JPH059484B2 - - Google Patents

Info

Publication number
JPH059484B2
JPH059484B2 JP4437385A JP4437385A JPH059484B2 JP H059484 B2 JPH059484 B2 JP H059484B2 JP 4437385 A JP4437385 A JP 4437385A JP 4437385 A JP4437385 A JP 4437385A JP H059484 B2 JPH059484 B2 JP H059484B2
Authority
JP
Japan
Prior art keywords
gas
charge
furnace
blast furnace
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4437385A
Other languages
Japanese (ja)
Other versions
JPS61204306A (en
Inventor
Ryuichi Hori
Mitsunori Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60044373A priority Critical patent/JPS61204306A/en
Publication of JPS61204306A publication Critical patent/JPS61204306A/en
Publication of JPH059484B2 publication Critical patent/JPH059484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高炉の炉頂ガス顕熱を化学エネルギ
ーとして回収するようにした高炉炉頂ガス顕熱の
回収方法に関するものである。 〔従来の技術〕 高炉から発生した炉頂ガスには多大のエネルギ
ーが蓄含されているので、この炉頂ガスからエネ
ルギーを回収する方法が提案されている。従来の
回収方法は一般に、第9図に示したように、高炉
1から発生した多量のダストを含む炉頂ガスを、
先ずダストキヤツチヤー2に導いて乾式除塵し、
次いでベンチユリースクラバー3に導いて湿式除
塵した後、炉頂圧回収タービン4及び電気集塵機
5へ送り出す。このとき炉頂ガスの圧力は炉頂圧
回収タービン4によつて電気エネルギーとして回
収される一方、炉頂ガス中に含有されているCO
ガス及びH2ガスは採取されて燃料として使用さ
れる。 しかしながら、上記炉頂ガスが高炉1の炉頂口
部から排出されたときの温度は通常100〜200℃で
あるが、この炉頂ガスは前記ベンチユリースクラ
バー3の通過時に水を掛けられながら除塵される
結果、約50℃程度までガス温度が低下し、このと
き炉頂ガス顕熱はベンチユリースクラバー3内の
水と熱交換され水温の上昇となつてそのまま外部
へ放出されるので、エネルギーの損失は非常に大
きいものがあつた。 そこで近年には、炉頂ガス顕熱を回収する手段
としてバツクフイルター等を備えた乾式集塵装置
が開発され、炉頂ガス顕熱を炉頂圧回収タービン
によつて電気エネルギーとして回収する方法も提
案されているが、この方法は湿式除塵装置を使用
している高炉には適用出来ないという欠点があつ
た。 〔発明の目的〕 本発明は、上記従来の問題点を考慮したなされ
たものであつて、炉頂ガス顕熱の一部を化学エネ
ルギーに変換して回収し、これによつて炉頂ガス
がベンチユリースクラバーその他の除塵装置の内
部を通過しても、その通過時に炉頂ガス顕熱のエ
ネルギー損失が可及的に減少するようにした高炉
炉頂ガス顕熱の回収方法の提供を目的とするもの
である。 尚、本発明の高炉炉頂ガス顕熱の回収方法は、
乾式および湿式、何れの除塵装置を用いた場合で
も、炉頂ガス顕熱のエネルギー損失を可及的に減
少し得るものであるが、炉頂ガス顕熱の回収手段
を適用し得ない湿式除塵装置を用いた場合には、
より一層の効果が招来し得るものである。 〔発明の構成〕 本発明に係る高炉炉頂ガス顕熱の回収方法は、
高炉内に装填された装入物に水を掛けることで、
高炉から発生される炉頂ガスを冷却し、この冷却
された炉頂ガスを除塵装置にて除塵、清浄するこ
とで、上記の炉頂ガスからエネルギーを得る方法
において、上記炉頂ガスの冷却時、高炉内半径方
向での温度分布が最高温度となる装入物の中心線
上に対して注水を行うことで、装入物をなすコー
クスに対して水性ガス反応を積極的に生起せし
め、これにより生ずるCOガス及びH2ガスを化学
エネルギーとして回収することを特徴とする。 実施例 1 本発明の一実施例について説明すれば、以下の
通りである。 高炉1から発生しその炉頂口部から排出される
炉頂ガスの温度は、通常100〜200℃である。一
方、この炉頂ガスは高炉1の炉内頂部付近におい
て半径方向の温度分布を形成しており、第2図に
示したように、装入物Aの頂面上の炉頂ガスの温
度は、炉内中心部で500℃以上にも達する一方、
炉周壁側では約100℃若しくはそれ以下である。 また高炉1に装填された状態にある装入物Aの
炉内温度分布は、第3図に示したように、装入物
Aの中心線上において装入物Aの頂面直下から急
激な温度上昇が認められ、装入物Aの頂面より下
1〜3m付近では約900℃の高温に達している。 一方、高炉1の炉頂部の対向壁間には、第1図
に示したように給水管6が横架されている。この
給水管6は炉内直径方向に掛け渡され、且つ給水
管6のノズル7は炉内装入物Aの頂面中心に向つ
て下向きに設けられていると共に、同ノズル7は
炉内装入物Aの直上に位置し、このノズル7から
注出された水が装入物Aの頂面中心から半径1m
以内の領域面上に噴射されるように設定されてい
る。 そこで、上記給水管6のノズル7から炉内装入
物Aに対して、装入物Aの頂面中心より半径1m
以内の領域面上に適量の水を付与すると、装入物
Aの頂面中心辺りではその大部分がコークスで占
められているため、装入物のうち高温に昇熱され
たコークスが水によつて水性ガス反応を生起する
ことになる。 このとき吸熱反応が生じて、 C+H2O→ CO+H2−1753Kcal/KgH2O となり、COガスとH2ガスが生成されると同時に
炉頂ガスの温度が降下する。 すなわち、 (1)…C+O2=CO2+97000Kcal/Kmol (2)…C+1/2O2 =CO+29409Kcal/Kmol (3)…CO+1/2O2 =CO2+67591Kcal/Kmol (4)…H2+1/2O2 =H2O+57769Kcal/Kmol (低位発熱量)() であるから、コークスが水性ガス反応を生起する
と、上記(2)と(4)の反応式より C+H2O =CO+H2−28360Kcal/Kmol (低位発熱量)() となる。上記のように、水1molを赤熱コークス
に散水することにより、COガス及びH2ガスが
各々1molづつ生成され、それと同時にコークス
中のカーボンが1molだけ消費され、炉頂ガス顕
熱は28360Kcalだけ減少することになる。 このように炉頂ガス顕熱の一部を化学エネルギ
ーとしてのCOガス及びH2ガスに変換してから炉
外へ送り出せば、第9図に示したように高炉に装
備されたガス清浄システムの一環をなす湿式除塵
装置の内部を炉頂ガスが通過しても、湿式除塵に
よる炉頂ガス顕熱の損失量は従来に比し大幅に減
少される一方、炉頂ガス顕熱の一部から変換生成
されたCOガス及びH2ガスはそのまま分離し回収
されて燃料その他の用途に利用される。 尚、第1図の上記実施例では、高炉1の直径方
向に給水管6を掛け渡しその下向きノズル7から
炉内装入物Aの頂面中心に向つて水を噴射するよ
うに構成したが、例えば第4図に示したように高
炉1の炉頂口部近傍の側壁部に給水管6aを取付
け、その先端部のノズル7aを炉内装入物Aの頂
面中心部に向けて固定して、ノズル7aから注出
された水が装入物Aの頂面中心から半径1m以内
の領域面上に噴射されるように設定しても良い。
また第5図に示したように給水管6bを高炉1の
ベルロツド8に対して軸方向に嵌挿して埋設し、
該給水管6bの先端ノズル7bをベルロツド8の
軸端から突出させて大ベル9の内側から下向きに
臨ませ、ノズル7bから注出させた水が装入物A
の頂面中心部に向つて噴出し頂面中心から半径
1m以内の領域面上に噴射されるように設定して
も良い。即ち、給水管のノズルが炉内装入物Aの
頂面中心に向つて設定され、且つこのノズルから
噴射された水が装入物Aの頂面中心部にほぼ集中
するように構成すれば良いものである。 実施例 2 この実施例は、第6図に示したように、炉内装
入物Aの頂面中心から1m乃至3m下(高さ間隔
H)の装入物Aの内部に給水管6cを横方向から
埋入し、該給水管6cのノズル7cを炉内中心線
上に下向きに設定して、装入物Aの内部に水を直
接付与するようにしたものである。先述したよう
に、炉内温度分布は第3図の如く、装入物Aの頂
面中心からその直下において急激な温度変化が認
められるので、この装入物Aの内部位置で水を直
接付与すれば、高温に昇熱されたコークスの水性
ガス反応は一層促進され、多量のCOガス及びH2
ガスが生成される。尚、本実施例における半径方
向のガス温度分布は、第2図から明らかなように
先述した第1実施例の装入物頂面上におけるガス
温度よりも高温である。 〔実験例〕 表1に示す高炉操業条件の下で炉頂ガス顕熱の
回収実験を行つた結果は次の通りである。
[Industrial Application Field] The present invention relates to a method for recovering the sensible heat of blast furnace top gas, which recovers the sensible heat of blast furnace top gas as chemical energy. [Prior Art] Since a large amount of energy is stored in the top gas generated from a blast furnace, methods have been proposed for recovering energy from the top gas. As shown in FIG. 9, the conventional recovery method generally collects the furnace top gas containing a large amount of dust generated from the blast furnace 1.
First, it is guided to dust catcher 2 for dry dust removal,
The waste is then guided to a ventilate scrubber 3 for wet dust removal, and then sent to a furnace top pressure recovery turbine 4 and an electric precipitator 5. At this time, the pressure of the furnace top gas is recovered as electrical energy by the furnace top pressure recovery turbine 4, while the CO contained in the furnace top gas is
Gas and H2 gas are extracted and used as fuel. However, when the above-mentioned furnace top gas is discharged from the furnace top opening of the blast furnace 1, the temperature is usually 100 to 200°C, but when this furnace top gas passes through the ventilate scrubber 3, it is sprayed with water and dust is removed. As a result, the gas temperature decreases to about 50℃, and at this time, the sensible heat of the furnace top gas is exchanged with the water in the Ventury Scrubber 3, raising the water temperature and being released to the outside as it is, reducing the energy consumption. There were very large losses. Therefore, in recent years, a dry type dust collector equipped with a back filter etc. has been developed as a means of recovering the sensible heat of the furnace top gas, and there is also a method of recovering the sensible heat of the furnace top gas as electrical energy using a furnace top pressure recovery turbine. Although this method has been proposed, it has the disadvantage that it cannot be applied to blast furnaces that use wet dust removal equipment. [Object of the Invention] The present invention has been made in consideration of the above-mentioned conventional problems, and converts a part of the sensible heat of the furnace top gas into chemical energy and recovers it, thereby reducing the furnace top gas. The purpose of the present invention is to provide a method for recovering the sensible heat of the blast furnace top gas, which reduces the energy loss of the top gas as much as possible even when it passes through the inside of a ventilary scrubber or other dust removal equipment. It is something to do. Incidentally, the method for recovering sensible heat of blast furnace top gas of the present invention is as follows:
Both dry and wet dust removal equipment can reduce the energy loss of the sensible heat of the furnace top gas as much as possible, but wet dust removal does not allow for recovery of the sensible heat of the furnace top gas. When using the device,
This can lead to even greater effects. [Structure of the Invention] The method for recovering sensible heat of blast furnace top gas according to the present invention includes:
By pouring water on the charge loaded into the blast furnace,
In the method of obtaining energy from the above-mentioned furnace top gas by cooling the furnace top gas generated from the blast furnace and removing dust and cleaning the cooled furnace top gas with a dust removal device, when cooling the furnace top gas, By injecting water onto the center line of the charge where the temperature distribution in the radial direction inside the blast furnace is at its highest, a water gas reaction is actively caused in the coke that forms the charge. It is characterized by recovering the generated CO gas and H 2 gas as chemical energy. Example 1 An example of the present invention will be described as follows. The temperature of the furnace top gas generated from the blast furnace 1 and discharged from the furnace top opening is usually 100 to 200°C. On the other hand, this furnace top gas forms a radial temperature distribution near the top of the blast furnace 1, and as shown in Fig. 2, the temperature of the furnace top gas on the top surface of the charge A is , the temperature reaches over 500℃ in the center of the furnace,
The temperature on the furnace wall side is about 100℃ or lower. Furthermore, as shown in Fig. 3, the temperature distribution inside the furnace of the charge A loaded in the blast furnace 1 is such that the temperature suddenly rises from just below the top surface of the charge A on the center line of the charge A. An increase in the temperature was observed, reaching a high temperature of approximately 900°C in the vicinity of 1 to 3 m below the top surface of Charge A. On the other hand, a water supply pipe 6 is installed horizontally between the opposing walls at the top of the blast furnace 1, as shown in FIG. This water supply pipe 6 extends in the diametrical direction inside the furnace, and the nozzle 7 of the water supply pipe 6 is provided downward toward the center of the top surface of the furnace contents A. Located directly above A, the water poured out from this nozzle 7 is located within a radius of 1 m from the center of the top surface of charge A.
It is set to be sprayed onto the surface within the area. Therefore, from the nozzle 7 of the water supply pipe 6 to the furnace charge A, a radius of 1 m from the center of the top surface of the charge A is applied.
When an appropriate amount of water is applied to the area within the area, most of the area near the center of the top surface of charge A is occupied by coke, so the coke heated to a high temperature in the charge A will be absorbed into the water. Therefore, a water gas reaction will occur. At this time, an endothermic reaction occurs, resulting in C+ H2O →CO+ H2-1753Kcal / KgH2O , and at the same time CO gas and H2 gas are generated, the temperature of the furnace top gas decreases. That is, (1)...C+O 2 =CO 2 +97000Kcal/Kmol (2)...C+1/2O 2 =CO+29409Kcal/Kmol (3)...CO+1/2O 2 =CO 2 +67591Kcal/Kmol (4)...H 2 +1/2O 2 = H 2 O + 57769 Kcal/Kmol (lower calorific value) (), so when coke causes a water gas reaction, from the reaction equations (2) and (4) above, C + H 2 O = CO + H 2 -28360 Kcal/Kmol (lower calorific value). Calorific value) (). As mentioned above, by sprinkling 1 mol of water on red-hot coke, 1 mol each of CO gas and H 2 gas is generated, and at the same time, only 1 mol of carbon in the coke is consumed, and the sensible heat of the top gas decreases by 28,360 Kcal. I will do it. In this way, if a part of the sensible heat of the furnace top gas is converted into CO gas and H2 gas as chemical energy and then sent out of the furnace, the gas cleaning system installed in the blast furnace can be used as shown in Figure 9. Even if the furnace top gas passes through the inside of the wet dust removal equipment, the loss of the furnace top gas sensible heat due to wet dust removal is significantly reduced compared to the conventional method. The CO gas and H 2 gas produced by conversion are separated and recovered as they are and used for fuel and other purposes. In the above embodiment shown in FIG. 1, the water supply pipe 6 is arranged in the diameter direction of the blast furnace 1, and the water is injected from the downward nozzle 7 toward the center of the top surface of the furnace contents A. For example, as shown in FIG. 4, a water supply pipe 6a is attached to the side wall near the furnace top opening of the blast furnace 1, and the nozzle 7a at the tip thereof is fixed toward the center of the top surface of the furnace contents A. The setting may be such that the water poured out from the nozzle 7a is injected onto a surface within a radius of 1 m from the center of the top surface of the charge A.
Further, as shown in FIG. 5, the water supply pipe 6b is inserted into the bell rod 8 of the blast furnace 1 in the axial direction and buried.
The tip nozzle 7b of the water supply pipe 6b is made to protrude from the shaft end of the bell rod 8 and face downward from the inside of the large bell 9, so that the water poured out from the nozzle 7b is poured into the charge A.
The radius from the center of the top surface is ejected toward the center of the top surface of
It may be set to be sprayed onto an area within 1m. That is, the nozzle of the water supply pipe may be set toward the center of the top surface of the charge A, and the water injected from this nozzle may be configured to concentrate almost at the center of the top surface of the charge A. It is something. Embodiment 2 In this embodiment, as shown in Fig. 6, a water supply pipe 6c is placed horizontally inside the charge A at a distance of 1 m to 3 m below the center of the top surface of the charge A (height interval H). The nozzle 7c of the water supply pipe 6c is set downward on the center line of the furnace, so that water is applied directly to the inside of the charge A. As mentioned earlier, as shown in Figure 3, the temperature distribution inside the furnace shows a rapid temperature change from the center of the top surface of charge A to just below it. Then, the water gas reaction of the coke heated to a high temperature will be further promoted, and a large amount of CO gas and H 2
Gas is produced. As is clear from FIG. 2, the gas temperature distribution in the radial direction in this embodiment is higher than the gas temperature on the top surface of the charge in the first embodiment. [Experimental Example] The results of an experiment to recover the sensible heat of the furnace top gas under the blast furnace operating conditions shown in Table 1 are as follows.

〔発明の効果〕〔Effect of the invention〕

本発明に係る高炉炉頂ガス顕熱の回収方法は、
以上のように、炉頂ガスの冷却時、高炉内半径方
向での温度分布が最高温度となる装入物の中心線
上に対して注水を行うことで、装入物をなすコー
クスに対して水性ガス反応を積極的に生起せし
め、これにより生ずるCOガス及びH2ガスを化学
エネルギーとして回収する構成である。 これにより、高炉に装備された除塵装置の内部
を炉頂ガスが通過したときでも炉頂ガス顕熱の損
失量は従来に比して大幅に減少されると共に、炉
頂ガス顕熱の一部から化学エネルギーに変換して
生成されたCOガス及びH2ガスは回収されて燃料
その他の用途に利用し得るなど、エネルギーを有
効に利用する上で優れた効果を奏するものであ
る。
The method for recovering sensible heat of blast furnace top gas according to the present invention includes:
As described above, when cooling the top gas, by injecting water onto the center line of the charge where the temperature distribution in the radial direction inside the blast furnace is at its highest temperature, it is possible to It is configured to actively generate gas reactions and recover the resulting CO gas and H 2 gas as chemical energy. As a result, even when the top gas passes through the inside of the dust removal device installed in the blast furnace, the loss of the top gas sensible heat is significantly reduced compared to the conventional method, and a portion of the top gas sensible heat is The CO gas and H 2 gas produced by converting them into chemical energy can be recovered and used for fuel or other purposes, which is an excellent way to use energy effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部説明図、
第2図は高炉内装入物の頂面上及び装入物内の平
均的なガス温度分布を表わすグラフ、第3図は高
炉内の温度分布を表わす図、第4図乃至第6図は
それぞれ第1図の変形例を示す要部説明図、第7
図及び第8図はそれぞれ実験例における測定値を
示したものであつて炉内装入物頂面上及び装入物
内のガス流速分布とガス温度分布を表わすグラ
フ、第9図は従来例における炉頂ガスの回収シス
テムを示す概略構成図である。 1は高炉、3はベンチユリースクラバー(湿式
除塵装置)、6,6a,6b,6cは給水管、7,
7a,7b,7cはノズル、Aは装入物である。
FIG. 1 is an explanatory diagram of main parts showing one embodiment of the present invention,
Figure 2 is a graph showing the average gas temperature distribution on the top surface of the blast furnace charge and inside the charge, Figure 3 is a graph showing the temperature distribution inside the blast furnace, and Figures 4 to 6 are respectively Main part explanatory diagram showing a modification of FIG. 1, No. 7
Figure 8 and Figure 8 respectively show the measured values in the experimental example, and are graphs representing the gas flow velocity distribution and gas temperature distribution on the top surface of the furnace charge and within the charge, and Figure 9 shows the measured values in the conventional example. FIG. 1 is a schematic configuration diagram showing a furnace top gas recovery system. 1 is a blast furnace, 3 is a ventilium scrubber (wet dust removal device), 6, 6a, 6b, 6c are water supply pipes, 7,
7a, 7b, and 7c are nozzles, and A is a charge.

Claims (1)

【特許請求の範囲】 1 高炉内に装填された装入物に水を掛けること
で、高炉から発生される炉頂ガスを冷却し、この
冷却された炉頂ガスを除塵装置にて除塵、清浄す
ることで、上記の炉頂ガスからエネルギーを得る
方法において、 上記炉頂ガスの冷却時、高炉内半径方向での温
度分布が最高温度となる装入物の中心線上に対し
て注水を行うことで、装入物をなすコークスに対
して水性ガス反応を積極的に生起せしめ、これに
より生ずるCOガス及びH2ガスを化学エネルギー
として回収することを特徴とする高炉炉頂ガス顕
熱の回収方法。 2 炉内装入物に対する上記の注水は、装入物の
頂面上に、その中心から半径1m以内の領域面に
水を上から付与するものである特許請求の範囲第
1項記載の高炉炉頂ガス顕熱の回収方法。 3 炉内装入物に対する上記の注水は、装入物の
頂面中心から1m乃至3m下の装入物内部に水を直
接付与するものである特許請求の範囲第1項記載
の高炉炉頂ガス顕熱の回収方法。
[Claims] 1. Water is poured over the charge loaded into the blast furnace to cool the top gas generated from the blast furnace, and the cooled top gas is removed and purified by a dust removal device. By doing so, in the method of obtaining energy from the above-mentioned furnace top gas, when cooling the above-mentioned furnace top gas, water is injected onto the center line of the charge where the temperature distribution in the radial direction inside the blast furnace has the highest temperature. A method for recovering sensible heat from blast furnace top gas, which is characterized by actively causing a water gas reaction in the coke that forms the charge, and recovering the resulting CO gas and H 2 gas as chemical energy. . 2. The blast furnace according to claim 1, wherein the above-mentioned water injection into the charge is performed by applying water from above to an area within a radius of 1 m from the center of the top surface of the charge. A method of recovering sensible heat from the top gas. 3. The blast furnace top gas according to claim 1, wherein the above-mentioned water injection into the furnace charge is to directly apply water to the inside of the charge 1 m to 3 m below the center of the top surface of the charge. Sensible heat recovery method.
JP60044373A 1985-03-06 1985-03-06 Method for recovering sensible heat of blast furnace top gas Granted JPS61204306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044373A JPS61204306A (en) 1985-03-06 1985-03-06 Method for recovering sensible heat of blast furnace top gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044373A JPS61204306A (en) 1985-03-06 1985-03-06 Method for recovering sensible heat of blast furnace top gas

Publications (2)

Publication Number Publication Date
JPS61204306A JPS61204306A (en) 1986-09-10
JPH059484B2 true JPH059484B2 (en) 1993-02-05

Family

ID=12689701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044373A Granted JPS61204306A (en) 1985-03-06 1985-03-06 Method for recovering sensible heat of blast furnace top gas

Country Status (1)

Country Link
JP (1) JPS61204306A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022509B4 (en) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Process for the production of synthesis gas
CN114807471A (en) * 2022-05-07 2022-07-29 中冶赛迪工程技术股份有限公司 Furnace top gas temperature regulating and controlling process and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117807A (en) * 1982-01-06 1983-07-13 Sumitomo Metal Ind Ltd Water spraying method at top of blast furnace
JPS59190306A (en) * 1983-04-12 1984-10-29 Sumitomo Metal Ind Ltd Controlling method of temperature of blast furnace top gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117807A (en) * 1982-01-06 1983-07-13 Sumitomo Metal Ind Ltd Water spraying method at top of blast furnace
JPS59190306A (en) * 1983-04-12 1984-10-29 Sumitomo Metal Ind Ltd Controlling method of temperature of blast furnace top gas

Also Published As

Publication number Publication date
JPS61204306A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
CN102424867B (en) Slag granulating and waste heat recovery device
RU1829952C (en) Device to process hot gases, in particular, to cool, remove dust, and saturate gases with vapors generated in supply reactors
JPH059484B2 (en)
CN108707718A (en) It is a kind of using high temperature coal gas of converter and to improve the device and its application method of calorific value
CN111519029A (en) Flash circulating smelting system built by high-temperature heat exchanger
GB2033563A (en) Removing slag from a gasifier
JPS62502800A (en) Method and apparatus for cooling coke
JPS58170515A (en) Apparatus for collecting dust and recovering heat from converter waste gas
US4207094A (en) Method for preheating the oxygen in an oxygen steel making process
US3186831A (en) Method of recovering off-gas and gas probe apparatus therefor
CN216141570U (en) Converter with coal gas recycling function for steel smelting
JPH0826330B2 (en) Equipment for preventing blockage of the top gas duct in continuous coke manufacturing equipment
JP2002326015A (en) Method and apparatus for treating waste gas
JPH10310773A (en) Method for removing adhered carbon in riser of coke oven
CN213086057U (en) Flash circulating smelting system built by high-temperature heat exchanger
JPH10287879A (en) Retardation of carbon attachment to brick in oven top space of coke oven, and device therefor
CN219531692U (en) Near zero emission system for deep utilization of tail gas of silicomanganese ore heating furnace
CN110655075B (en) Continuous high-temperature purification equipment
JPS62176517A (en) Corrosive gas removing system for blast furnace -furnace top pressure dry power generation
JPH01100214A (en) Method for treating exhaust gas from converter
JPH05105929A (en) Method for recovering waste converter gas
JPH11263987A (en) Power generation by gasified gas and apparatus therefor
JPS5831283A (en) Method of recovering sensible heat of slag and co2 in exhaust gas
JPH08259963A (en) Method and apparatus for separating tar and dust from coal pyrolysis gas
JPS5826392B2 (en) Molten blast furnace slag sensible heat utilization method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees