JPH0593616A - Method and apparatus for measuring straightness - Google Patents

Method and apparatus for measuring straightness

Info

Publication number
JPH0593616A
JPH0593616A JP25397491A JP25397491A JPH0593616A JP H0593616 A JPH0593616 A JP H0593616A JP 25397491 A JP25397491 A JP 25397491A JP 25397491 A JP25397491 A JP 25397491A JP H0593616 A JPH0593616 A JP H0593616A
Authority
JP
Japan
Prior art keywords
laser beams
laser
light receiving
laser beam
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25397491A
Other languages
Japanese (ja)
Inventor
Toshio Takitani
俊夫 滝谷
Tsutomu Fujita
藤田  勉
Akio Komura
明夫 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP25397491A priority Critical patent/JPH0593616A/en
Publication of JPH0593616A publication Critical patent/JPH0593616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a straightness measuring method so that the measuring errors caused by fluctuation of air are eliminated when the straightness of a material to be measured is measured in the air by using laser beams. CONSTITUTION:Two laser beams having the different wavelength are cast on a light receiving part 2, which is provided in a moving body for guiding a material to be measured. The central position of two laser beams are detected with quadripartite photodiode 24 and 25, respectively. the swaying of each laser beam caused by the fluctuation of air is removed by using the output of each photodiode and the output sensitivity, which is obtained beforehand for the fluctuation of the air corresponding to each wavelength. Thus, the mechanical displacement of the light receiving part is obtained, and the straightness of the material to be measured is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の案内用移送
軸などの真直度を、レーザビームを使用して測定する真
直度測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a straightness measuring method and measuring apparatus for measuring the straightness of a guide shaft of a machine tool by using a laser beam.

【0002】[0002]

【従来の技術】従来、レーザビームを使用して真直度を
測定する方法としては、オートコリメーション法、干渉
法、2重像法、モアレ縞法、および2次元変位測定方法
などがある。
2. Description of the Related Art Conventionally, as a method of measuring straightness using a laser beam, there are an autocollimation method, an interferometric method, a double image method, a moire fringe method, a two-dimensional displacement measuring method and the like.

【0003】例えば、2次元変位測定方法としては、特
開平1−189504号公報に開示されたものがあり、
この方法は、被測定面に装着された四分割フォトダイオ
ードにレーザビームを照射して、四分割フォトダイオー
ドの中心からのずれを検出して、測定面の変位を測定す
る方法である。
For example, as a two-dimensional displacement measuring method, there is one disclosed in Japanese Patent Application Laid-Open No. 1-189504.
This method is a method of irradiating a laser beam to a four-division photodiode mounted on a surface to be measured, detecting a deviation from the center of the four-division photodiode, and measuring a displacement of the measurement surface.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の各
測定方法においては、光を使用しており、したがって測
定を空気中で行う場合には、空気のゆらぎ(屈折率ゆら
ぎ)による測定誤差を伴うという問題があった。
However, in each of the conventional measuring methods described above, light is used, and therefore, when the measurement is performed in the air, the measurement error due to the fluctuation of the air (refractive index fluctuation) is caused. There was a problem with it.

【0005】そこで、本発明は上記問題を解消し得る真
直度測定方法および測定装置を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a straightness measuring method and measuring apparatus which can solve the above problems.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1の手段は、波長の異なる2本のレーザ
ビームを混合器で1本のレーザビームとなし、このレー
ザビームを、被測定物を案内する移動体に取り付けられ
た受光部の分光器で2本のレーザビームに分割し、この
2本のレーザビームを、それぞれフィルターを通過させ
て元の波長成分のレーザビームを取り出し、これら取り
出された2本のレーザビームの中心位置をそれぞれ受光
素子にて検出し、これら各受光素子からの出力およびあ
らかじめ求められた各波長に応じた空気ゆらぎに対する
出力感度を使用して、空気ゆらぎによるレーザビームの
ふらつきを除去することにより、受光部の機械的変位を
求めて被測定物の真直度を測定する真直度測定方法であ
る。
In order to solve the above problems, the first means of the present invention is to form two laser beams having different wavelengths into one laser beam by a mixer, The spectroscope of the light receiving unit attached to the moving body that guides the object to be measured divides it into two laser beams, and these two laser beams are passed through filters to extract the laser beam of the original wavelength component. , The center positions of these two extracted laser beams are detected by the light receiving elements, and the output from these light receiving elements and the output sensitivity to air fluctuations corresponding to each wavelength obtained in advance are used to detect the air This is a straightness measuring method for measuring the straightness of an object to be measured by obtaining the mechanical displacement of the light receiving part by removing the fluctuation of the laser beam due to the fluctuation.

【0007】また、上記課題を解決するため、本発明の
第2の手段は、波長の異なるレーザビームをそれぞれ発
射する2個のレーザ発振器と、これら各レーザ発振器か
ら発射されたレーザビームを混合する混合器とを有する
発光部、および上記混合器により混合されたレーザビー
ムを2つに分割する分光器と、この分割された各レーザ
ビームからそれぞれ元の波長成分を取り出す2個のフィ
ルターと、これら各フィルターを通過したレーザビーム
の中心位置をそれぞれ検出する2個の受光素子とを有す
る受光部、並びに上記両受光素子から得られた出力とあ
らかじめ求められた各波長に応じた空気ゆらぎに対する
出力感度とを使用することにより、空気ゆらぎを除去し
て受光部の機械的変位を演算する演算部とを具備した真
直度測定装置である。
In order to solve the above problems, the second means of the present invention is to mix two laser oscillators respectively emitting laser beams having different wavelengths and the laser beams emitted from these laser oscillators. A light emitting part having a mixer, a spectroscope for splitting the laser beam mixed by the mixer into two, two filters for extracting the original wavelength components from the split laser beams, respectively, A light receiving portion having two light receiving elements for detecting the center position of each laser beam passing through each filter, and output sensitivity to the air fluctuations corresponding to the outputs obtained from the both light receiving elements and the wavelengths obtained in advance. A straightness measuring device including a calculation unit that removes air fluctuations and calculates the mechanical displacement of the light receiving unit by using .

【0008】[0008]

【作用】波長の異なる2本のレーザビームを混合して1
本になし、この1本にされたレーザビームを移動体に取
り付けられた受光部に照射し、そして受光部で元の波長
成分の2本のレーザビームに分割し、この分割された各
レーザビームの中心位置を受光素子により検出するとと
もに、これら両レーザビームの検出された出力に、あら
かじめ求められている各波長成分に応じた空気ゆらぎに
対する出力感度を考慮した演算を施すことにより、空気
ゆらぎによる影響を除去した受光部の機械的変位、すな
わち受光部を取り付けた移動体を案内する被測定物の真
直度を正確に求める方法である。
[Operation] By mixing two laser beams having different wavelengths,
This laser beam is made into a book, the light receiving section attached to the moving body is irradiated with this single laser beam, and the light receiving section divides the laser beam into two laser beams of the original wavelength component. The center position of the laser beam is detected by the light receiving element, and the detected output of both laser beams is calculated by considering the output sensitivity to the air fluctuation corresponding to each wavelength component obtained in advance. This is a method for accurately obtaining the mechanical displacement of the light-receiving unit with the influence removed, that is, the straightness of the object to be measured which guides the moving body to which the light-receiving unit is attached.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1および図2に
基づき説明する。本実施例に係る真直度測定装置は、図
1に示すように、波長の異なるレーザビームA,Bをそ
れぞれ発射する第1レーザ発振器(例えば、He−Cd
レーザ発振器、λ1 =0.44μm)11および第2レーザ
発振器(例えば、He−Neレーザ発振器、λ2 =0.63
μm)12と、これら各レーザ発振器11,12から発
射された両レーザビームを混合する第1ビームスプリッ
タ(混合器の一例で、通常のビームスプリッタを逆に使
用したものである)13と、第2レーザ発振器12から
のレーザビームを第1ビームスプリッタ13に導く反射
鏡14とを有する発光部1、および上記第1ビームスプ
リッタ13により混合されたレーザビームを2つのレー
ザビームに分割する第2ビームスプリッタ(分光器)2
1と、この第2ビームスプリッタ21により分割された
各レーザビームをそれぞれ所定の波長成分、すなわち元
の波長成分だけを取り出す第1および第2干渉フィルタ
ー22,23と、これら各干渉フィルター22,23を
通過したレーザビームの中心位置を検出する第1および
第2四分割フォトダイオード(受光素子)24,25と
を有する受光部2、並びに上記各四分割フォトダイオー
ド24,25から得られた各波長成分の出力に基づき、
空気ゆらぎを除去した受光部2の機械的変位を求める演
算部(図示せず)を具備している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, the straightness measuring apparatus according to the present embodiment includes a first laser oscillator (for example, He-Cd) that emits laser beams A and B having different wavelengths.
Laser oscillator, λ 1 = 0.44 μm) 11 and second laser oscillator (eg, He-Ne laser oscillator, λ 2 = 0.63)
μm) 12, a first beam splitter (an example of a mixer, which is an ordinary beam splitter used in reverse) 13 for mixing both laser beams emitted from the respective laser oscillators 11, 12, and 2 A light emitting section 1 having a reflecting mirror 14 for guiding a laser beam from a laser oscillator 12 to a first beam splitter 13, and a second beam for splitting the laser beam mixed by the first beam splitter 13 into two laser beams. Splitter (spectrometer) 2
1 and first and second interference filters 22 and 23 for extracting each laser beam split by the second beam splitter 21 from a predetermined wavelength component, that is, only the original wavelength component, and the interference filters 22 and 23. Light receiving portion 2 having first and second four-divided photodiodes (light receiving elements) 24 and 25 for detecting the center position of the laser beam that has passed through, and each wavelength obtained from each of the above four-divided photodiodes 24 and 25. Based on the output of the component,
An arithmetic unit (not shown) for obtaining a mechanical displacement of the light receiving unit 2 from which air fluctuations are removed is provided.

【0010】上記発光部1は被測定物例えば案内用移送
軸に沿った位置に固定されるとともに、受光部2全体は
移送軸に案内される直進移動体(図示せず)に取り付け
られており、移送軸の真直度が測定される。
The light emitting section 1 is fixed at a position along an object to be measured, for example, a guide transfer axis, and the entire light receiving section 2 is attached to a rectilinear moving body (not shown) guided by the transfer axis. , The straightness of the transfer axis is measured.

【0011】以下、真直度の測定方法を具体的に説明す
る。各レーザ発振器1,2からそれぞれ波長がλ1 およ
びλ2 の2本のレーザビームA,Bを発射して、通常の
ビームスプリッタを逆に配置してなる第1ビームスプリ
ッタ11により1本の2重波長レーザビームCとなし、
このレーザビームCを、直進移動体に取り付けられた受
光部2に照射する。
The straightness measuring method will be described in detail below. Two laser beams A and B having wavelengths λ 1 and λ 2 are emitted from the laser oscillators 1 and 2, respectively, and one laser beam is divided into two beams by a first beam splitter 11 in which a normal beam splitter is arranged in reverse. No double wavelength laser beam C,
The laser beam C is applied to the light receiving unit 2 attached to the rectilinear moving body.

【0012】受光部2では、この2重波長レーザビーム
Cを第2ビームスプリッタ21で2本に分割し、そして
この分割された各レーザビームをそれぞれ干渉フィルタ
ー22,23で元の単波長成分のレーザビームD,Eに
戻す。例えば、第1干渉フィルター22を通過したレー
ザビームDはλ1 の波長成分だけのものとなり、また第
2干渉フィルター23を通過したレーザビームEはλ2
の波長成分だけのものとなる。
In the light receiving section 2, the double wavelength laser beam C is split into two beams by the second beam splitter 21, and the split laser beams are divided into the original single wavelength components by the interference filters 22 and 23, respectively. The laser beams D and E are returned. For example, the laser beam D that has passed through the first interference filter 22 has only the wavelength component of λ 1 , and the laser beam E that has passed through the second interference filter 23 has λ 2.
It becomes only the wavelength component of.

【0013】そして、この2つの単波長レーザビーム
D,Eをそれぞれ四分割フォトダイオード24,25で
受光し、各レーザビームD,Eの中心位置を検出する。
受光部2全体は、直進移動体の上に載置されており、図
1の矢印aにて示すように、2重波長レーザビームCの
光軸に沿って移動させられる。
The two single-wavelength laser beams D and E are received by the four-divided photodiodes 24 and 25, respectively, and the center positions of the laser beams D and E are detected.
The entire light receiving unit 2 is mounted on a rectilinear moving body and is moved along the optical axis of the double wavelength laser beam C as shown by an arrow a in FIG.

【0014】この時、2つの四分割フォトダイオード2
4,25により受光された出力に、演算部で所定の演算
を施すと、直進移動体を案内する移送軸の真直度が、測
定室内の空気のゆらぎによる誤差を除去した形で得られ
る。
At this time, the two quadrant photodiodes 2
When the calculation unit performs a predetermined calculation on the outputs received by 4, 25, the straightness of the transfer shaft for guiding the rectilinear moving body can be obtained in a form in which the error due to the fluctuation of the air in the measurement chamber is removed.

【0015】ここで、空気のゆらぎによる誤差を除去す
る演算方法について説明する。先に、実験室内で起こる
大気の状態を想定して、2つの異なる波長のレーザビー
ムによる光路差を求め、その光路差と検出しようとする
機械的変位(本実施例においては1μm 以下のオーダ
ー)とのオーダーが同じであるかどうかを調べてみる。
Now, a calculation method for eliminating an error due to air fluctuation will be described. First, assuming the atmospheric conditions that occur in the laboratory, obtain the optical path difference between the laser beams of two different wavelengths, and detect the optical path difference (the order of 1 μm or less in this embodiment). Check if the orders with and are the same.

【0016】すなわち、乾燥空気の屈折率nは、波長が
0.2 〜2μmの範囲内において、下記の実験式(1) によ
り表される。 (n−1)×108 =8342.13 +2406030 /(130 −σ
2 )+15997 /(38.9−σ2 ) ・・・・(1) (1) 式中、σは波長の逆数(μm-1 )である。
That is, the refractive index n of dry air is
It is represented by the following empirical formula (1) within the range of 0.2 to 2 μm. (N-1) × 10 8 = 8342.13 +2406030 / (130 -σ
2 ) + 15997 / (38.9−σ 2 ) ... (1) In the formula (1), σ is the reciprocal of the wavelength (μm −1 ).

【0017】一方、乾燥空気の屈折率nは、気圧と温度
の関数であり、下記(2) 式により表される。 n=1+10-6(k・P/T) ・・・・(2) (2) 式中、P(mbar)は気圧、T(K)は温度、kは定
数である。
On the other hand, the refractive index n of dry air is a function of atmospheric pressure and temperature and is expressed by the following equation (2). n = 1 + 10 −6 (k · P / T) (2) (2) In the formula, P (mbar) is atmospheric pressure, T (K) is temperature, and k is a constant.

【0018】上記(1) 式および(2) 式により、各波長
(λ1 ,λ2 )に対する屈折率(n1,n2 )を求める
と、下記(3) 式および(4) 式のようになる。 n1 =1+10-6(79.89P/T) ( λ1 =0.44μm) ・・・・(3) n2 =1+10-6(78.80P/T) ( λ2 =0.63μm) ・・・・(4) (3) 式および(4) 式をテーラー級数展開して、温度ゆら
ぎ (T′) と屈折率ゆらぎ(n1′) ,(n2′) との
関係を求めると、下記(5) 式および(6) 式のようにな
る。
When the refractive indices (n 1 , n 2 ) for the respective wavelengths (λ 1 , λ 2 ) are calculated by the above equations (1) and (2), the following equations (3) and (4) are obtained. become. n 1 = 1 + 10 -6 (79.89P / T) (λ 1 = 0.44μm) ・ ・ ・ (3) n 2 = 1 + 10 -6 (78.80P / T) (λ 2 = 0.63μm) ・ ・ ・ ( 4) The relationship between temperature fluctuation (T ′) and refractive index fluctuations (n 1 ′) and (n 2 ′) is obtained by Taylor series expansion of equations (3) and (4). It becomes like Formula and Formula (6).

【0019】[0019]

【数1】 [Equation 1]

【0020】上記(5) 式および(6) 式中、バーPおよび
バーTは、それぞれの平均値を示す。
In the above equations (5) and (6), bar P and bar T represent respective average values.

【0021】この時、実験室中の空気を局所等方的乱流
と仮定すると、その内部尺度ηは、下記(7) 式のように
近似される。なお、内部尺度ηを概略的に説明すると、
最も小さな気体の乱れの尺度のことで、大気中の圧力ゆ
らぎおよび温度ゆらぎの空間分布がどうのような空間周
波数で広がっているかを測るための尺度であると考えら
れ、もう少し具体的に言うと、今、状態量(P,T)の
空気塊が空間に多数散らばってある分布を作っているも
のとすると、この時の空気塊の代表寸法が内部尺度のオ
ーダーに等しいと考えられる。
At this time, assuming that the air in the laboratory is a local isotropic turbulence, its internal scale η is approximated by the following equation (7). In addition, when the internal scale η is schematically explained,
It is the smallest measure of gas turbulence and is considered to be a measure for measuring the spatial frequency distribution of pressure and temperature fluctuations in the atmosphere. Now, if it is assumed that a large number of air masses of state quantities (P, T) are scattered in the space, a typical size of the air masses at this time is considered to be equal to the order of the internal scale.

【0022】η≒l・Re -3/4 ・・・・(7) (7) 式中、lおよびRe は、それぞれ考えている系の代
表長さおよびレイノルズ数を表す。
[0022] During η ≒ l · R e -3/4 ···· (7) (7) formula, l and R e represents a characteristic length and Reynolds number of the system believes respectively.

【0023】例えば、l=1m,Re =105 とすると、
ηは約0.18となる。ところで、波長の違いによるレーザ
ビームの光路差である偏差の最大値ρmaxは、下記(8)
式により近似される。
For example, if l = 1 m and R e = 10 5 ,
η is about 0.18. By the way, the maximum value ρ max of the deviation that is the optical path difference of the laser beam due to the difference in wavelength is as follows (8)
It is approximated by the formula.

【0024】 ρmax =L2 (dn1 /dz−dn2 /dz)/8 ・・・・(8) (8) 式中、Lは光路長を表す。上記(8) 式において、
(dn1 /dz)が(n1′/η)に、また(dn2
dz)が(n2′/η)にそれぞれ近似的に等しいこと
を利用すると、ρmax が求められる。
Ρ max = L 2 (dn 1 / dz-dn 2 / dz) / 8 (8) (8) In the formula, L represents the optical path length. In the above equation (8),
(Dn 1 / dz) becomes (n 1 ′ / η), and (dn 2 /
Utilizing the fact that dz) is approximately equal to (n 2 ′ / η), respectively, ρ max is obtained.

【0025】例えば、温度ゆらぎT′=0.1とすると
(L=1mに対して)、ρmax は約1μm となる。した
がって、レーザビームの偏差の最大値のオーダーと、測
定しようとする機械的変位のオーダーとが等しく、測定
精度を確保することができることが分かる。もし、偏差
が小さすぎれば、後述する(11)式の右辺の分母が小さく
なり、測定誤差の原因となり、逆に大きすぎると、機械
的変位の信号(M:後述する)が空気ゆらぎの信号(A
・ε:後述する)に埋もれて、やはり測定誤差の原因と
なる。
For example, if the temperature fluctuation T '= 0.1 (for L = 1 m), then ρ max will be about 1 μm. Therefore, it can be seen that the order of the maximum value of the deviation of the laser beam and the order of the mechanical displacement to be measured are equal, and the measurement accuracy can be ensured. If the deviation is too small, the denominator on the right side of equation (11), which will be described later, will be small, causing a measurement error. On the contrary, if it is too large, the mechanical displacement signal (M: described later) will be a signal of air fluctuation. (A
・ Ε: to be described later), which also causes measurement error.

【0026】次に、空気のゆらぎを除去し得る演算方法
について説明する。すなわち、機械的変位に対する第1
四分割フォトダイオード24と第2四分割フォトダイオ
ード25との出力が同じになるように調節した後、空気
ゆらぎに対する各四分割フォトダイオード24,25の
出力感度(A1 ,A2 )をあらかじめ測定しておく。
Next, a calculation method capable of removing the fluctuation of air will be described. That is, the first for mechanical displacement
After adjusting the outputs of the four-divided photodiode 24 and the second four-divided photodiode 25 to be the same, the output sensitivity (A 1 , A 2 ) of each of the four-divided photodiodes 24, 25 to air fluctuation is measured in advance. I'll do it.

【0027】そして、機械的変位による出力をM、各波
長に応じた空気ゆらぎに対する出力をA1・ε,A1・εと
すると、各四分割フォトダイオード24,25の出力S
1 ,S2 は、下記(9) 式および(10)式で表される。
When the output due to the mechanical displacement is M and the outputs for the air fluctuations corresponding to the respective wavelengths are A 1 .epsilon. And A 1 .epsilon., The outputs S of the four-divided photodiodes 24 and 25 are S.
1 and S 2 are represented by the following equations (9) and (10).

【0028】S1 =M+A1・ε ・・・・(9) S2 =M+A2・ε ・・・・(10) 上記(9) 式および(10)式中、εは空気ゆらぎによるレー
ザビームのふらつきを表す。
S 1 = M + A 1 · ε ··· (9) S 2 = M + A 2 · ε ··· (10) In the above equations (9) and (10), ε is a laser beam due to air fluctuations. Represents the wobble of.

【0029】したがって、(9) 式および(10)式により、
機械的変位Mを求めると、下記(11)式のように表され、
εをキャンセルすることができる。 M=(A1・S1 −A2・S2 )/(A1 −A2 ) ・・・・(11) このように、空気ゆらぎに影響されることなく、直進移
動体の正確な機械的変位、すなわち移送軸の真直度を測
定することができる。
Therefore, according to the equations (9) and (10),
When the mechanical displacement M is calculated, it is expressed as the following equation (11),
ε can be canceled. M = (A 1 · S 1 −A 2 · S 2 ) / (A 1 −A 2 ) ... (11) As described above, an accurate machine for a straight moving body without being affected by air fluctuations. Displacement, that is, the straightness of the transfer axis can be measured.

【0030】[0030]

【発明の効果】以上のように本発明の構成によると、波
長の異なる2本のレーザビームを使用して、それぞれの
レーザビームの位置を受光素子により検出するととも
に、これら両レーザビームの検出された出力に、あらか
じめ求められている各波長に応じた空気ゆらぎに対する
出力感度を考慮した演算を施すことにより、空気ゆらぎ
による影響を除去した受光部の機械的変位を求めること
ができ、したがってレーザビームを使用して、受光部を
取り付けた移動体を案内する被測定物の真直度の測定を
行う場合、通常の室内すなわち空気中においても正確な
測定を行うことができる。
As described above, according to the structure of the present invention, the position of each laser beam is detected by the light receiving element by using two laser beams having different wavelengths, and both laser beams are detected. The output of the laser beam can be calculated by taking into account the output sensitivity to air fluctuations corresponding to each wavelength that has been obtained in advance, and the mechanical displacement of the light receiving part can be obtained without the effects of air fluctuations. When the straightness of the object to be measured which guides the moving body to which the light receiving section is attached is measured by using, the accurate measurement can be performed even in a normal room, that is, in the air.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における真直度測定装置の概
略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a straightness measuring device according to an embodiment of the present invention.

【図2】同実施例における真直度測定装置の受光部の具
体的構成を示す斜視図である。
FIG. 2 is a perspective view showing a specific configuration of a light receiving section of the straightness measuring device in the embodiment.

【符号の説明】[Explanation of symbols]

1 発光部 2 受光部 3 演算部 11 第1レーザ発振器 12 第2レーザ発振器 13 第1ビームスプリッタ 21 第2ビームスプリッタ 22 干渉フィルター 23 干渉フィルター 24 第1四分割フィルター 25 第2四分割フィルター REFERENCE SIGNS LIST 1 light emitting unit 2 light receiving unit 3 arithmetic unit 11 first laser oscillator 12 second laser oscillator 13 first beam splitter 21 second beam splitter 22 interference filter 23 interference filter 24 first four-division filter 25 second four-division filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】波長の異なる2本のレーザビームを混合器
で1本のレーザビームとなし、このレーザビームを、被
測定物を案内する移動体に取り付けられた受光部の分光
器で2本のレーザビームに分割し、この2本のレーザビ
ームを、それぞれフィルターを通過させて元の波長成分
のレーザビームを取り出し、これら取り出された2本の
レーザビームの中心位置をそれぞれ受光素子にて検出
し、これら各受光素子からの出力およびあらかじめ求め
られた各波長に応じた空気ゆらぎに対する出力感度を使
用して、空気ゆらぎによるレーザビームのふらつきを除
去することにより、受光部の機械的変位を求めて被測定
物の真直度を測定することを特徴とする真直度測定方
法。
Claim: What is claimed is: 1. A mixer mixes two laser beams having different wavelengths into one laser beam, and two laser beams are combined by a spectroscope of a light receiving section attached to a moving body for guiding an object to be measured. The laser beams of the original wavelength components are extracted by passing these two laser beams through the filters, and the center positions of the two extracted laser beams are detected by the light receiving element. However, by using the output from each of these light-receiving elements and the output sensitivity to air fluctuations corresponding to each wavelength that was obtained in advance, the fluctuation of the laser beam due to air fluctuations can be eliminated to obtain the mechanical displacement of the light-receiving part. A straightness measuring method, which comprises measuring the straightness of an object to be measured.
【請求項2】波長の異なるレーザビームをそれぞれ発射
する2個のレーザ発振器と、これら各レーザ発振器から
発射されたレーザビームを混合する混合器とを有する発
光部、および上記混合器により混合されたレーザビーム
を2つに分割する分光器と、この分割された各レーザビ
ームからそれぞれ元の波長成分を取り出す2個のフィル
ターと、これら各フィルターを通過したレーザビームの
中心位置をそれぞれ検出する2個の受光素子とを有する
受光部、並びに上記両受光素子から得られた出力とあら
かじめ求められた各波長に応じた空気ゆらぎに対する出
力感度とを使用することにより、空気ゆらぎを除去して
受光部の機械的変位を演算する演算部とを具備したこと
を特徴とする真直度測定装置。
2. A light emitting section having two laser oscillators for respectively emitting laser beams having different wavelengths, and a mixer for mixing the laser beams emitted from the respective laser oscillators, and a mixer for mixing the laser beams. A spectroscope that splits the laser beam into two, two filters that extract the original wavelength component from each of the split laser beams, and two filters that detect the center position of the laser beam that has passed through these filters By using the output obtained from both the light receiving elements and the output sensitivity to the air fluctuation corresponding to each wavelength obtained in advance and the light receiving section having the light receiving element of A straightness measuring device comprising: a calculation unit that calculates a mechanical displacement.
JP25397491A 1991-10-02 1991-10-02 Method and apparatus for measuring straightness Pending JPH0593616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25397491A JPH0593616A (en) 1991-10-02 1991-10-02 Method and apparatus for measuring straightness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25397491A JPH0593616A (en) 1991-10-02 1991-10-02 Method and apparatus for measuring straightness

Publications (1)

Publication Number Publication Date
JPH0593616A true JPH0593616A (en) 1993-04-16

Family

ID=17258519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25397491A Pending JPH0593616A (en) 1991-10-02 1991-10-02 Method and apparatus for measuring straightness

Country Status (1)

Country Link
JP (1) JPH0593616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111193495A (en) * 2019-12-12 2020-05-22 浙江工业大学 Filtering processing method for workpiece alignment data
KR20210112298A (en) * 2018-10-12 2021-09-14 일렉트릭 파워 리서치 인스티튜트, 인크. Method for Measuring Surface Properties in Optically Distorting Media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326005A (en) * 1991-04-26 1992-11-16 Res Dev Corp Of Japan Straightness measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326005A (en) * 1991-04-26 1992-11-16 Res Dev Corp Of Japan Straightness measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210112298A (en) * 2018-10-12 2021-09-14 일렉트릭 파워 리서치 인스티튜트, 인크. Method for Measuring Surface Properties in Optically Distorting Media
JP2022509732A (en) * 2018-10-12 2022-01-24 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド How to measure surface properties in an optically distorted medium
US11788834B2 (en) 2018-10-12 2023-10-17 Electric Power Research Institute, Inc. Method for measuring surface characteristics in optically distorting media
CN111193495A (en) * 2019-12-12 2020-05-22 浙江工业大学 Filtering processing method for workpiece alignment data
CN111193495B (en) * 2019-12-12 2023-06-02 浙江工业大学 Filtering processing method for workpiece straightening data

Similar Documents

Publication Publication Date Title
CN103954589B (en) The precision measurement apparatus of a kind of optical material specific refractory power and method
CN108917643A (en) Three dimensional shape measurement system and method based on the scanning ranging of double light combs
US4775236A (en) Laser based roundness and diameter gaging system and method of using same
JP3426552B2 (en) Shape measuring device
US4678337A (en) Laser based gaging system and method of using same
JPH0593616A (en) Method and apparatus for measuring straightness
US4345838A (en) Apparatus for spectrometer alignment
US3622243A (en) Light scattering spectrophotometer with vibrating exit slip
JPS635682B2 (en)
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
CN113358037B (en) Laser displacement measuring device and method
CN110243760B (en) Line domain frequency domain optical coherence tomography system and longitudinal coordinate calibration method thereof
FI71021C (en) FOERFARANDE FOER MAETNING AV FYSIKALISKA PARAMETRAR FOER ETT ROERLIGT FOEREMAOL MED HJAELP AV EN KOHERENT LJUSKAELLA GENOMHETERODYNE-DETEKTERING AV LJUS REFLEKTERAT ELLER SPRITT F RAN DET ROERLIGA FOER
Marcus Fiber optic interferometry for industrial process monitoring and control applications
JP2592254B2 (en) Measuring device for displacement and displacement speed
US20030058452A1 (en) Signal modulation compensation for a wavelength meter
JP2679810B2 (en) Optical wavelength measurement device
JPS63309804A (en) Laser interference measuring method
CA2053724C (en) System for measuring the refractive index profile of optical components
JPS6147534A (en) Method and apparatus for measuring light loss characteristic of optical fiber
JPH0755418A (en) Displacement gauge
SU700027A1 (en) Interference method of measuring distances
RU2042961C1 (en) Method of phasing multiaperture optical system
JPS63259439A (en) Semiconductor laser evaluator
JP2002277240A (en) High-precision time standardized ultrashort laser pulse distance measuring instrument