JPH059576A - 低温靱性に優れた非調質棒鋼の製造方法 - Google Patents

低温靱性に優れた非調質棒鋼の製造方法

Info

Publication number
JPH059576A
JPH059576A JP18513491A JP18513491A JPH059576A JP H059576 A JPH059576 A JP H059576A JP 18513491 A JP18513491 A JP 18513491A JP 18513491 A JP18513491 A JP 18513491A JP H059576 A JPH059576 A JP H059576A
Authority
JP
Japan
Prior art keywords
rolling
steel
temp
toughness
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18513491A
Other languages
English (en)
Inventor
Tomoya Kato
智也 加藤
Kazue Nomura
一衛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP18513491A priority Critical patent/JPH059576A/ja
Publication of JPH059576A publication Critical patent/JPH059576A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【構成】 重量比でC:0.15〜0.60% 、Si:0.05 〜1.00%
、Mn:0.60 〜1.80% 、Cr:0.10 〜0.60% 、Al:0.005〜
0.070%、V :0.05 〜0.40% を含有し、残部がFe及び不純
物元素からなる鋼及び必要に応じてさらにS:0.020 〜0.
100%、Pb:0.03 〜0.40% 、Ca:0.0005 〜0.0100% のうち
1種又は2種以上を含有する鋼に対し、 800〜1100℃の
温度範囲でかつ再結晶温度以上 100℃を超えない温度で
合計30% 以上の圧下率で第1段圧延を施し、その後 650
〜900℃の温度範囲でかつ未再結晶温度域に冷却し、該
温度範囲内で合計30% 以上の圧下率で第2段圧延を施
し、さらに1〜 200℃/minで 600℃まで冷却することを
特徴とする低温靱性に優れた非調質棒鋼の製造方法。 【効果】 適切な圧延条件で加工することにより、低温
靱性に優れたフェライト・パーライト型非調質鋼を得る
ことができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、圧延後焼入焼もどし等
の熱処理を行わずに必要な強度、靱性を確保でき、特に
低温靱性に優れた非調質棒鋼の製造方法に関する。
【0002】
【従来の技術】従来、高強度、高靱性を必要とする各種
機械構造用部品は、S45C等の炭素鋼やCr、Moを含有した
低合金鋼を使用し、焼入焼もどし(以下調質と記す)処
理を行って要求特性を確保していた。しかし、この方法
は多大のエネルギーを必要とするため、近年省エネルギ
ーに対する社会的要請に応えるために、調質処理工程を
省略するための試みが盛んに行われている。
【0003】調質処理を省略するための試みとしては、
鋼材の成分の最適化による方法と、熱間圧延時の加熱条
件、圧延条件等の製造条件の最適化による方法が行われ
ている。調質処理を省略可能とするために、提案されて
いる鋼としては、C を0.20〜0.60% 程度含有した炭素鋼
にV を0.05〜0.20% 程度含有させたフェライト・パーラ
イト型非調質鋼があり、提案されている製造条件も、V
を含有した鋼を対象とした方法が大部分である。
【0004】そして、V を一度加熱により固溶させ、冷
却時にV 炭窒化物をフェライト・パーライト中に十分に
析出させることにより強度を得、また、各鋼種毎に最適
な組織を得るために、加熱温度、圧延仕上温度、冷却速
度等の条件を限定する制御圧延による製造方法が開発さ
れてきている。
【0005】しかし、前記フェライト・パーライト型非
調質鋼ないしその製造方法の開発は、一部の部品につい
て調質処理の省略を可能としたが、従来の調質炭素鋼や
調質合金鋼に比べ同等以上の強度を有するものの、靱
性、特に低温での靱性の点で優れているとは言えないの
が現状であった。低温靱性を改善する方法は、高張力鋼
板の制御圧延の分野において詳細な研究がなされている
が、棒鋼においては、製品の断面形状が鋼板とは異な
り、鋼板の制御圧延のように圧延温度、圧下率、冷却速
度などの条件を制御することは難しく、鋼板と同様な制
御圧延は行われていない。また、このことは高張力鋼板
が低炭素鋼であるために、ミクロ組織がフェライト主体
であるのに対し、棒鋼が中炭素鋼であるために、ミクロ
組織がフェライト・パーライト組織であることにも起因
している。従って、低温靱性を十分改善できる方法は開
発されておらず、極寒地で使用される建設機械等の部品
に対して適用が困難であるのが実状であった。
【0006】
【発明が解決しようとする課題】本発明は前記課題を解
決し、従来の方法に比べ優れた低温靱性値が得られる非
調質棒鋼の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】本発明者は、フェライト
・パーライト型非調質鋼の低温靱性を改善できる圧延方
法について鋭意研究を重ねた結果、以下の知見をなし本
発明を得た。
【0008】一般に組織が微細であるほど、靱性は良好
となる。本発明者は微細なフェライト・パーライト組織
を得るための圧延条件を求めることに着目し、研究を進
めた。微細なフェライト・パーライト組織を得るために
は、熱間圧延によりフェライト・パーライト変態前のオ
ーステナイト組織を微細化する必要がある。微細なオー
ステナイト組織を得るためには、圧延前の粗大なオース
テナイト結晶粒に再結晶を起こさせ、生じた結晶粒が細
かくなるような条件で圧延すればよい。本発明者は試作
試験を繰返し実施した結果、再結晶温度域でかつできる
だけ低い温度で圧延することによって、他の圧延条件に
比べ細かなオーステナイト結晶粒が得られることを確認
した。また、オーステナイト結晶粒の微細化は加工度が
小さい場合には十分に進行せず、再結晶開始温度以上 1
00℃を超えない温度領域で30% 以上の圧下を行う必要が
あることがわかった。なお、再結晶開始温度は、鋼種、
成分組成によって多少変化するが、本発明対象鋼の場合
800〜1000℃の間にほぼ含まれ、圧延後に顕微鏡観察を
行うことにより確認することができる。
【0009】冷却によってオーステナイト単相の状態か
ら初析フェライトが析出する。この初析フェライトは、
通常オーステナイト粒界から析出するが、オーステナイ
ト粒内からも析出する場合がある。従って、初析フェラ
イトをより多数の箇所から析出させ、微細な組織を得る
ためには、第一にオーステナイト粒を微細化することに
よるオーステナイト粒界の増加が必要である。そして、
第二に結晶粒内から初析フェライトを析出させる必要が
ある。本発明者は初析フェライトの発生箇所と圧延条件
との関係について研究を重ねた結果、再結晶温度域低温
側で圧下を加えることによって再結晶によりオーステナ
イト組織を微細化し、ついで未再結晶温度域で圧下を加
えることによってオーステナイト粒に歪を付与し、その
歪によって結晶粒内での初析フェライト発生を促し、冷
却時に微細なフェライト・パーライト組織が得られるこ
とを見出した。なお、ここでの組織は、フェライト組織
が主体の高張力鋼板の微細フェライト組織とは異なり、
パーライト中に初析フェライトが分散した微細フェライ
ト・パーライト組織である。
【0010】圧延後の冷却については、速く冷却すると
ベイナイト、マルテンサイト組織となることは既に知ら
れている通りであるが、本発明の場合、フェライト・パ
ーライトの微細組織を得るために前述したような圧延条
件を検討しているのであり、ベイナイト組織が混入する
と前記圧延による効果が無駄となる。そこで、最適冷却
速度範囲を調査した結果、 600℃までを 200℃/min以下
の速度とすればベイナイトが組織に混入せず、前記圧延
による効果を十分に活かせることを確認した。また、1
℃/min未満の速度にすると、生産性が悪くなるだけでな
く、未再結晶温度域で蓄積したオーステナイト粒内の歪
の効果が初析フェライトの析出する前に消滅する場合が
あり、低温靱性向上効果が小さくなることも突き止め
た。すなわち、従来提案されている方法に対する本発明
の製造方法の特徴は、再結晶温度域と未再結晶温度域の
両方の温度域で加工を加えることの必要性を明確に示
し、かつ調整冷却してより確実に微細なフェライト・パ
ーライト組織が得られるようにしたことにある。
【0011】以上検討し得られた方法にて製造された微
細なフェライト・パーライト組織を有する非調質鋼につ
いて、靱性、特に 0℃以下の低温における靱性を評価し
た結果、著しい改善が認められることを確認し本発明の
完成に到ったものである。
【0012】すなわち、本発明の第1発明は、重量比に
してC:0.15〜0.60% 、Si:0.05 〜1.00% 、Mn:0.60 〜1.
80% 、Cr:0.10 〜0.60% 、Al:0.005〜0.070%、V :0.05
〜0.40% を含有し、残部がFe及び不純物元素からなる鋼
に対し、 800〜1100℃の再結晶温度域でかつ再結晶開始
温度以上 100℃を超えない温度で合計30% 以上の圧下率
で圧延する第1段圧延を施し、その後 650〜 900℃の温
度範囲でかつ未再結晶温度域に冷却し、該温度範囲内で
合計30% 以上の圧下率で圧延する第2段圧延を施し、さ
らに1〜 200℃/minで 600℃まで冷却することを特徴と
する低温靱性に優れた非調質棒鋼の製造方法であり、第
2発明は、圧延後所定形状に切削により加工する際の生
産性を向上させるため、第1発明対象鋼に被削性向上元
素として、S:0.020 〜0.100%、Pb:0.03 〜0.40% 、Ca:
0.0005 〜0.0100% のうち1種又は2種以上を含有させ
たものである。次に、本発明の製造方法における対象鋼
の成分組成限定理由を説明する。
【0013】C:0.15〜0.60% C は、必要な強度を得るための基本元素であり、0.15%
以上の含有が必要である。しかし、多量に含有させると
本発明で特徴としている高靱性を得ることが困難となる
ので、上限を0.60% とした。
【0014】Si:0.05 〜1.00% Siは強力な脱酸材としての効果のある元素であり、0.05
% 以上の含有が必要である。しかし、多量に含有させる
と、被削性が低下するので、上限を1.00% とした。
【0015】Mn:0.60 〜1.80% Mnは、鋼の強度を確保するのに有効な元素であり、0.60
% 以上の含有が必要である。しかし、多量に含有させる
と冷却時にベイナイトが生成して前述した圧延条件の適
性化による効果が無駄となるので、上限を1.80%とし
た。
【0016】Cr:0.10 〜0.60% Crは、Mnと同様に鋼の強度を確保するために必要な元素
であり、0.10% 以上含有させることが必要である。しか
し、多量に含有させるとMnと同様にベイナイトが生成し
やすくなり、高靱性が得られなくなるので、上限を0.60
% とした。
【0017】Al:0.005〜0.070% Alは強力な脱酸効果を持つ元素であり、0.005%以上の含
有が必要である。しかし、多量に含有させると前記効果
が飽和するとともに被削性を低下させるので、上限を0.
070%とした。
【0018】V:0.05〜0.40% V はフェライト・パーライト型非調質鋼にとって最も重
要な元素であり、炭窒化物として微細に析出しフェライ
ト生地を強化して調質することなしに優れた強度を付与
する効果を有する。前記効果を得るには、0.05% 以上の
含有が必要である。しかし、多量に含有させても効果が
飽和するとともに、コスト高となるので、上限を0.40%
とした。
【0019】S:0.020 〜0.0100% 、Pb:0.03 〜0.40% 、
Ca:0.0005 〜0.0100% のうち1種または2種以上 S 、Pb、Caは被削性の改善に有効な元素であり、必要に
応じて添加されるものである。前記効果を得るために
は、それぞれ0.020%、0.03% 、0.0005% 以上の含有が必
要である。しかし、多量に含有させてもその効果が飽和
するとともに、靱性を低下するので、上限をそれぞれ0.
0100% 、0.40% 、0.0100% とした。
【0020】次に本発明の製造方法の製造条件限定理由
を説明する。再結晶温度域でかつ再結晶開始温度以上 1
00℃を超えない温度で第1段圧延を行うのは、再結晶温
度内のできるだけ低い温度で圧延することによって、圧
延後に再結晶させて微細な結晶粒を得るためであり、加
工度を30% 以上に限定したのは、30% 未満の加工度では
その目的が完全に達成されないためである。なお、 800
〜1100℃は、本発明対象鋼における再結晶開始温度から
考えて、適当な圧延温度の範囲を記載したものである。
【0021】未再結晶温度域で合計30% 以上の圧下率で
第2段圧延を施すのは、第1段圧延で得られた微細なオ
ーステナイト結晶粒に歪を蓄積させて初析フェライトの
発生箇所を増加させ、微細なフェライト・パーライト組
織を得るためであり、圧下率を 30%以上とすることによ
ってその目的が達成されるからである。なお、 650〜90
0℃は、第1段圧延の場合と同様な理由で、適当な圧延
温度の範囲を記載したものである。
【0022】第2段圧延後の冷却速度の上限を 200℃/m
inとしたのは、ベイナイトやマルテンサイトを発生させ
ないためであり、下限を1℃/minとしたのは、オーステ
ナイト粒に蓄積した歪が初析フェライトの析出する前に
消滅してしまうことを避けるためである。また、冷却速
度の限定を 600℃までとしたのは、 フェライト・パー
ライト変態が 600℃までに完了するため、600 ℃より低
い温度で調整冷却をするかしないかに関係なく組織が決
定されるからである。
【0023】
【実施例】次に本発明の特徴を従来例、比較例と比較し
て実施例でもって明らかにする。表1に実施例で使用し
た供試材の化学成分を示す。なお、6鋼は従来鋼である
S45Cであり、従来の調質材と比較するために同時に評価
した。
【0024】
【表1】
【0025】表1に示す成分を有する鋼を電気炉にて溶
製し、鋼塊を製造して、本発明の効果を評価するための
供試材とした。
【0026】各材料の再結晶温度は、あらかじめ実験に
より求めておき、その結果に基づいて第1段及び第2段
圧延の圧延温度を決定して後述するような評価を行っ
た。なお、再結晶温度は前記供試材から切り出して作製
した直径8mm、高さ12mmの試験片を熱間加工再現試験機
で様々な温度で本実験の第1段圧延と同一の加工度を加
え、顕微鏡で組織観察することによって求めた。
【0027】本実験は、前記予備実験にて求めた再結晶
温度に基づき、本発明の実施例については、第1段圧延
が再結晶温度域、第2段圧延が未再結晶温度域となるよ
うな温度で圧延を行い、 600℃まで1〜 200℃/minの範
囲の様々な速度で冷却し、後述する衝撃試験と引張試験
を行った。また、比較例として本発明の条件を部分的に
満足しない条件にて圧延を行い、同様な試験を行った。
さらに、従来鋼である6鋼については、通常の圧延を実
施後、焼入焼もどしを施し、以下の評価を行った。引張
試験を行ったのは、通常引張強さを低く抑えれば靱性は
向上するため、引張強さを変化させずに靱性が向上でき
るかどうかを確認するためである。
【0028】衝撃試験は、JIS4号Vノッチ衝撃試験片を
圧延後の材料から切出して作製し、-30℃の温度で衝撃
値を測定するという方法で実施した。Vノッチの衝撃試
験片による測定はUノッチの試験片に比べ亀裂発生エネ
ルギーが小さくなるため、より厳しい条件での評価が可
能となる。引張試験は衝撃試験片と同一の部分から材料
を切出し、JIS4号引張試験片を作製し、引張速度1mm/mi
n の条件で引張強さを測定するという方法で実施した。
評価結果を表2に示す。
【0029】
【表2】
【0030】表2において、試験No.1〜10は本発明の実
施例であり、11〜16は部分的に本発明の条件を満足しな
い比較例である。それぞれの比較例は、本発明に対して
11は第1段及び第2段圧延温度の高い実施例、12は第1
段圧延の圧下率の低い実施例、13は第2段圧延の圧下率
が低い実施例、14は第2段圧延を施さない実施例、15は
冷却速度の遅い実施例、16は冷却速度が速い実施例であ
る。また、17は従来鋼であるS45Cの調質材の実施例であ
る。
【0031】比較例である11〜16を本発明の実施例と比
較すると、それぞれ部分的に本発明の条件を満足してい
ないため、衝撃値が劣っており、特に冷却速度の速い実
施例である16は組織にベイナイトが混入して、著しく劣
る衝撃値となっている。16のみ引張強さが著しく高いの
も組織の違いによるものである。
【0032】これに対し本発明の実施例である1〜10
は、再結晶温度域と未再結晶温度域で適当量の加工度で
圧下を加えているので、比較例に比べ引張強さを低下さ
せることなく優れた低温衝撃値を有し、かつS45C調質材
と同等以上の衝撃値、引張強さが得られることが確認で
きた。
【0033】
【発明の効果】本発明の低温靱性に優れた非調質棒鋼の
製造方法は、再結晶温度域と未再結晶温度域のそれぞれ
の温度領域で適当な加工量で圧延を施し、その後の冷却
条件も合わせて最適な条件を見出したことにより、フェ
ライト・パーライト型非調質鋼の低温靱性が劣るという
欠点を克服することができた。この結果、極寒地の建設
機械等の部品への適用が可能となるため、フェライト・
パーライト型非調質鋼の適用範囲を拡大することができ
る。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 重量比にしてC:0.15〜0.60% 、Si:0.05
    〜1.00% 、Mn:0.60〜1.80% 、Cr:0.10 〜0.60% 、Al:0.
    005〜0.070%、V :0.05 〜0.40% を含有し、残部がFe及
    び不純物元素からなる鋼に対し、 800〜1100℃の再結晶
    温度域でかつ再結晶開始温度以上 100℃を超えない温度
    域で合計30% 以上の圧下率で第1段圧延を施し、その後
    650〜 900℃の温度域でかつ未再結晶温度域に冷却し、
    該温度範囲内で合計30% 以上の圧下率で第2段圧延を施
    し、さらに1〜 200℃/minで 600℃まで冷却することを
    特徴とする低温靱性に優れた非調質棒鋼の製造方法。
  2. 【請求項2】 重量比にしてC:0.15〜0.60% 、Si:0.05
    〜1.00% 、Mn:0.60〜1.80% 、Cr:0.10 〜0.60% 、Al:0.
    005〜0.070%、V :0.05 〜0.40% と、さらにS:0.020 〜
    0.100%、Pb:0.03 〜0.40% 、Ca:0.0005 〜0.0100% のう
    ち1種又は2種以上を含有し、残部がFe及び不純物元素
    からなる鋼に対し、 800〜1100℃の温度範囲でかつ再結
    晶温度以上 100℃を超えない温度で合計30% 以上の圧下
    率で圧延する第1段圧延を施し、その後 650〜 900℃の
    温度範囲でかつ未再結晶温度域に冷却し、該温度範囲内
    で合計30% 以上の圧下率で圧延する第2段圧延を施し、
    さらに1〜 200℃/minで 600℃まで冷却することを特徴
    とする低温靱性に優れた非調質棒鋼の製造方法。
JP18513491A 1991-06-28 1991-06-28 低温靱性に優れた非調質棒鋼の製造方法 Pending JPH059576A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18513491A JPH059576A (ja) 1991-06-28 1991-06-28 低温靱性に優れた非調質棒鋼の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18513491A JPH059576A (ja) 1991-06-28 1991-06-28 低温靱性に優れた非調質棒鋼の製造方法

Publications (1)

Publication Number Publication Date
JPH059576A true JPH059576A (ja) 1993-01-19

Family

ID=16165469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18513491A Pending JPH059576A (ja) 1991-06-28 1991-06-28 低温靱性に優れた非調質棒鋼の製造方法

Country Status (1)

Country Link
JP (1) JPH059576A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962735A (zh) * 2010-09-01 2011-02-02 包头市丰达石油机械有限责任公司 超高强度抽油杆钢
CN102108942A (zh) * 2009-12-25 2011-06-29 株式会社日立制作所 风力发电系统及其控制方法
US8028572B2 (en) 2007-12-05 2011-10-04 Mts Institute Inc. Omnidirectional rain gauge
JP2011200885A (ja) * 2010-03-24 2011-10-13 Jfe Steel Corp 棒鋼の圧延方法
JP2011200878A (ja) * 2010-03-24 2011-10-13 Jfe Steel Corp 棒鋼の圧延方法
JP2011246769A (ja) * 2010-05-27 2011-12-08 Jfe Steel Corp 機械構造用鋼およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028572B2 (en) 2007-12-05 2011-10-04 Mts Institute Inc. Omnidirectional rain gauge
CN102108942A (zh) * 2009-12-25 2011-06-29 株式会社日立制作所 风力发电系统及其控制方法
JP2011200885A (ja) * 2010-03-24 2011-10-13 Jfe Steel Corp 棒鋼の圧延方法
JP2011200878A (ja) * 2010-03-24 2011-10-13 Jfe Steel Corp 棒鋼の圧延方法
JP2011246769A (ja) * 2010-05-27 2011-12-08 Jfe Steel Corp 機械構造用鋼およびその製造方法
CN101962735A (zh) * 2010-09-01 2011-02-02 包头市丰达石油机械有限责任公司 超高强度抽油杆钢

Similar Documents

Publication Publication Date Title
EP0796352B1 (en) Ultra-high strength steels and method thereof
JP3990726B2 (ja) 優れた靭性及び溶接性を有する高強度二相鋼板
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
US5252153A (en) Process for producing steel bar wire rod for cold working
WO1999002747A1 (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
CN112011725A (zh) 一种低温韧性优异的钢板及其制造方法
JPH08176659A (ja) 低降伏比高張力鋼の製造方法
JPH07278656A (ja) 低降伏比高張力鋼の製造方法
JPH05320749A (ja) 超高強度鋼の製造方法
JPS5810442B2 (ja) 加工性のすぐれた高靭性高張力鋼の製造法
JPH039168B2 (ja)
JPH09279233A (ja) 靱性に優れた高張力鋼の製造方法
JPH059576A (ja) 低温靱性に優れた非調質棒鋼の製造方法
JP3228986B2 (ja) 高張力鋼板の製造方法
JPH0425343B2 (ja)
JPS6156235A (ja) 高靭性非調質鋼の製造方法
JP2008056956A (ja) 表層細粒鋼部品とその製造方法
KR20000043762A (ko) 연성이 향상된 초고강도 냉연강판의 제조방법
JP3214731B2 (ja) 低温靱性に優れた非調質棒鋼の製造方法
JP3750737B2 (ja) 非調質高強度・高靭性鍛造品の製造方法
JPH0617122A (ja) 耐久比に優れた非調質鋼の製造方法
KR910003883B1 (ko) 용접부인성이 우수한 고장력강인강의 제조방법
JPH08283838A (ja) 強度、靱性および延性に優れた低降伏比高延性鋼の製造方法
JPH01132739A (ja) 熱処理用鋼板
JP2000160285A (ja) 高強度高靱性非調質鋼材