JPH0593903A - Panel heater - Google Patents
Panel heaterInfo
- Publication number
- JPH0593903A JPH0593903A JP27888991A JP27888991A JPH0593903A JP H0593903 A JPH0593903 A JP H0593903A JP 27888991 A JP27888991 A JP 27888991A JP 27888991 A JP27888991 A JP 27888991A JP H0593903 A JPH0593903 A JP H0593903A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- electrode
- strip
- liquid crystal
- heat generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Liquid Crystal (AREA)
- Surface Heating Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、面状ヒーターの発熱体
の構成に関するもので、特に液晶表示装置の温度制御な
どに用いる透明面状ヒーターに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element of a sheet heater, and more particularly to a transparent sheet heater used for temperature control of a liquid crystal display device.
【0002】[0002]
【従来の技術】面状ヒーターは用途に合わせて様々な方
式のものが知られているが、例えば、液晶表示装置の液
晶表示セルの温度制御などに使用されるものとして、ガ
ラスなどの絶縁性透明基板上に基板表面を一様に覆う透
明導電性薄膜を形成し、これに通電して発熱させるとい
う簡単な方式のものが知られている。2. Description of the Related Art Various types of planar heaters are known according to the application. For example, as a heater used for temperature control of a liquid crystal display cell of a liquid crystal display device, an insulating material such as glass is used. A simple method is known in which a transparent conductive thin film is formed on a transparent substrate to uniformly cover the surface of the substrate, and electricity is applied to the transparent conductive thin film to generate heat.
【0003】またその他に、発熱分布を制御するため
に、導電性薄膜の特定領域の膜厚を相対的に薄くする方
式や、特定のパターンを形成する方式が用いられてい
る。In addition, in order to control the heat generation distribution, a method of making the film thickness of a specific region of the conductive thin film relatively thin and a method of forming a specific pattern are used.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、透過型
の液晶表示装置の温度制御に用いる透明面状ヒーターの
場合、表示エリア内の見えの問題から、極端に発熱体の
膜厚を変えることは、表示する画面の均一性を低下させ
ることにつながり、また膜厚を厚くすることは透過率の
低下を伴うなど問題が多く、所望の発熱分布を得ること
が難しかった。However, in the case of a transparent planar heater used for temperature control of a transmissive liquid crystal display device, it is extremely difficult to change the thickness of the heating element due to the problem of visibility in the display area. This leads to a reduction in the uniformity of the displayed screen, and increasing the film thickness has many problems such as a decrease in the transmittance, making it difficult to obtain the desired heat generation distribution.
【0005】この問題を解決する方法の1つとして、導
電性の薄膜の形状を特定のパターン形状にして所望の発
熱分布を得るという方式がある。しかし、こうした方式
を用いると例えば液晶表示装置の表示画面内で面状ヒー
ターの導電性透明電極のパターン幅や形状を変えると、
光の透過率がパターンの部分によって変化して色が変化
して見えたり、あるい面状ヒーターの透明電極パターン
と液晶パネルの透明電極とが干渉して縞状の模様が見え
たりして、液晶表示の見えが悪くなり画質の点からパタ
ーンの形状や大きさに制約があり所望の発熱分布を得ら
れないという問題点があった。As one of the methods for solving this problem, there is a method in which the shape of the conductive thin film is made into a specific pattern shape to obtain a desired heat generation distribution. However, when such a method is used, for example, when the pattern width or shape of the conductive transparent electrode of the planar heater is changed in the display screen of the liquid crystal display device,
The light transmittance changes depending on the pattern part and the color changes, or the transparent electrode pattern of the planar heater and the transparent electrode of the liquid crystal panel interfere and a striped pattern is seen. There is a problem that the liquid crystal display becomes unsightly and the shape and size of the pattern are restricted from the viewpoint of image quality, and a desired heat generation distribution cannot be obtained.
【0006】またこの面状ヒーターを作成するにあたっ
て、例えばITO(インジウム−ティン−オキサイド)
の様な透明導電膜をガラスの様な絶縁性透明基板上に形
成する際に、透明導電膜のシート抵抗値が一定になる様
に成膜することが非常に難しく、そのまま面状ヒーター
のヒーターパターンを形成すると出来上がりの面状ヒー
ターの総ヒーター抵抗値のばらつきが非常に大きくなり
(例えば±50%)、そのままでは実際の使用に適さ
ず、例えば透明導電膜の成膜時の管理を非常に厳しくし
たり、あるいは出来上がった面状ヒーターの抵抗値を選
別して使用しなければならず、歩留まりが非常に悪くな
る等の問題があった。Further, in manufacturing this planar heater, for example, ITO (Indium-Tin-Oxide) is used.
It is very difficult to form a transparent conductive film like that on an insulating transparent substrate such as glass so that the sheet resistance value of the transparent conductive film becomes constant. When a pattern is formed, the variation of the total heater resistance value of the finished sheet heater becomes very large (for example ± 50%), and it is not suitable for actual use as it is. For example, it is very difficult to control when forming a transparent conductive film. There has been a problem that the yield value is extremely deteriorated because the resistance value of the finished sheet heater needs to be selected and used strictly.
【0007】本発明は、前記従来技術の課題を解決し、
ヒーター搭載による表示装置の画質への悪影響を極力少
なくし、しかも所望の発熱分布が得られる面状のヒータ
ーを提供し、かつ面状ヒーターの作成にあたって導電膜
の成膜時にそのシート抵抗値のばらつきをあまり気にせ
ずに作成でき、歩留まりを非常に高くすることが可能な
手段を提供するものである。The present invention solves the above problems of the prior art,
Provide a planar heater that minimizes the adverse effects on the image quality of the display device due to the mounting of a heater, and also provides a sheet heater that produces a desired heat distribution, and the sheet resistance variation during film formation of the conductive film when creating the sheet heater. It provides a means that can be created without paying too much attention to the above, and can make the yield very high.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の面状ヒーターは、基板上に、並列され
た複数本の導電性薄膜による帯状電極とこの帯状電極の
両端付近に設けられた電圧印加用電極とを併せ持ち、該
電圧印加用電極と帯状電極とが選択的に接続されている
ものである。また、請求項2の面状ヒーターは、基板上
の方形領域に、複数本の導電性薄膜からなる帯状電極と
電圧印加用電極とを併せ持ち、帯状電極を、前記方形領
域の4辺のうち少なくとも1辺上に形成された少なくと
も2ケ所の前記電圧印加用電極か、あるいは前記方形領
域の少なくとも相対向しない2辺に形成された少なくと
も2ケ所の前記電圧印加用電極と接続しているものであ
る。In order to achieve the above-mentioned object, the sheet heater according to claim 1 has a strip-shaped electrode made of a plurality of conductive thin films juxtaposed on a substrate and near both ends of the strip-shaped electrode. And a strip-shaped electrode are selectively connected to each other. Further, the planar heater according to claim 2 has a strip-shaped electrode composed of a plurality of conductive thin films and a voltage applying electrode in a square region on the substrate, and the strip-shaped electrode is at least one of the four sides of the square region. It is connected to at least two voltage-applying electrodes formed on one side or at least two voltage-applying electrodes formed on at least two opposite sides of the rectangular region. ..
【0009】[0009]
【作用】請求項1の発明によれば、基板上の帯状電極の
特定のパターン形状を変化させることなく、少なくとも
一部の領域で、電圧印加用の電極と接続したり断線させ
ることによって発熱量を制御し、全体の発熱分布を任意
に制御できる面状ヒーターが得られる。また、請求項2
の発明によれば、帯状電極の長さに変化をもたせること
ができ、これによって発熱量を制御し、全体の発熱分布
を任意に制御できる。According to the invention of claim 1, the amount of heat generation is achieved by connecting or disconnecting the voltage application electrode in at least a part of the area without changing the specific pattern shape of the strip electrode on the substrate. It is possible to obtain a planar heater capable of controlling the heat generation and controlling the overall heat generation distribution. In addition, claim 2
According to the invention, the length of the strip electrode can be changed, whereby the amount of heat generation can be controlled and the overall heat generation distribution can be controlled arbitrarily.
【0010】また本発明によれば、導電性薄膜の成膜時
のシート抵抗値のばらつきによる面状ヒーターの総抵抗
値のばらつきを調整することができる。Further, according to the present invention, it is possible to adjust the variation in the total resistance value of the sheet heater due to the variation in the sheet resistance value at the time of forming the conductive thin film.
【0011】[0011]
【実施例】図1は、請求項1の発明における面状ヒータ
ーの1実施例である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an embodiment of the sheet heater according to the invention of claim 1.
【0012】絶縁性透明材料からなる基板1の上に、発
熱源となる、複数本の導電性透明薄膜(例えばITO、
SnO2 等の薄膜)よりなる帯状電極2が並列して形成
されており、帯状電極2の両端部には低抵抗な電圧印加
用電極3を接続して設けている。On a substrate 1 made of an insulating transparent material, a plurality of conductive transparent thin films (for example, ITO,
Strip-shaped electrodes 2 made of a thin film of SnO 2 or the like are formed in parallel, and low-resistance voltage application electrodes 3 are connected to both ends of the strip-shaped electrode 2.
【0013】ヒーターの面内の発熱を相対的に小さくし
たい部分の帯状電極2と電圧印加用電極3との接続部分
を接続せず、具体的には例えばレーザ光で帯状電極2と
電圧印加用電極3との接続部近辺をカットして断線部4
とするか、または初めからフォトリソグラフィーのマス
クで導電性透明薄膜を形成せずに断線部4を作るか、ま
たは電圧印加用電極3を形成する際に電気的に接続しな
いことで、通電しないようにする。The connection between the strip electrode 2 and the voltage application electrode 3 in the portion where the heat generation within the heater is desired to be relatively small is not connected. Specifically, for example, laser light is used to apply the strip electrode 2 and the voltage application. Cut the area near the connection with the electrode 3 and disconnect the wire 4.
Do not energize by making the disconnection part 4 without forming a conductive transparent thin film from the beginning with a photolithography mask, or by not electrically connecting when forming the voltage application electrode 3. To
【0014】発熱量の分布の制御は必要に応じて接続し
ないパターンの本数で調整することができる。たとえ
ば、単純な面状ヒーターでは、熱の拡散及び放熱の関係
で基板1周辺部は放熱により温度が低下しやすく、基板
1の中心部の温度が上昇しやすい。面状ヒーターの面内
の温度を均一にするためには、基板1の中央付近の帯状
電極2と電圧印加用電極3との接続を減らすことで制御
できる。The control of the distribution of the heat generation amount can be adjusted by the number of patterns which are not connected, if necessary. For example, in a simple planar heater, the temperature of the peripheral portion of the substrate 1 is likely to decrease due to the heat radiation due to the heat diffusion and heat radiation, and the temperature of the central portion of the substrate 1 is likely to rise. In order to make the in-plane temperature of the planar heater uniform, it can be controlled by reducing the connection between the strip electrode 2 near the center of the substrate 1 and the voltage application electrode 3.
【0015】また、例えば強誘電性液晶等を用いた液晶
表示装置の加熱用にこの面状ヒーターを用いる場合、面
状ヒーターに要求される発熱分布は、全面均一としない
場合がある。面内の特定の領域のみの発熱を相対的に大
きくしたり、小さくしたりする必要がある場合がある。
こうした時に発熱用の帯状電極2と電圧印加用電極3を
選択的に接続することで所望の発熱分布を得ることがで
きる。しかも液晶表示装置に用いる場合、例えば液晶表
示部と対応する部分の面状ヒーターの帯状電極2のパタ
ーンをすべてほぼ同一のパターン形状で作成し、不要な
部分の帯状電極2のパターンのみ電圧印加用電極3と接
続しないことにより発熱分布を制御できるので、液晶表
示部での面状ヒーターの透過率の変化やあるいは液晶パ
ネルの透明電極との干渉が発生せず、液晶表示装置の画
質を落とすことなく所望の発熱分布を得ることができ
る。特に、強誘電性液晶を用いた液晶表示装置の場合、
TN液晶等と比較して液晶材料の温度特性がかなりあ
り、低温での応答速度が遅いことや、また液晶パネル面
内の温度分布を小さくする必要があり、本発明の面状ヒ
ーターを用いて加熱保持して液晶パネル面内の温度をあ
る一定温度にしてかつ温度分布を均一化することによ
り、良好な画質を得ることができる。強誘電性液晶素子
(パネル、装置)に関しては、例えばUSP45484
76又はUSP4655561に記載されており、本発
明ではこれらの強誘電性液晶素子を用いることができ
る。When the sheet heater is used for heating a liquid crystal display device using, for example, a ferroelectric liquid crystal, the heat distribution required for the sheet heater may not be uniform over the entire surface. It may be necessary to relatively increase or decrease heat generation only in a specific area within the surface.
In such a case, a desired heat distribution can be obtained by selectively connecting the strip-shaped electrode 2 for heating and the electrode 3 for voltage application. Moreover, when used in a liquid crystal display device, for example, all the patterns of the strip-shaped electrode 2 of the planar heater of the portion corresponding to the liquid crystal display portion are made to have substantially the same pattern shape, and only the pattern of the strip-shaped electrode 2 of the unnecessary portion is applied for voltage application. Since the heat generation distribution can be controlled by not connecting to the electrode 3, the change in the transmittance of the planar heater in the liquid crystal display section or the interference with the transparent electrode of the liquid crystal panel does not occur, and the image quality of the liquid crystal display device is degraded. It is possible to obtain a desired heat generation distribution. Especially in the case of a liquid crystal display device using a ferroelectric liquid crystal,
Compared with TN liquid crystal and the like, the temperature characteristics of the liquid crystal material are considerable, the response speed at low temperature is slow, and it is necessary to reduce the temperature distribution in the plane of the liquid crystal panel. Good image quality can be obtained by heating and maintaining the temperature in the plane of the liquid crystal panel to a certain constant temperature and making the temperature distribution uniform. Regarding the ferroelectric liquid crystal element (panel, device), for example, USP45484
76 or USP 4655561, and these ferroelectric liquid crystal elements can be used in the present invention.
【0016】また面状ヒーターの総抵抗値のばらつきを
抑える方法の一実施例を以下に述べる。An embodiment of a method for suppressing the variation in the total resistance value of the sheet heater will be described below.
【0017】この面状ヒーターを作成する具体的方法の
一例を以下に示す。まず320×300×1.1mmの
ガラス基板(例:米コーニング社製 #7059)の片
面に、スパッタリング法によりITO(インジウム−テ
ィン−オキサイド)を100nm成膜する。この時のI
TO膜のシート抵抗値は通常15〜25Ω/□程度のば
らつきが発生する。このまま1種類のマスクでフォトリ
ソグラフィーによるパターンニングを行うと、このシー
ト抵抗値のばらつきがそのまま面状ヒーターの総抵抗値
のばらつきとなってしまい、消費電力と発熱量に大きな
差が生じてしまう。An example of a specific method for producing this planar heater is shown below. First, ITO (Indium-Tin-Oxide) is deposited to a thickness of 100 nm on one surface of a 320 × 300 × 1.1 mm glass substrate (eg, # 7059 manufactured by Corning Incorporated) by a sputtering method. I at this time
The sheet resistance value of the TO film usually varies by about 15 to 25 Ω / □. If patterning is performed by photolithography using one type of mask as it is, the variation in the sheet resistance value directly causes the variation in the total resistance value of the planar heater, resulting in a large difference between the power consumption and the heat generation amount.
【0018】これを防ぐために、例えばITO成膜時の
シート抵抗値のばらつきの値によってフォトリソグラフ
ィー用のマスクを数種類用意する。このマスクのパター
ン形状をこれまで述ベてきた様に、所定の間隔でほぼ同
一形状の帯状の電極パターンを並列して設け、特定の範
囲のITO膜のシート抵抗値に対して所望の面状ヒータ
ー総抵抗値になるように、電圧印加用電極との接続部分
を所定のパターン部分のみ断線する様に作成する。この
時、帯状の電極パターンは並列して設けられ電圧印加用
電極に接続される様になっているので、所定のパターン
を断線させることにより総抵抗値を高い方向に調整する
ことができる。断線させる電極パターンの位置と本数を
適宜調整することにより、ITO膜のシート抵抗値のば
らつきに対して、所望のヒーター総抵抗値の範囲に入る
様に、特定の範囲のITO膜シート抵抗値に対するマス
クを数種類作成することができる。In order to prevent this, for example, several kinds of masks for photolithography are prepared according to the variation of the sheet resistance value when forming the ITO film. As described above, the pattern shape of this mask is provided by arranging strip-shaped electrode patterns of substantially the same shape in parallel at a predetermined interval to obtain a desired surface shape for the sheet resistance value of the ITO film in a specific range. In order to obtain the total resistance value of the heater, the connection portion with the voltage application electrode is formed so that only a predetermined pattern portion is disconnected. At this time, since the strip-shaped electrode patterns are arranged in parallel and are connected to the voltage application electrodes, it is possible to adjust the total resistance value in the higher direction by breaking the predetermined pattern. By appropriately adjusting the positions and the number of the electrode patterns to be disconnected, it is possible to adjust the ITO film sheet resistance value within a specific range so as to be within the desired heater total resistance value range with respect to the ITO film sheet resistance value variation. You can create several types of masks.
【0019】成膜後のITO膜のシート抵抗値を特定範
囲毎に選別してグループ分けし、それぞれのシート抵抗
値範囲に対応するマスクを用いてフォトリソグラフィー
を行うことにより、ITO膜のシート抵抗値がばらつい
ていても、出来上がった面状ヒーターの総抵抗値は所望
の範囲内に納めることができる。The sheet resistance value of the ITO film after the film formation is sorted into a specific range and divided into groups, and photolithography is performed using a mask corresponding to each sheet resistance value range. Even if the values vary, the total resistance of the finished sheet heater can be kept within a desired range.
【0020】電圧印加用電極3の作成法の1例として
は、前述の並列して設けられた帯状電極2のパターンの
両端部に電圧印加用電極3の抵抗値を帯状電極2に比ベ
て充分に低くするために、厚さ35μmの銅箔に50μ
mの粘着剤を塗布した幅3mm程度の銅箔テープを張り
付け、その上からAgペーストを幅6mm、厚さ0.1
mm程度で電極パターンに接して印刷して電圧印加用電
極3を形成した。As an example of a method of forming the voltage applying electrode 3, the resistance value of the voltage applying electrode 3 is compared with that of the band-shaped electrode 2 at both ends of the pattern of the belt-shaped electrodes 2 provided in parallel. 50μ on 35μm thick copper foil to make it sufficiently low
A copper foil tape with a width of about 3 mm coated with an adhesive of m is adhered, and Ag paste is applied onto the copper foil tape with a width of 6 mm and a thickness of 0.1.
The voltage application electrode 3 was formed by printing in contact with the electrode pattern with a size of about mm.
【0021】なお上記作成例では電極パターンの断線部
の形成方法として、フォトリソグラフィーのマスクの時
点で断線部4を形成する様にしたが、前述した様に例え
ばレーザ光によって所定の電極パターンのみカットする
様にしても良い。In the above-mentioned preparation example, the disconnection portion of the electrode pattern was formed by forming the disconnection portion 4 at the time of the mask of photolithography. However, as described above, for example, a predetermined electrode pattern is cut by a laser beam. You may choose to do it.
【0022】図2は、請求項2の発明における面状ヒー
ターの1実施例である。FIG. 2 shows an embodiment of the sheet heater according to the invention of claim 2.
【0023】絶縁性透明材料からなる基板1の上に発熱
源となる複数本の導電性透明薄膜(例えばITO、Sn
O2 等の薄膜)よりなる帯状電極2が方形領域に形成さ
れており、帯状電極2の両端部には前記方形領域の相対
向しない2辺の低抵抗な電圧印加用電極3が接続して設
けられている。On a substrate 1 made of an insulating transparent material, a plurality of conductive transparent thin films (for example, ITO, Sn) serving as heat sources are formed.
A strip electrode 2 made of a thin film of O 2 or the like) is formed in a rectangular region, and both ends of the strip electrode 2 are connected with low-resistance voltage applying electrodes 3 on two sides of the square region which do not face each other. It is provided.
【0024】ここで帯状電極2は図2に示す様に、ほぼ
同一の線幅で、基板1の左半分では基板1の下辺部から
左辺部に向かって設けられており、基板1の左下角に近
い程帯状電極2の長さが短く、中央部に近い程長く形成
されている。基板1の右半分ではほぼ左半分と対称形状
に帯状電極2が形成されている。ここで発熱用の帯状電
極2の発熱量は印加される電圧が一定の場合、その抵抗
値に反比例するため、線幅が同一であればその長さに反
比例した発熱量となる。As shown in FIG. 2, the strip electrodes 2 have substantially the same line width and are provided from the lower side portion of the substrate 1 toward the left side portion in the left half of the substrate 1, and the lower left corner of the substrate 1 is provided. The length of the strip electrode 2 is shorter as it is closer to, and is longer as it is closer to the central portion. On the right half of the substrate 1, the strip electrode 2 is formed symmetrically to the left half. Here, the heat generation amount of the strip-shaped electrode 2 for heat generation is inversely proportional to the resistance value when the applied voltage is constant, so that if the line width is the same, the heat generation amount is inversely proportional to the length.
【0025】したがって、図2に示した複数本の帯状電
極2に電圧を印加した場合、1本1本の帯状電極2の抵
抗値はその長さに比例するので、この面状ヒーターの発
熱分布は図3に示す様に帯状電極2の長さが短い部分ほ
ど温度が高く、長い部分ほど温度が低くなるため、左右
下角部の温度が高く上辺中央部に向かって温度が低くな
る様な発熱分布になる。Therefore, when a voltage is applied to the plurality of strip-shaped electrodes 2 shown in FIG. 2, the resistance value of each strip-shaped electrode 2 is proportional to its length. As shown in FIG. 3, the shorter the length of the strip electrode 2, the higher the temperature becomes, and the longer the portion becomes, the lower the temperature becomes. Therefore, the temperature at the lower left and right corners is high and the temperature becomes lower toward the center of the upper side. Distribution.
【0026】図4は請求項2の発明による面状ヒーター
の他の実施例である。FIG. 4 shows another embodiment of the planar heater according to the invention of claim 2.
【0027】基板1の上に発熱源となる複数本の帯状電
極2が形成されており、帯状電極2の両端部には低抵抗
な電圧印加用電極3が接続して設けられている。A plurality of strip-shaped electrodes 2 serving as heat sources are formed on the substrate 1, and low-resistance voltage applying electrodes 3 are connected to both ends of the strip-shaped electrode 2.
【0028】ここで電圧印加用電極3は基板1の下辺側
にほぼ二分して設けられており、帯状電極2は、ほぼ同
一の線幅で、二分された電圧印加用電極3の間を接続す
る形で下向きのコの字上に形成されている。ここで基板
1の外周に近い程帯状電極2の長さは長く、下辺中央部
に近い程短く形成されている。ここで発熱用の帯状電極
2の発熱量は、前述の様に印加される電圧が一定の場
合、その抵抗値に反比例するため、線幅が同一であれば
その長さに反比例した発熱量となる。Here, the voltage applying electrode 3 is provided on the lower side of the substrate 1 so as to be substantially divided into two parts, and the strip-shaped electrode 2 has substantially the same line width and connects between the two divided voltage applying electrodes 3. It is formed in the shape of a downward U-shape. Here, the length of the strip electrode 2 is longer as it is closer to the outer periphery of the substrate 1, and is shorter as it is closer to the center of the lower side. Here, the heat generation amount of the strip-shaped electrode 2 for heat generation is inversely proportional to the resistance value when the applied voltage is constant as described above. Therefore, if the line width is the same, the heat generation amount is inversely proportional to the length. Become.
【0029】したがって、図4に示した複数本の帯状電
極2に電圧を印加した場合、1本1本の帯状電極2の抵
抗値はその長さに比例するので、この面状ヒーターの発
熱分布は図5に示す様に帯状電極2の長さが短い部分ほ
ど温度が高く、長い部分ほど温度が低くなるため、下辺
中央部の温度が高く上辺左右角に向かって温度が低くな
る様な発熱分布になる。Therefore, when a voltage is applied to the plurality of strip electrodes 2 shown in FIG. 4, the resistance value of each strip electrode 2 is proportional to its length, and therefore the heat distribution of this sheet heater is distributed. As shown in FIG. 5, the shorter the length of the strip-shaped electrode 2, the higher the temperature becomes, and the longer the portion becomes, the lower the temperature becomes. Therefore, the temperature at the center of the lower side is high and the temperature becomes lower toward the left and right corners of the upper side. Distribution.
【0030】なお以上の実施例では発熱用の帯状電極2
の線幅をほぼ同一としたが、線幅は適宜変更が可能であ
る。また電圧印加用電極3の数、位置、形状や帯状電極
2の位置、形状等についても前述の実施例に限られるも
のではなく任意に変更可能であり、任意の発熱分布を持
つ様に面状ヒーターを作成することが可能である。更
に、図2又は図4に示される帯状電極2と電圧印加用電
極3間を選択的に接続して発熱分布を更に調整すること
もできる。In the above embodiments, the strip electrode 2 for heat generation is used.
Although the line widths of the above are almost the same, the line width can be changed appropriately. Further, the number, position and shape of the voltage applying electrodes 3 and the position and shape of the strip electrodes 2 are not limited to those in the above-mentioned embodiment, but can be changed arbitrarily, and are planar so as to have an arbitrary heat generation distribution. It is possible to create a heater. Further, the heat generation distribution can be further adjusted by selectively connecting the strip electrode 2 and the voltage applying electrode 3 shown in FIG. 2 or 4.
【0031】さて、この面状ヒーターを液晶表示装置の
加熱用に用いる場合、面状ヒーターに要求される発熱分
布は例えば以下に述べる様なものがある。When this sheet heater is used for heating a liquid crystal display device, the heat distribution required for the sheet heater is, for example, as described below.
【0032】通常、液晶表示装置を低温環境で使用する
場合、液晶材料の低温での応答速度が遅いため、ヒータ
ーで適当な温度まで加熱して使用する方法が良く用いら
れるが、この時のパネル面上での温度分布をみると、下
辺側の温度が低下しており、特に左右下角の温度低下が
著しくみられる。液晶材料の応答速度は最低温部で決ま
るため、この部分の温度を上げれば液晶材料をより高速
で駆動することができる。ここで、使用する面状ヒータ
ーの発熱分布を図2および図3で説明した実施例の様に
形成すれば、下辺側および左右下角の温度低下部分の温
度を上昇させることができ温度分布の補正をすることが
でき、液晶材料を高速で駆動することができるので、液
晶表示装置の表示品位を高めることができる。Usually, when the liquid crystal display device is used in a low temperature environment, the response speed of the liquid crystal material at a low temperature is slow, so that a method of heating to a proper temperature with a heater and using it is often used. Looking at the temperature distribution on the surface, the temperature on the lower side is decreasing, and in particular, the temperature decreasing at the lower left and right corners is remarkable. Since the response speed of the liquid crystal material is determined by the lowest temperature part, the liquid crystal material can be driven at a higher speed by raising the temperature of this part. Here, if the heat distribution of the planar heater used is formed as in the embodiment described with reference to FIGS. 2 and 3, it is possible to raise the temperature of the lower temperature portion and the temperature lowering portion on the lower left and right corners, and the temperature distribution is corrected. Since the liquid crystal material can be driven at high speed, the display quality of the liquid crystal display device can be improved.
【0033】特に液晶材料として強誘電性液晶を用いた
液晶表示装置の場合、TN液晶等と比較して液晶材料の
温度特性がかなりあり低温での応答速度が遅いことや、
また液晶パネル面内の温度分布を小さくする必要があ
り、本発明の面状ヒーターを用いて加熱保持して液晶パ
ネル面内の温度をある一定温度にしてかつ温度分布をあ
る範囲内で均一にすることにより、良好な画質を得るこ
とができた。尚、強誘電性液晶素子としては、前述のU
SPに示されるもの等を用いることができる。Particularly, in the case of a liquid crystal display device using a ferroelectric liquid crystal as a liquid crystal material, the temperature characteristic of the liquid crystal material is considerably larger than that of TN liquid crystal and the response speed at a low temperature is slow,
In addition, it is necessary to reduce the temperature distribution in the liquid crystal panel surface, and to maintain the temperature in the liquid crystal panel surface at a certain constant temperature by heating and maintaining it using the planar heater of the present invention and to make the temperature distribution uniform within a certain range. By doing so, good image quality could be obtained. As the ferroelectric liquid crystal element, the above-mentioned U
What is shown by SP etc. can be used.
【0034】尚、図1、図2及び図4のいずれにおいて
も、基板1と帯状電極2は透明でなくともよいが、液晶
表示装置への利用のしやすさから透明であることが好ま
しい。In each of FIGS. 1, 2 and 4, the substrate 1 and the strip electrode 2 do not have to be transparent, but are preferably transparent for easy use in a liquid crystal display device.
【0035】[0035]
【発明の効果】以上説明したように、請求項1の面状ヒ
ーターによれば、帯状電極パターンを帯状で並列に形成
し、かつ電圧印加用電極との接続を選択的に行なうこと
により、所望の発熱分布が得られる面状ヒーターを作成
することができる。また、面状ヒーターの作成にあたっ
て、導電性薄膜の成膜時のシート抵抗値のばらつきを、
並列に帯状に形成された帯状電極パターンと電圧印加用
電極との接続とを選択的に行うことによって調整し、出
来上がった面状ヒーターの総抵抗値を所望の範囲内にお
さめることができる。As described above, according to the sheet heater of the first aspect, the strip-shaped electrode patterns are formed in strips in parallel, and the connection with the voltage application electrode is selectively performed to obtain the desired pattern. It is possible to prepare a planar heater that can obtain the heat generation distribution of. In addition, when making a planar heater, the variation in sheet resistance during the formation of the conductive thin film
It is possible to adjust by selectively connecting the strip-shaped electrode patterns formed in parallel in strips and the voltage application electrodes, and to keep the total resistance value of the finished sheet heater within a desired range.
【0036】一方、請求項2の面状ヒーターによれば、
帯状電極を、相対向する2辺以外の辺に形成された電圧
印加用電極に接続することにより、発熱用の帯状電極の
長さを自由に変えられるので、所望の発熱分布を得られ
る面状ヒーターを作成することができる。On the other hand, according to the sheet heater of claim 2,
By connecting the strip electrodes to the voltage applying electrodes formed on the sides other than the two opposite sides, the length of the strip electrodes for heat generation can be freely changed, so that a desired heat distribution can be obtained. A heater can be created.
【0037】更に本発明によれば、強誘電性液晶等を用
いた液晶表示装置の液晶パネル面内の温度を均一に加熱
保持することができるので、電気光学応答にムラが少な
く、しかも高速の駆動を可能にすることができる。Further, according to the present invention, the temperature in the plane of the liquid crystal panel of the liquid crystal display device using the ferroelectric liquid crystal or the like can be uniformly heated and maintained, so that the electro-optical response has little unevenness and high speed. Driving can be enabled.
【図1】請求項1の発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the invention of claim 1;
【図2】請求項2の発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the invention of claim 2;
【図3】図2に示される面状ヒーターの発熱分布の説明
図である。FIG. 3 is an explanatory diagram of heat generation distribution of the sheet heater shown in FIG.
【図4】請求項2の発明の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the invention of claim 2;
【図5】図4に示される面状ヒーターの発熱分布の説明
図である。5 is an explanatory diagram of heat generation distribution of the sheet heater shown in FIG.
1 基板 2 帯状電極 3 電圧印加用電極 4 断線部 1 substrate 2 strip electrode 3 voltage application electrode 4 disconnection
Claims (4)
膜による帯状電極とこの帯状電極の両端付近に設けられ
た電圧印加用電極とを併せ持ち、該電圧印加用電極と帯
状電極とが選択的に接続されてなる面状ヒーター。1. On a substrate, a strip-shaped electrode made of a plurality of conductive thin films arranged in parallel and a voltage applying electrode provided near both ends of the strip-shaped electrode are combined, and the voltage applying electrode and the strip-shaped electrode are provided. A planar heater that is selectively connected.
膜からなる帯状電極と電圧印加用電極とを併せ持ち、帯
状電極を、前記方形領域の4辺のうち少なくとも1辺上
に形成された少なくとも2ケ所の前記電圧印加用電極
か、あるいは前記方形領域の少なくとも相対向しない2
辺に形成された少なくとも2ケ所の前記電圧印加用電極
と接続してなる面状ヒーター。2. A rectangular area on the substrate has a plurality of strip electrodes made of a plurality of conductive thin films and a voltage application electrode, and the strip electrode is formed on at least one of the four sides of the square area. Or at least two of the voltage applying electrodes or at least two of the rectangular regions which do not face each other.
A planar heater which is connected to at least two voltage applying electrodes formed on the sides.
薄膜が透明導電膜である請求項1又は2に記載の面状ヒ
ーター。3. The planar heater according to claim 1, wherein the substrate is made of an insulating transparent material, and the conductive thin film is a transparent conductive film.
記載の面状ヒーター。4. The planar heater according to claim 1, which is for a liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27888991A JPH0593903A (en) | 1991-10-01 | 1991-10-01 | Panel heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27888991A JPH0593903A (en) | 1991-10-01 | 1991-10-01 | Panel heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0593903A true JPH0593903A (en) | 1993-04-16 |
Family
ID=17603515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27888991A Withdrawn JPH0593903A (en) | 1991-10-01 | 1991-10-01 | Panel heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0593903A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090057295A1 (en) * | 2007-08-31 | 2009-03-05 | Korea Institute Of Machinery & Materials | Heating substrate equipped with conductive thin film and electrode, and manufacturing method of the same |
US8441608B2 (en) | 2010-06-16 | 2013-05-14 | Lg Display Co., Ltd. | Liquid crystal display including heating element between bottom cover and backlight unit |
JP2017208190A (en) * | 2016-05-17 | 2017-11-24 | 大日本印刷株式会社 | Heating electrode device, electrically heated panel, and vehicle |
WO2022255269A1 (en) * | 2021-06-02 | 2022-12-08 | 株式会社デンソー | Heater device |
CN116360139A (en) * | 2023-03-15 | 2023-06-30 | 上海中航光电子有限公司 | Display panel and display device |
-
1991
- 1991-10-01 JP JP27888991A patent/JPH0593903A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090057295A1 (en) * | 2007-08-31 | 2009-03-05 | Korea Institute Of Machinery & Materials | Heating substrate equipped with conductive thin film and electrode, and manufacturing method of the same |
KR100915708B1 (en) * | 2007-08-31 | 2009-09-04 | 한국기계연구원 | Heating substrate equipped with conductive-thin-film and electrode and manufacturing method of the same |
EP2031934A3 (en) * | 2007-08-31 | 2013-03-06 | Korea Institute Of Machinery & Materials | Heating substrate equipped with conductive-thin-film and electrode and manufacturing method of the same |
US8791394B2 (en) | 2007-08-31 | 2014-07-29 | Korea Institute Of Machinery & Materials | Heating substrate equipped with conductive thin film and electrode, and manufacturing method of the same |
US8441608B2 (en) | 2010-06-16 | 2013-05-14 | Lg Display Co., Ltd. | Liquid crystal display including heating element between bottom cover and backlight unit |
KR101323443B1 (en) * | 2010-06-16 | 2013-10-29 | 엘지디스플레이 주식회사 | Liquid crystal display device |
JP2017208190A (en) * | 2016-05-17 | 2017-11-24 | 大日本印刷株式会社 | Heating electrode device, electrically heated panel, and vehicle |
WO2022255269A1 (en) * | 2021-06-02 | 2022-12-08 | 株式会社デンソー | Heater device |
CN116360139A (en) * | 2023-03-15 | 2023-06-30 | 上海中航光电子有限公司 | Display panel and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05203999A (en) | Electric color former | |
KR20120042683A (en) | Display device compring conductive pattern | |
JPH05173153A (en) | Liquid crystal display element | |
JPH0593903A (en) | Panel heater | |
WO2022121722A1 (en) | Color changing device and control method thereof | |
CN109041308B (en) | Electric heating functional glass and display module assembly | |
EP0509827B1 (en) | A colour electrooptical device | |
EP1154308B1 (en) | Liquid crystal display device | |
JP2655434B2 (en) | Matrix liquid crystal display | |
JPH03107123A (en) | Panel heater | |
JPH0593904A (en) | Panel heater and liquid crystal display device formed by using this heater | |
JP2001100235A (en) | Liquid crystal display device | |
JPH05196951A (en) | Liquid crystal display element | |
JPH02111920A (en) | Liquid crystal display device | |
JP4458710B2 (en) | Panel heater and liquid crystal display | |
JP3951539B2 (en) | Liquid crystal display | |
JP2004170852A (en) | Display device | |
KR100325844B1 (en) | Liquid crystal display panel and method of fabricating electrodes thereof | |
KR100294197B1 (en) | Liquid crystal display having planarization layer and method for fabricating the same | |
JPS62160424A (en) | Ferroelectric liquid crystal element | |
JPH04271323A (en) | Liquid crystal display element | |
JPH05107526A (en) | Transparent panel heater and liquid crystal display device provided with transparent panel heater | |
JP2523486B2 (en) | Liquid crystal display panel and manufacturing method thereof | |
JPH03116016A (en) | Liquid crystal display device | |
JP3618546B2 (en) | High transmittance transparent conductive film and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990107 |