気汚染の原因となる窒素酸化物NOや、トリクロロエタン、テトラクロロエチレン、ジクロロジフルオロメタン、トリブロモメタン、ポリクロロビフェニル(PCB)のような環境汚染の原因となる有機ハロゲン化合物や、ホルムアルデヒド、アセトアルデヒド、ベンゼン、トルエン、キシレンのようなシックハウスの原因となるアルデヒド類や芳香族炭化水素や、メルカプタン、エタンジチオールのような悪臭の原因となる含硫黄化合物を挙げることができる。 The photocatalyst of the present invention removes environmental pollutants by oxidative decomposition by irradiation with light. Examples of environmental pollutants include nitrogen oxides NO x that cause air pollution such as nitrous oxide N 2 O, nitric oxide NO, dinitrogen trioxide N 2 O 3 , nitrogen dioxide NO 2 , trichloroethane, Organic halogen compounds that cause environmental pollution such as tetrachloroethylene, dichlorodifluoromethane, tribromomethane, and polychlorobiphenyl (PCB), and aldehydes that cause sick house such as formaldehyde, acetaldehyde, benzene, toluene, and xylene Examples thereof include sulfur-containing compounds that cause malodor such as aromatic hydrocarbons, mercaptans, and ethanedithiols.

本発明の光触媒を用いて環境汚染物質を分解し、無害化するには、環境汚染物質に酸素又は窒素を混合し、この混合物に照射光を照射しながら光触媒に接触させるのが好ましい。
これまでのTiOやZnOのような半導体光触媒は、環境汚染物質の光吸収領域においてのみ、その分解能力を示すが、それ以外の波長の光では、触媒能力を発揮しないため、太陽光のような自然光を用いた場合、光の利用効率が低くなるのを免れないが、本発明の光触媒は、光吸収をほとんど示さない波長の光によっても環境汚染物質を分解することができるので、広範囲の波長領域の照射光、例えば、紫外光や可視光を用いることができる。
In order to decompose and detoxify an environmental pollutant using the photocatalyst of the present invention, it is preferable to mix oxygen or nitrogen with the environmental pollutant and contact the photocatalyst while irradiating the mixture with irradiation light.
Conventional semiconductor photocatalysts such as TiO 2 and ZnO show their decomposing ability only in the light absorption region of environmental pollutants, but they do not exhibit catalytic ability with light of other wavelengths, so that they are like sunlight. When natural light is used, the light utilization efficiency is unavoidable. However, the photocatalyst of the present invention can decompose environmental pollutants even with light having a wavelength that hardly exhibits light absorption. Irradiation light in the wavelength region, for example, ultraviolet light or visible light can be used.

すなわち、紫外光の波長領域は200〜400nm、可視光の波長領域は400〜800nmであるが、本発明の光触媒は200〜800nmという広範囲の波長領域の照射光を用いることができる。有機ハロゲン化合物を高効率で分解させる場合には、240〜500nmの波長領域の照射光を用いるのが好ましい。   That is, the wavelength region of ultraviolet light is 200 to 400 nm and the wavelength region of visible light is 400 to 800 nm, but the photocatalyst of the present invention can use irradiation light in a wide wavelength region of 200 to 800 nm. In the case of decomposing an organic halogen compound with high efficiency, it is preferable to use irradiation light in a wavelength region of 240 to 500 nm.

また、これらの照射光を人工的に発生させる光源としては、例えば照射光源として慣用されている紫外線ランプ、キセノンランプ、蛍光灯、白熱灯等を挙げることができる。   Examples of the light source that artificially generates the irradiation light include an ultraviolet lamp, a xenon lamp, a fluorescent lamp, and an incandescent lamp that are commonly used as the irradiation light source.

本発明の光触媒を用いて環境汚染物質の光分解を連続的に行う場合は、この環境汚染物質を酸素とともに流体、例えば気体又は液体で担送して、光触媒に接触させるが、この場合に用いる流体としては、環境汚染物質の光分解を阻害するものでない限り、特に制限はない。しかしながら、大量に入手可能で、環境汚染の原因とならないという点で、気体としては窒素ガス、液体としては水が好ましい。   When the photocatalyst of the present invention is used for continuous photodegradation of environmental pollutants, the environmental pollutants are transported together with oxygen in a fluid such as gas or liquid and brought into contact with the photocatalyst. The fluid is not particularly limited as long as it does not inhibit the photolysis of environmental pollutants. However, nitrogen gas is preferable as the gas and water is preferable as the liquid because it is available in large quantities and does not cause environmental pollution.

環境汚染物質の光分解に際し、混合させる流体の酸素濃度については、特に制限はないが、この濃度が大きいほど環境汚染物質の分解効率は高くなるので好ましい。流体が気体の場合、コスト的な面で空気を用いるのが好ましいため、酸素濃度は約20体積%になる。また液体の場合は、同様の理由で水が用いられるので、酸素濃度は4.9体積%(標準状態)となる。
他方、環境汚染物質に対する酸素の割合としては、環境汚染物質の分子中に含まれる炭素原子1個に対して酸素分子少なくとも2個の割合が好ましいが、特に制限はない。
In the photolysis of environmental pollutants, the oxygen concentration of the fluid to be mixed is not particularly limited. However, the higher the concentration, the higher the decomposition efficiency of environmental pollutants. When the fluid is a gas, it is preferable to use air in terms of cost, so the oxygen concentration is about 20% by volume. In the case of a liquid, since water is used for the same reason, the oxygen concentration is 4.9% by volume (standard state).
On the other hand, the ratio of oxygen to environmental pollutants is preferably a ratio of at least two oxygen molecules to one carbon atom contained in the molecules of the environmental pollutants, but is not particularly limited.

本発明において、環境汚染物質と酸素との混合物を光触媒に接触させる方法としては、密閉容器中に両者を封入して、流体の熱運動で流体と光触媒表面とを接触させるバッチ処理方式及び流体を強制的に流動させて流体と光触媒表面を接触させる流動処理方式のいずれをも用いることができる。
また、環境汚染物質が窒素酸化物である場合には、本発明の光触媒を用い酸素と水の存在下で上記の光酸化反応を行わせると窒素酸化物が硝酸化して無害化する。この場合の酸素の使用量は特に制限はないが、窒素酸化物1モル当たり酸素は少なくとも1モル、好ましくは2モル以上の範囲で選ばれる。
In the present invention, as a method of bringing a mixture of an environmental pollutant and oxygen into contact with the photocatalyst, a batch processing method in which both are enclosed in a sealed container and the fluid and the surface of the photocatalyst are brought into contact with each other by thermal motion of the fluid and a fluid are used. Any of the flow treatment methods in which the fluid and the photocatalyst surface are brought into contact with each other by forcible flow can be used.
In addition, when the environmental pollutant is nitrogen oxide, the nitrogen oxide is nitrated and rendered harmless when the above-described photooxidation reaction is performed in the presence of oxygen and water using the photocatalyst of the present invention. The amount of oxygen used in this case is not particularly limited, but the oxygen is selected in a range of at least 1 mole, preferably 2 moles or more per mole of nitrogen oxide.

特開2004−290747号公報記載の溶融石英でも酸化窒素以外の有害物質、例えばトルエン、アセトアルデヒド、エタンジチオール等に対する分解率が高くなかったが、本発明のフッ化水素で処理されたシリカを含有する、一次粒子の平均粒子径が1nm以上1μm未満の超微粒子からなることを特徴とする光触媒は環境汚染物質を効率よく除去できる。   The fused silica described in Japanese Patent Application Laid-Open No. 2004-290747 does not have a high decomposition rate with respect to harmful substances other than nitric oxide, such as toluene, acetaldehyde, ethanedithiol, etc., but contains silica treated with hydrogen fluoride of the present invention. The photocatalyst characterized in that the average particle diameter of primary particles is composed of ultrafine particles having a diameter of 1 nm or more and less than 1 μm can efficiently remove environmental pollutants.

以下、本発明を実施例により説明するが、これらに限定されるものではない。   Hereinafter, the present invention will be described by way of examples, but is not limited thereto.

実施例1
人工水晶100gをアイガーミル(アイガージャパン社製粉砕機)で粉砕し、篩い分けして体積平均粒子径が約300nmの超微粒子55gを得た。次いで濃度10重量%のフッ化水素水溶液200gに室温で浸漬し、かき混ぜながら5分間処理して取出し、室温に5時間放置した後、50℃の乾燥機で3時間乾
燥して光触媒(1)を得た。
Example 1
100 g of the artificial quartz was pulverized with an Eiger mill (Crusher manufactured by Eiger Japan) and sieved to obtain 55 g of ultrafine particles having a volume average particle diameter of about 300 nm. Next, it is immersed in 200 g of a 10 wt% aqueous hydrogen fluoride solution at room temperature, treated by stirring for 5 minutes, taken out, left at room temperature for 5 hours, and then dried in a dryer at 50 ° C. for 3 hours to give the photocatalyst (1). Obtained.

実施例2
溶融石英100gをアイガーミル(アイガージャパン社製粉砕機)で粉砕し、篩い分けして体積平均粒子径が約700nmの溶融石英超微粒子55gを得た。次いで濃度10重量%のフッ化水素水溶液200gに室温で浸漬し、かき混ぜながら5分間処理して取出し、室温に5時間放置した後、50℃の乾燥機で3時間乾燥して光触媒(1)を得た。
Example 2
100 g of fused quartz was pulverized with an Eiger mill (Eiger Japan Co., Ltd. pulverizer) and sieved to obtain 55 g of fused quartz ultrafine particles having a volume average particle diameter of about 700 nm. Next, it is immersed in 200 g of a 10 wt% aqueous hydrogen fluoride solution at room temperature, treated by stirring for 5 minutes, taken out, left at room temperature for 5 hours, and then dried in a dryer at 50 ° C. for 3 hours to give the photocatalyst (1). Obtained.

実施例3
人工水晶100gをアイガーミル(アイガージャパン社製粉砕機)の粉砕条件を実施例1より強く変更して粉砕し、篩い分けして体積平均粒子径が約100nmの超微粒子35gを得た。これと平均粒子径1mm程度のゼオライト100gを濃度15重量%のフッ化水素水溶液200gに室温で浸漬し、かき混ぜながら5分間処理して取出し、濾紙No.5で濾過して、室温に5時間放置した後、50℃の乾燥機で3時間乾燥してゼオライトに担持された光触媒(3)を得た。
Example 3
100 g of artificial quartz was pulverized by changing the pulverization conditions of Eiger Mill (Eiger Japan Co., Ltd.) more strongly than in Example 1 and sieved to obtain 35 g of ultrafine particles having a volume average particle diameter of about 100 nm. This and 100 g of zeolite having an average particle size of about 1 mm are immersed in 200 g of a hydrogen fluoride aqueous solution having a concentration of 15% by weight at room temperature, treated with stirring for 5 minutes, and taken out. The mixture was filtered at 5 and allowed to stand at room temperature for 5 hours, and then dried at 50 ° C. for 3 hours to obtain a photocatalyst (3) supported on zeolite.

実施例4
実施例3において、人工水晶100gに替えて溶融石英100gを用いた以外は実施例3と同様にして、ゼオライトに担持された平均粒子径が約210nmの溶融石英超微子状の光触媒(4)を得た。
Example 4
In Example 3, a fused silica ultrafine photocatalyst (4) supported on zeolite having an average particle diameter of about 210 nm was used in the same manner as in Example 3 except that 100 g of fused quartz was used instead of 100 g of artificial quartz. Got.

実施例5
コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50、固形分50%、体積平均粒子径20nm)10gとゼオライト90gを濃度25重量%のフッ化水素水溶液120gの室温で浸漬し、かき混ぜながら5分間処理して取出し、濾紙No.5で濾過して、室温に5時間放置した後、50℃の乾燥機で3時間乾燥してゼオライトに担持された光触媒(5)を得た。
Example 5
10 g of colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex 50, solid content 50%, volume average particle diameter 20 nm) and 90 g of zeolite are immersed at room temperature in 120 g of an aqueous hydrogen fluoride solution having a concentration of 25% by weight. Treated for a minute and removed. The mixture was filtered at 5 and allowed to stand at room temperature for 5 hours, and then dried at 50 ° C. for 3 hours to obtain a photocatalyst (5) supported on zeolite.

比較例
溶融石英100gをボールミルで粉砕し、1〜2mmの画分に篩い分けして50gを得た。次いで濃度10重量%のフッ化水素水溶液200gの室温で浸漬し、かき混ぜながら5分間処理して取出し、室温に5時間放置した後、50℃の乾燥機で1時間乾燥して光触媒(6)を得た。
Comparative Example 100 g of fused quartz was pulverized with a ball mill and sieved to a fraction of 1 to 2 mm to obtain 50 g. Next, 200 g of an aqueous hydrogen fluoride solution having a concentration of 10% by weight is immersed at room temperature, treated by stirring for 5 minutes, taken out, left at room temperature for 5 hours, and then dried in a dryer at 50 ° C. for 1 hour to give a photocatalyst (6). Obtained.

比較例
市販の多孔質担持酸化チタン光触媒を光触媒(7)とした。
Comparative Example A commercially available porous supported titanium oxide photocatalyst was used as a photocatalyst (7).

試験例1(窒素酸化物の硝酸化実験)
以下に示すとおり、光触媒(1)〜(7)による窒素酸化物の硝酸化実験を行った。
20mm×100mm×10mmの直方体状容器の底面に10mm×50mm×2mmのガラス板を置き、その上に光触媒を2g載置し、一酸化窒素と酸素との混合物(体積比1:1)を常圧で容器中に充填し、15mm×50mmの石英ガラス製光照射用窓を通して低圧水銀灯又は蛍光灯からの光を照射しながら、表1に示す条件下で一酸化窒素(NO)の硝酸化を行った。その結果を表1に示した。
なお、直方体状容器の乾燥空気に酸素と共に充填する一酸化窒素の量は、3.60μモルである。また、光源の光強度は、紫外線強度計(井上盛栄堂製、製品名「UVR−400」)の測定波長専用ディテクターを用い、以下の条件で測定した。
東芝製 FL6M :6W
可視光出力 :736mW
試料表面までの距離:130mm
Test Example 1 (Nitrogen oxide nitrification experiment)
As shown below , a nitric oxide nitrification experiment using photocatalysts (1) to (7) was performed.
A glass plate of 10 mm × 50 mm × 2 mm is placed on the bottom of a rectangular parallelepiped container of 20 mm × 100 mm × 10 mm, and 2 g of a photocatalyst is placed thereon, and a mixture of nitric oxide and oxygen (volume ratio 1: 1) is usually used. Nitrogen monoxide (NO) is nitrated under the conditions shown in Table 1 while filling the container with pressure and irradiating light from a low-pressure mercury lamp or fluorescent lamp through a 15 mm x 50 mm quartz glass light irradiation window. went. The results are shown in Table 1.
Note that the amount of nitric oxide filled with oxygen in the dry air of the rectangular parallelepiped container is 3.60 μmol. Moreover, the light intensity of the light source was measured under the following conditions using a detector dedicated to the measurement wavelength of an ultraviolet intensity meter (product name “UVR-400”, manufactured by Seiei Inoue).
Toshiba FL6M: 6W
Visible light output: 736 mW
Distance to sample surface: 130mm

Figure 0004757593
Figure 0004757593

試験例2
試験例1で用いたのと同じ装置に、同じ光触媒の一部を配置し、この中に15℃においてアセトアルデヒド又はベンゼン中を通過させた空気を導入し、光源として低圧水銀灯(線特殊光源UVL−10、波長230nm以上、試料表面における光強度0.15mW/cm)を用いて、光照射することにより、光分解反応を行わせた。その際の試料の充填量、照射時間及び分解率を表2に示す。
Test example 2
A part of the same photocatalyst is placed in the same apparatus as used in Test Example 1, and air that has been passed through acetaldehyde or benzene at 15 ° C. is introduced therein, and a low-pressure mercury lamp (line special light source UVL−) is used as a light source. 10 and a light intensity of 230 nm or more and a light intensity of 0.15 mW / cm 2 on the surface of the sample was used for photodecomposition reaction. Table 2 shows the filling amount, irradiation time, and decomposition rate of the sample at that time.

Figure 0004757593
Figure 0004757593

本発明の超微粒子状の光触媒は、各種環境汚染物質の除去を効率よく行うことができるので、そのままで、もしくは粒状物に担持させて、もしくは樹脂中に分散させる等して環境汚染物質除去装置その他に好適に適用できる。 Since the ultrafine photocatalyst of the present invention can efficiently remove various environmental pollutants, the environmental pollutant removal apparatus can be used as it is, or supported on a granular material or dispersed in a resin. In addition, it can be suitably applied.

Claims (9)

フッ化水素で処理された平均粒子径が1μm未満のシリカ超微粒子からなることを特徴とする光触媒。 A photocatalyst comprising an ultrafine silica particle having an average particle diameter of less than 1 μm treated with hydrogen fluoride. 前記シリカの純度が99.9%以上であることを特徴とする請求項1記載の光触媒。 The photocatalyst according to claim 1, wherein the silica has a purity of 99.9% or more. 前記シリカが人工シリカであることを特徴とする請求項1又は2のいずれかに記載の光触媒。 3. The photocatalyst according to claim 1, wherein the silica is artificial silica. 前記シリカ超微粒子が無機物もしくは有機物に担持されてなることを特徴とする請求項1〜3のいずれかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 3, wherein the ultrafine silica particles are supported on an inorganic substance or an organic substance. 前記シリカが溶融石英であることを特徴とする請求項1〜4のいずれかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 4, wherein the silica is fused silica. フッ化水素で処理された平均粒子径が1μm未満のシリカ超微粒子からなる光触媒が樹脂に分散されてなることを特徴とするコーティング剤。 A coating agent comprising a resin dispersed with a photocatalyst comprising ultrafine silica particles having an average particle diameter of less than 1 μm treated with hydrogen fluoride. 前記シリカの純度が99.9%以上であることを特徴とする請求項6記載のコーティング剤The coating agent according to claim 6, wherein the silica has a purity of 99.9% or more. 前記シリカが人工シリカであることを特徴とする請求項6又は7のいずれかに記載のコーティング剤The coating agent according to claim 6 , wherein the silica is artificial silica. 前記シリカ超微粒子が無機物もしくは有機物に担持されてなることを特徴とする請求項6〜8のいずれかに記載のコーティング剤The coating agent according to any one of claims 6 to 8 , wherein the silica ultrafine particles are supported on an inorganic substance or an organic substance.
JP2005288290A 2005-09-30 2005-09-30 photocatalyst Active JP4757593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288290A JP4757593B2 (en) 2005-09-30 2005-09-30 photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288290A JP4757593B2 (en) 2005-09-30 2005-09-30 photocatalyst

Publications (2)

Publication Number Publication Date
JP2007098206A JP2007098206A (en) 2007-04-19
JP4757593B2 true JP4757593B2 (en) 2011-08-24

Family

ID=38025674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288290A Active JP4757593B2 (en) 2005-09-30 2005-09-30 photocatalyst

Country Status (1)

Country Link
JP (1) JP4757593B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170087532A (en) * 2009-10-21 2017-07-28 고쿠사이센탄기주쯔소고켄큐쇼 가부시키가이샤 Photoelectrode material and photocell material
US20130336846A1 (en) 2010-09-15 2013-12-19 International Frontier Technology Laboratory, Inc. Glass having a photocatalytic function
US10121601B2 (en) 2012-05-22 2018-11-06 International Frontier Technology Laboratory, Inc. Photoelectrode material and photocell material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214221B2 (en) * 2003-03-25 2009-01-28 特許技術開発株式会社 Method for removing nitrogen oxides by photoreaction
JP4247780B2 (en) * 2003-03-25 2009-04-02 独立行政法人産業技術総合研究所 Novel photocatalyst and method for detoxifying harmful organic substances using the same
JP2007307430A (en) * 2004-03-18 2007-11-29 Tetsuo Yazawa Novel photocatalyst, its manufacturing method and cleaning method using it

Also Published As

Publication number Publication date
JP2007098206A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4505688B2 (en) Novel photocatalyst and method for producing the same
AU2004227826B2 (en) Method and a composite for mercury capture from fluid streams
Fotou et al. Photocatalytic destruction of phenol and salicylic acid with aerosol-made and commercial titania powders
JP4469975B2 (en) Photocatalyst composite and organic substance conversion method using the same
JP4264426B2 (en) Photocatalyst material, photocatalyst filter, photocatalyst filter unit, and photocatalyst purification treatment apparatus
JP4757593B2 (en) photocatalyst
Yang et al. Synthesis of titanium containing SBA-15 and its application for photocatalytic degradation of phenol
JPH11505760A (en) Photocatalyst composition and method for producing the same
EP3670469A1 (en) A cementitious composition with photocatalytic activity under visible light
JP2005314208A (en) Combined porous body and its manufacturing method and organic substance converting method using the same
JP4214221B2 (en) Method for removing nitrogen oxides by photoreaction
JPH11169727A (en) Photocatalyst body and application thereof
JP4247780B2 (en) Novel photocatalyst and method for detoxifying harmful organic substances using the same
JP2014073956A (en) Method of oxidizing carbon monoxide to carbon dioxide by light
JP2007098205A (en) Powdery photocatalyst
JPWO2012036231A1 (en) Glass with photocatalytic activity
Zhang et al. Large-sized nano-TiO 2/SiO 2 mesoporous nanofilmconstructed macroporous photocatalysts with excellent photocatalytic performance
Haghighi et al. Effects of surface silylation on dye removal performance of mesoporous promoted titania-silica nanocomposite
JPH08155308A (en) Method for fixing photooxidation catalyst and treatment of waste water using the same
Gopal et al. A novel integrated multiphase crystal system of Kavlite for the effective and instantaneous removal of cationic and anionic dyes
JP2005169298A (en) Catalytic body and cleaning apparatus using the same
JPH0329457B2 (en)
KR100615515B1 (en) Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method
JP3803701B2 (en) Photocatalyst for removing organic halogen compounds contained in water and method for removing organic halogen compounds contained in water
Hakki et al. Synthesis of Ag-Doped CuPc-ZnO/Hydrophobic Silica Aerogel Nanophotocatalyst for Enhanced Photocatalytic Degradation of Floating Benzene: A Comparative Study of Different Photoreactor Geometries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4757593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250