JPH0594874A - Active element - Google Patents

Active element

Info

Publication number
JPH0594874A
JPH0594874A JP15454591A JP15454591A JPH0594874A JP H0594874 A JPH0594874 A JP H0594874A JP 15454591 A JP15454591 A JP 15454591A JP 15454591 A JP15454591 A JP 15454591A JP H0594874 A JPH0594874 A JP H0594874A
Authority
JP
Japan
Prior art keywords
single crystal
functional layer
orientation
crystal substrate
active element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15454591A
Other languages
Japanese (ja)
Inventor
Katsunari Hanaoka
克成 花岡
Hiroshi Miura
博 三浦
Koichi Haga
浩一 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP15454591A priority Critical patent/JPH0594874A/en
Publication of JPH0594874A publication Critical patent/JPH0594874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide an active element provided with single crystal functional layer grown in an optimal growth orientation. CONSTITUTION:In an active element provided with a functional layer heteroepitaxially grown on a single crystal substrate 101, by offsetting the face of the single crystal substrate 101 the growth orientation of the functional layer 102 is controlled in a different orientation from the face orientation of the single crystal substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】エピタキシャル成長技術を用いて
作製する能動素子、例えば発光素子、受光素子、電界効
トランジスタ等各種電子デバイス、非線形光学素子であ
って、ディスプレイ、LED、LASER、プリンタヘ
ッド等の書込み素子に応用できる。
BACKGROUND OF THE INVENTION Active devices manufactured by using an epitaxial growth technique, such as light emitting devices, light receiving devices, various electronic devices such as field effect transistors, and nonlinear optical devices, such as displays, LEDs, LASER, and printer head writing. It can be applied to devices.

【0002】[0002]

【従来の技術】能動素子の一例として電界発光素子の場
合、従来技術では、単結晶Si(111)基板上に(1
11)面方位にヘテロエピタキシャル成長したZnS:
Mnを発光層とする電界発光素子(Japanese
Journal of Applied Physic
s Vol.24,No.8,August,198
5,pp.L629−L631)、あるいは単結晶Si
(100)基板上に(100)面方位にヘテロエピタキ
シャル成長したZnSeを発光層とする電界発光素子
(Journal of Applied Physi
cs 58(2),15 July 1985 002
1−8979/85/14793−04)が報告されて
いるが、発光層の成長方位を制御した電界発光素子は報
告されていない。
2. Description of the Related Art In the case of an electroluminescence device as an example of an active device, according to the prior art, (1) is formed on a single crystal Si (111) substrate.
11) ZnS heteroepitaxially grown in the plane orientation:
Electroluminescent device using Mn as light emitting layer (Japanease
Journal of Applied Physic
s Vol. 24, No. 8, August, 198
5, pp. L629-L631) or single crystal Si
An electroluminescent device having a light emitting layer of ZnSe heteroepitaxially grown in a (100) plane on a (100) substrate (Journal of Applied Physi).
cs 58 (2), 15 Jul 1985 002
1-8979 / 85 / 14793-04), but no electroluminescent device in which the growth orientation of the light emitting layer is controlled has been reported.

【0003】ところで、光導波路、非線形光学素子、レ
ーザー、電界発光素子などの能動素子はその機能層に最
適の成長方位が存在する。ZnS系材料を発光層とする
電界発光素子の場合、発光層の面方位が<111>面に
成長した素子で高輝度が得られているが、発光層の面方
位を<111>面からわずかにずらせて、電界方向の格
子間距離を長くすることにより、加速された電子が発光
中心以外の原子と衝突する回数が少なくなるようにする
と、低電圧駆動でも高輝度が得られることになる。
By the way, an active element such as an optical waveguide, a non-linear optical element, a laser or an electroluminescent element has an optimum growth orientation in its functional layer. In the case of an electroluminescent device using a ZnS-based material as a light emitting layer, high brightness is obtained with a device in which the plane orientation of the light emitting layer is a <111> plane, but the plane orientation of the light emitting layer is slightly smaller than the <111> plane. If the number of collisions of the accelerated electrons with atoms other than the emission center is reduced by increasing the interstitial distance in the direction of the electric field by shifting the distance, high brightness can be obtained even at low voltage driving.

【0004】しかし、従来技術では単結晶基板の面方位
に習ってヘテロエピタキシャル成長した機能層を有する
能動素子の報告のみがされている。
However, the prior art only reports an active element having a functional layer heteroepitaxially grown in accordance with the plane orientation of a single crystal substrate.

【0005】[0005]

【発明が解決しようとする課題】本発明は単結晶基板の
面方位とわずかにずれた最適の方位に成長した機能層を
得るためになされたものであり、研摩等の方法を用いて
off角度を最適方位に制御した単結晶基板上に、機能
層をヘテロエピタキシャル成長させることにより、最適
の成長方位に成長した単結晶機能層を有する能動素子を
提供することを目的としている。
The present invention has been made in order to obtain a functional layer grown in an optimum orientation that is slightly deviated from the plane orientation of the single crystal substrate. The off angle is obtained by using a method such as polishing. It is an object of the present invention to provide an active device having a single crystal functional layer grown in an optimum growth direction by heteroepitaxially growing a functional layer on a single crystal substrate in which the optimum orientation is controlled.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、単結晶基板上にヘテロエピタキシャ
ル成長した能動素子において、単結晶基板の表面をオフ
セットさせることにより、機能層の成長方位が単結晶基
板の面方位とは異なる方位に制御されている能動素子で
ある。
The structure of the present invention for solving the above-mentioned problems is to provide an active element heteroepitaxially grown on a single crystal substrate by offsetting the surface of the single crystal substrate to thereby increase the growth direction of the functional layer. Is an active element controlled in an orientation different from the plane orientation of the single crystal substrate.

【0007】本発明による能動素子は単結晶基板表面を
斜めにエッチングすることにより、単結晶基板の面方位
とはわずかに異なる面方位を表面に出した後、表面の面
方位に習って、機能層をヘテロエピタキシャル成長させ
て、得られる能動素子である。上記能動素子では、機能
層の動作に最適の方位面を持つように成長方位が制御さ
れている。
The active element according to the present invention, by obliquely etching the surface of the single crystal substrate to form a plane orientation slightly different from the plane orientation of the single crystal substrate on the surface, and then learns the plane orientation of the surface to function. It is an active device obtained by heteroepitaxially growing a layer. In the above-mentioned active element, the growth orientation is controlled so as to have an optimal orientation plane for the operation of the functional layer.

【0008】本発明により作製した電界発光素子におい
て、単結晶基板の面方位よりわずかに傾いた面方位にエ
ピタキシャル成長した発光層内において、電界方向の原
子間距離がわずかに長くなる。このような発光層におい
ては、電界により加速された電子が発光中心以外の原子
と衝突する回数が少なくなり、効率よく発光中心を励起
することができるため、低電圧駆動においても高輝度発
光の電界発光素子を得ることができる。
In the electroluminescent device manufactured by the present invention, the interatomic distance in the electric field direction becomes slightly longer in the light emitting layer epitaxially grown in the plane orientation slightly tilted from the plane orientation of the single crystal substrate. In such a light-emitting layer, the number of times electrons accelerated by an electric field collide with atoms other than the light-emission center and the light-emission center can be efficiently excited. A light emitting device can be obtained.

【0009】図面を参照して具体的に説明すると、図1
は本発明の基板101と機能層102の関係を模式的に
示したものである。
Referring specifically to the drawings, FIG.
Shows schematically the relationship between the substrate 101 and the functional layer 102 of the present invention.

【0010】Si、Ge等の半導体材料や、Y23、Y
SZ、Ta23、Sm33、Al23、MgAl23
の酸化物材料、CaF2、BaF2、SrF2等のフッ化
物材料等の単結晶基板101を、斜めに研磨、あるいは
ウェットエッチング法において、エッチャントの選択
と、エッチング時間を制御する、あるいはドライエッチ
ング法において、レジスト、ガス種の選択、エッチング
時間を制御する等の方法により基板の面方位から0.1
〜20°、好ましくは0.5〜10°になるように、作
製するデバイスについて、最適な面方位をもった表面に
する。LiNbO3、ZnSe、PbTiO3、PLT、
LiTaO3、PLZT、BaTiO3、SrTiO3
の非線形光学材料、ZnS、ZnSe、ZnSXSeX-1
等を母材とし、発光中心としてMnを添加したZnS:
Mn系材料、もしくは上記母材にCuを添加したZn
S:Cu系材料。もしくは上記母材に希土類フッ化物
(TbF3、ErF3、NbF3、TmF3、PrF3、S
mF3、DyF3、HoF3等)を添加した材料、またS
rSを母材とし、発光中心にCe、Sm、Tb、Dy、
Er、Tm、Pr、Mn等を添加した材料や、CaSを
母材とし、発光中心にEr等を添加した発光材料を機能
層102とし、先述の最適面方位上にヘテロエピタキシ
ャル成長させることにより、表面の面方位に習った最適
面方位の機能層を得ることができる。エピタキシャル成
長の手段としては、MO−CVD法(有機金属熱分
解)、MBE法(Molecular−Beam−Ep
itaxy)、ALE法(Atomic−Layer−
Epitaxy)、エレクトロンビーム蒸着法、スパッ
タリング法、プラズマCVD法等の成長方法を単独もし
くは併用し使用する。
Semiconductor materials such as Si and Ge, Y 2 O 3 and Y
An oxide material such as SZ, Ta 2 O 3 , Sm 3 O 3 , Al 2 O 3 or MgAl 2 O 3 or a single crystal substrate 101 such as a fluoride material such as CaF 2 , BaF 2 or SrF 2 is obliquely arranged. In the polishing or wet etching method, the etchant is selected and the etching time is controlled. In the dry etching method, the resist and the gas species are selected, and the etching time is controlled.
The surface having an optimum plane orientation is prepared for the device to be manufactured so that the angle is -20 °, preferably 0.5-10 °. LiNbO 3 , ZnSe, PbTiO 3 , PLT,
Non-linear optical materials such as LiTaO 3 , PLZT, BaTiO 3 , and SrTiO 3 , ZnS, ZnSe, ZnS X Se X-1
ZnS with the above materials as the base material and Mn added as the emission center:
Mn-based material or Zn obtained by adding Cu to the above base material
S: Cu-based material. Or rare earth fluoride in the base material (TbF 3, ErF 3, NbF 3, TmF 3, PrF 3, S
mF 3 , DyF 3 , HoF 3, etc.) added material, S
Using rS as a base material, Ce, Sm, Tb, Dy, and
By adding a material containing Er, Tm, Pr, Mn, or the like or a light emitting material containing CaS as a base material and Er or the like to the emission center as the functional layer 102, and heteroepitaxially growing on the optimum plane orientation described above, It is possible to obtain a functional layer having an optimum plane orientation learned from the plane orientation of As means for epitaxial growth, MO-CVD method (metal organic thermal decomposition), MBE method (Molecular-Beam-Ep) are used.
Itaxy), ALE method (Atomic-Layer-
Epitaxy), an electron beam vapor deposition method, a sputtering method, a plasma CVD method or the like is used alone or in combination.

【0011】[0011]

【実施例】以下に本発明における能動素子を実施例によ
って更に具体的に説明する。
EXAMPLES The active element of the present invention will be described in more detail below with reference to examples.

【0012】実施例1 図2を参照して本発明の実施例について説明する。Embodiment 1 An embodiment of the present invention will be described with reference to FIG.

【0013】<111>面方位の単結晶Ge基板を用い
る。Ge基板の抵抗率は10Ωcmである。この単結晶
Ge基板を<111>面方位から1°傾くように表面研
磨を行って基板201とした。
A single crystal Ge substrate having a <111> plane orientation is used. The resistivity of the Ge substrate is 10 Ωcm. This single crystal Ge substrate was surface-polished so as to be tilted by 1 ° from the <111> plane orientation to obtain a substrate 201.

【0014】新しく得た表面を研磨して鏡面とし、その
上に発光中心となるMnを0.5at%添加したジンク
ブレンド構造のZnS:Mnを3000Åの厚さで基板
表面方位に習うようにMO−CVD法を用いて、ヘテロ
エピタキシャル成長させ、電界発光素子の発光層202
とした。
The newly obtained surface is polished to a mirror surface, and ZnS: Mn having a zinc blend structure in which 0.5 at% of Mn, which becomes an emission center, is added to the surface, is used as a substrate surface orientation with a thickness of 3000 Å as if it were MO. -Heteroepitaxial growth using a CVD method to form a light emitting layer 202 of an electroluminescent device.
And

【0015】上記方法にて作製した発光層202上に、
MO−CVD法を用いて、絶縁層203となるPbTi
3を3000Åの膜厚に成膜する。この場合PbTi
3は単結晶とはならないが、発光層202の面方位に
強く配向した膜となっている。最後に上部絶縁層上に透
明導電膜204となるITOをスパッタリング法を用い
て2000Åの膜厚で成膜し、本発明による電界発光素
子を完成した。
On the light emitting layer 202 produced by the above method,
PbTi used as the insulating layer 203 is formed by using the MO-CVD method.
O 3 is deposited to a film thickness of 3000Å. In this case PbTi
Although O 3 does not become a single crystal, it is a film strongly oriented in the plane direction of the light emitting layer 202. Finally, ITO to be the transparent conductive film 204 was formed on the upper insulating layer by a sputtering method to a film thickness of 2000 Å to complete the electroluminescent device according to the present invention.

【0016】上記方法で作製した電界発光素子の透明導
電膜204であるITOと、Ge基板との間に3kHz
の周波数の交流電圧を印加した状態で、発光の様子をI
TO側から観察した。
3 kHz is formed between the ITO film, which is the transparent conductive film 204 of the electroluminescent device manufactured by the above method, and the Ge substrate.
With the AC voltage of the frequency
It was observed from the TO side.

【0017】この電界発光素子の発光開始電圧は60V
であり、最高の発光輝度2000cd/m2が得られて
いる。上記表面研磨をしなかったGe(111)単結晶
基板上に同じように発光層等を形成した素子を構成し、
上記と同様の観察を行った結果よりも、発光開始電圧は
20V低電圧であり、最高輝度は20%向上している。
The light emission starting voltage of this electroluminescent device is 60V.
And the maximum emission luminance of 2000 cd / m 2 is obtained. An element in which a light emitting layer and the like were similarly formed on a Ge (111) single crystal substrate which was not surface-polished,
The light emission start voltage is 20 V lower than that of the same observation as above, and the maximum brightness is improved by 20%.

【0018】以上のように、本発明による1実施例の電
界発光素子は、発光層の成長方位を微妙に制御しない電
界発光素子と比較して、発光開始電圧は低くなり、最高
輝度は向上し、低電圧駆動状態においても高輝度が得ら
れた。光導波路、レーザー非線形光学素子などの能動素
子においても、機能層の最適の面方位が存在し、上記の
ように、単結晶基板表面のoff set角度を制御す
ることにより成長層の成長方位が微妙に制御された単結
晶機能層をもつ能動素子は、その特性が向上している。
As described above, in the electroluminescent device of the first embodiment according to the present invention, the light emission starting voltage is lower and the maximum brightness is improved as compared with the electroluminescent device in which the growth direction of the light emitting layer is not finely controlled. High brightness was obtained even in a low voltage driving state. Even in active elements such as optical waveguides and laser nonlinear optical elements, the optimum plane orientation of the functional layer exists, and as described above, the growth orientation of the growth layer is delicate by controlling the off set angle of the single crystal substrate surface. The characteristics of an active element having a single-crystal functional layer controlled in the above manner are improved.

【0019】[0019]

【発明の効果】以上説明したように、本発明の能動素子
は、従来の単結晶基板を用いた能動素子に比較して、そ
の機能が一段と向上している。
As described above, the function of the active element of the present invention is further improved as compared with the conventional active element using the single crystal substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板と機能層との関係を説明するため
の断面の模式図、
FIG. 1 is a schematic cross-sectional view for explaining the relationship between a substrate and a functional layer of the present invention,

【図2】本発明の実施例1の能動素子の構成を示す断面
の模式図である。
FIG. 2 is a schematic cross-sectional view showing the configuration of the active element according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101、201 基板 102 機能層 202 発光層 203 絶縁層 204 透明導電膜 101, 201 substrate 102 functional layer 202 light emitting layer 203 insulating layer 204 transparent conductive film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 博 宮城県名取市高舘熊野堂字余方上5−10 リコー応用電子研究所株式会社内 (72)発明者 羽賀 浩一 宮城県名取市高舘熊野堂字余方上5−10 リコー応用電子研究所株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Miura, Takadate Kumanodou, Natori City, Miyagi Prefecture, 5-10, Ryokan Applied Electronics Research Laboratory, Inc. (72) Inventor, Koichi Haga, Takadate Kumanodo, Natori City, Miyagi Prefecture 5-10 Kyomakata Ricoh Applied Electronics Research Laboratories Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶基板上にヘテロエピタキシャル成
長した機能層を有する能動素子において、単結晶基板の
表面をオフセットさせることにより機能層の成長方位が
単結晶基板の面方位とは異なる方位に制御されているこ
とを特徴とする能動素子。
1. In an active device having a functional layer heteroepitaxially grown on a single crystal substrate, the growth direction of the functional layer is controlled to be different from the plane orientation of the single crystal substrate by offsetting the surface of the single crystal substrate. An active element characterized in that
JP15454591A 1991-06-26 1991-06-26 Active element Pending JPH0594874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15454591A JPH0594874A (en) 1991-06-26 1991-06-26 Active element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15454591A JPH0594874A (en) 1991-06-26 1991-06-26 Active element

Publications (1)

Publication Number Publication Date
JPH0594874A true JPH0594874A (en) 1993-04-16

Family

ID=15586598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15454591A Pending JPH0594874A (en) 1991-06-26 1991-06-26 Active element

Country Status (1)

Country Link
JP (1) JPH0594874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116751A (en) * 2006-07-27 2012-06-21 Imec Deposition of group iii-nitrides on ge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116751A (en) * 2006-07-27 2012-06-21 Imec Deposition of group iii-nitrides on ge

Similar Documents

Publication Publication Date Title
EP0588449B1 (en) Electric field light-emitting device
JPH0543399A (en) Thin film fucntional member
JPH10247626A (en) Method of growing gallium nitride on spinel substrate
JPH0594874A (en) Active element
US20040170864A1 (en) Aluminum nitride passivated phosphors for electroluminescent displays
US5796120A (en) Tunnel thin film electroluminescent device
EP0189157B1 (en) Thin film electroluminescence device
Kobayashi et al. Quantum dot activated all-inorganic electroluminescent device fabricated using solution-synthesized CdSe/ZnS nanocrystals
KR100243104B1 (en) Method of manufacturing an electroluminescent display device
US20030141805A1 (en) Electroluminescent device and method of manufacturing the same
JPS58112299A (en) Method of producing electroluminescent element
JPH05114482A (en) Manufacture of transmission type electroluminescent element
JPS5859594A (en) Light emitting element
JPH0574571A (en) Electroluminescence element
Tannas Jr Electroluminescent displays
US6689630B2 (en) Method of forming an amorphous aluminum nitride emitter including a rare earth or transition metal element
JP2001060492A (en) Driving method of electroluminescent element
KR900005267Y1 (en) Electro luminescence display element
Lee et al. White-light emitting thin-film electroluminescent device using micromachined structure
JPH01120793A (en) Thin film type electroluminiscence element
JPH0824071B2 (en) Thin film electroluminescent device
JPS59169095A (en) Electroluminescent element
KR960030746A (en) Blue light emitting diode (ELD) and its manufacturing method
JPS59154794A (en) Thin film el element
JPH04372122A (en) Formation of epitaxial crystal layer