JPH0755418A - Displacement gauge - Google Patents

Displacement gauge

Info

Publication number
JPH0755418A
JPH0755418A JP5201455A JP20145593A JPH0755418A JP H0755418 A JPH0755418 A JP H0755418A JP 5201455 A JP5201455 A JP 5201455A JP 20145593 A JP20145593 A JP 20145593A JP H0755418 A JPH0755418 A JP H0755418A
Authority
JP
Japan
Prior art keywords
displacement
spectrum
measured
interference fringe
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5201455A
Other languages
Japanese (ja)
Inventor
Hidenori Nagayama
秀徳 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP5201455A priority Critical patent/JPH0755418A/en
Publication of JPH0755418A publication Critical patent/JPH0755418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a microdisplacement by determining the phase of spatial frequency spectrum repetitively based on the signal from a detector detecting an interference fringe repetitively as a function of traversal position and then determining the displacement of an object in the direction of optical axis based on one phase variation. CONSTITUTION:A one-dimensional image sensor 26 is disposed at a light receiving position 16 in order to detect interference fringe pattern repetitively. Signals representative of a detected interference fringe are fed to a spectral operating section 28 where the signals are subjected to A/D conversion and the spectrum of interference fringe is determined based on thus converted signal. Spectrums having highest and second highest power are then extracted and the information relating to the frequency and phase of these two spectrums is fed to a displacement operating section 30. The operating section 30 determines the displacement of an object 14 by accumulating the phase variation for each spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定体の変位を検出
する、干渉計の原理を応用した変位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement meter which applies the principle of an interferometer for detecting the displacement of an object to be measured.

【0002】[0002]

【従来の技術】被測定体の変位を計測する方法が種々知
られているが、その方法の1つに、干渉計を利用する方
法がある。図3は、干渉計を利用した従来の変位計の概
略構成図、図4は、図3に示す変位計の受光位置に形成
された干渉縞を表わした図である。
2. Description of the Related Art There are various known methods for measuring the displacement of an object to be measured. One of the methods is to use an interferometer. FIG. 3 is a schematic configuration diagram of a conventional displacement meter using an interferometer, and FIG. 4 is a diagram showing interference fringes formed at the light receiving position of the displacement meter shown in FIG.

【0003】レーザ光源10から放射されたレーザ光1
1はビームスプリッタ12に入射し、このスプリッタ1
2により透過光11aと反射光11bとに二分される。
透過光11aは、被測定体14で反射して再びビームス
プリッタ12に入射し、そのビームスプリッタ12で反
射して受光位置16に達する。一方反射光11bはミラ
ー等の参照体18で反射しビームスプリッタ12を経由
して受光位置16に達する。ここで参照体18は図示の
ように光軸に対し僅か傾いており、このため受光位置1
6には図4に示すような干渉縞が形成される。
Laser light 1 emitted from a laser light source 10
1 is incident on the beam splitter 12, and this splitter 1
2 divides the light into a transmitted light 11a and a reflected light 11b.
The transmitted light 11 a is reflected by the device under test 14 and enters the beam splitter 12 again, and is reflected by the beam splitter 12 to reach the light receiving position 16. On the other hand, the reflected light 11b is reflected by the reference body 18 such as a mirror and reaches the light receiving position 16 via the beam splitter 12. Here, the reference body 18 is slightly tilted with respect to the optical axis as shown in the figure, so that the light receiving position 1
The interference fringes as shown in FIG.

【0004】このように構成された干渉計(変位計)に
おいて、被測定体14が光軸方向(図1に示す矢印A,
B方向)に変位すると、図4に示す干渉縞が矢印A,B
方向に移動する。そこで受光位置16にスリット20を
配置し、スリット20の開口20a(図2参照)を通過
した光を光センサ22で受光してカウンタ24でその明
暗の数を計数することにより、被測定体14の変位が検
出される。
In the interferometer (displacement meter) thus constructed, the object 14 to be measured is in the optical axis direction (arrow A shown in FIG.
When it is displaced in the B direction), the interference fringes shown in FIG.
Move in the direction. Therefore, the slit 20 is arranged at the light receiving position 16, the light passing through the opening 20a (see FIG. 2) of the slit 20 is received by the optical sensor 22 and the number of light and dark is counted by the counter 24, whereby the measured object 14 is measured. Is detected.

【0005】ところが、上記変位計では被測定体の変位
の分解能がレーザ光11の波長の1/2程度しかなく、
それよりも微小な変位を十分な精度で測定することはで
きない。これを解決するため、受光位置16に、スリッ
ト20と光センサ22を配置する代わりに、そこに十分
細かなピツチの1次元イメージセンサ26(図4参照)
を配置しその1次元イメージセンサ26で得られた干渉
縞の明暗のパターンをフーリエ変換し、そのピーク周波
数の位相変化を累積することにより被測定体の変位量を
計測することが考えられる。この場合、図3に示す、干
渉縞の数を計数する方法と比べ、被測定体14の非常に
微小な変位まで計測することができる。
However, in the above displacement meter, the resolution of displacement of the object to be measured is only about 1/2 of the wavelength of the laser beam 11,
It is impossible to measure a displacement smaller than that with sufficient accuracy. In order to solve this, instead of arranging the slit 20 and the optical sensor 22 at the light receiving position 16, the one-dimensional image sensor 26 with a sufficiently fine pitch is provided there (see FIG. 4).
It is conceivable to measure the amount of displacement of the object to be measured by performing Fourier transform of the light and dark pattern of the interference fringes obtained by arranging the two-dimensional image sensor 26 and accumulating the phase change of the peak frequency. In this case, compared to the method of counting the number of interference fringes shown in FIG. 3, it is possible to measure a very small displacement of the measured object 14.

【0006】[0006]

【発明が解決しようとする課題】ところが、被測定体1
4は、光軸方向(図1に示す矢印A,B方向)に移動す
るものであるため、被測定体14が光軸に対し傾くおそ
れがある。被測定体14が光軸に対し傾くと、図4に示
すような干渉縞のピツチが変化し、したがってそのピー
ク周波数が変化することになる。
However, the object to be measured 1
Since 4 moves in the optical axis direction (directions of arrows A and B shown in FIG. 1), there is a possibility that the measured object 14 may be tilted with respect to the optical axis. When the device under test 14 is tilted with respect to the optical axis, the pitch of the interference fringes as shown in FIG. 4 changes, and therefore the peak frequency thereof changes.

【0007】一方、上記のピーク周波数の位相変化を累
積する方法は、そのピーク周波数が一定であってはじめ
てそのピーク周波数の位相変化を検出してそれを累積す
ることができるものであり、被測定体の傾きに対処でき
ないという問題がある。本発明は、上記事情に鑑み、被
測定体の微小変位を計測することができ、しかもその被
測定体の傾きにも対処することのできる変位計を提供す
ることを目的とする。
On the other hand, the above method of accumulating the phase change of the peak frequency can detect the phase change of the peak frequency and accumulate the phase change only when the peak frequency is constant. There is a problem that it is not possible to deal with the inclination of the body. The present invention has been made in view of the above circumstances, and an object thereof is to provide a displacement meter capable of measuring a minute displacement of an object to be measured and capable of coping with the inclination of the object to be measured.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の変位計は、レーザ光を分割して一方を被測定体、他
方を光軸に対し傾いた参照体に照射し、該被測定体及び
該参照体から反射した光を互いに干渉させることにより
干渉縞を生成し、該干渉縞の変化を検出することにより
前記被測定体の光軸方向の変位を計測する変位計におい
て、(1)干渉縞の明暗を、その干渉縞を横切る横断方
向の位置の関数として繰り返し検出する検出器と、
(2)その検出器で検出された信号に基づいて、上記干
渉縞の上記横断方向の複数の空間周波数スペクトルの位
相を繰り返し求めるスペクトル演算手段(3)そのスペ
クトル演算手段で求められた複数の空間周波数スペクト
ルのうちの少くとも1つの空間周波数スペクトルの位相
変化に基づいて被測定体の光軸方向の変位を求める変位
演算手段を備えたことを特徴とするものである。
DISCLOSURE OF THE INVENTION A displacement gauge of the present invention which achieves the above object divides a laser beam and irradiates one of the laser beams onto a measured object and the other reference object inclined with respect to the optical axis, and the measured object is measured. A displacement meter for measuring displacement of the measured object in the optical axis direction by generating interference fringes by interfering light reflected from the body and the reference body with each other, and detecting a change in the interference fringes. ) A detector for repeatedly detecting the light and shade of the fringe as a function of the transverse position across the fringe;
(2) Spectrum calculation means for repeatedly obtaining the phases of a plurality of spatial frequency spectra in the transverse direction of the interference fringes based on the signal detected by the detector (3) A plurality of spaces obtained by the spectrum calculation means It is characterized in that it comprises a displacement calculating means for obtaining the displacement of the object to be measured in the optical axis direction based on the phase change of at least one spatial frequency spectrum of the frequency spectrum.

【0009】[0009]

【作用】上記本発明の変位計は、複数の空間周波数スペ
クトルの位相を繰り返し求めるものであるため、その複
数の空間周波数スペクトルとして、例えば最大のパワー
のスペクトルと2番目のパワーのスペクトルを採用する
こと等により、被測定体が光軸に対し傾いても順次異な
る空間周波数スペクトルの位相変化を追うことができ、
被測定体の変位が高精度に求められる。
Since the displacement meter of the present invention repeatedly obtains the phases of a plurality of spatial frequency spectra, the maximum power spectrum and the second power spectrum are adopted as the plurality of spatial frequency spectra. By doing so, even if the DUT tilts with respect to the optical axis, it is possible to follow the phase change of the spatial frequency spectrum that is different sequentially.
The displacement of the object to be measured is required with high accuracy.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の変位計の一実施例の概略構成図である。
図3に示す従来の変位計の各構成要素を対応する構成要
素には図3に付した番号と同一の番号を付して示し、相
違点についてのみ説明する。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a schematic configuration diagram of an embodiment of the displacement meter of the present invention.
The corresponding components of the conventional displacement meter shown in FIG. 3 are indicated by the same numbers as those shown in FIG. 3, and only the differences will be described.

【0011】受光位置16には1次元イメージセンサ2
6が配置されており、この一次元イメージセンサ26に
より図4に示すような干渉縞のパターンが繰り返し検出
される。この一次元イメージセンサ26で検出された干
渉縞を表わす信号はスペクトル演算部28に入力され
る。このスペクトル演算部28では、先ず入力された信
号がディジタル信号に変換され、そのディジタル信号に
基づいて干渉縞のスペクトルが求められる。このスペク
トルのうち最大パワーのスペクトルと二番目のパワーの
スペクトルが抽出され、それら2つのスペクトルの周波
数及び位相の情報が変位演算部30に入力される。変位
演算部30ではスペクトル演算部28から入力された2
つのスペクトルの位相変化を各スペクトル毎に累積する
ことにより被測定体14の変位が求められる。
The one-dimensional image sensor 2 is provided at the light receiving position 16.
6 are arranged, and the one-dimensional image sensor 26 repeatedly detects an interference fringe pattern as shown in FIG. A signal representing the interference fringe detected by the one-dimensional image sensor 26 is input to the spectrum calculation unit 28. In the spectrum calculator 28, the input signal is first converted into a digital signal, and the spectrum of the interference fringe is obtained based on the digital signal. The maximum power spectrum and the second power spectrum are extracted from this spectrum, and the frequency and phase information of these two spectra is input to the displacement calculator 30. In the displacement calculation unit 30, the 2 input from the spectrum calculation unit 28 is input.
The displacement of the object to be measured 14 is obtained by accumulating the phase change of one spectrum for each spectrum.

【0012】ここで被測定体14が光軸に対し傾いた場
合について説明する。図2は被測定体が傾いた際のスペ
クトルのパワーPを模式的に示した図である。被測定体
14に傾きのない安定した状態にあるとき、受光位置1
6に形成された干渉縞は、図2に実線で示すような空間
周波数分布を有しているとする。スペクトル演算部28
では、離散的なスペクトルが求められるため、このとき
には、各周波数f1 ,f2 ,f3 のスペクトルのパワー
と位相(図示せず)が求められる。スペクトル演算部2
8ではそのうちのパワーの大きな2つのスペクトル、即
ちこの例では、周波数f2 のスペクトルと周波数f3
スペクトルが抽出され、それらの情報が変位演算部30
に入力される。被測定体14が傾きのない安定した状態
にあるときは、最大パワーの周波数f2 のスペクトルの
位相の変化を累積することにより被測定体14の変位が
求められ、また二番目のパワーの周波数f 3 のスペクト
ルの位相変化もモニタされている。
Here, when the measured object 14 is tilted with respect to the optical axis,
The case will be described. Figure 2 shows the space when the measured object is tilted.
It is the figure which showed the power P of cuttles typically. Object to be measured
When 14 is in a stable state without inclination, the light receiving position 1
The interference fringes formed in 6 are the space shown by the solid line in FIG.
It has a frequency distribution. Spectrum calculation unit 28
Then, since a discrete spectrum is obtained, at this time
At each frequency f1 , F2 , F3 Spectrum power of
And the phase (not shown) is required. Spectrum calculation unit 2
In 8, the two spectra with the largest power, immediately
In this example, the frequency f2 Spectrum and frequency f3 of
The spectrum is extracted and the information thereof is used as the displacement calculator 30.
Entered in. Stable state of DUT 14 without tilt
, The maximum power frequency f2 Of the spectrum of
By accumulating the phase changes, the displacement of the DUT 14 is
The frequency f of the second power that is obtained 3 Spect of
The phase change of the monitor is also monitored.

【0013】ここで被測定体14がやや傾き始め、その
ときのスペクトル分布が、図2に一点鎖線で示すように
全体にシフトしたとする。この時点では、周波数f3
スペクトルが最大パワーとなり、周波数f4 のスペクト
ルが2番目のパワーとなる。そこで、今度はそれまで周
波数f2 のスペクトルの位相変化に基づいて求められて
きた被測定体14の変位に、周波数f3 の、前回の位相
と今回の位相との位相差に基づいて求められた被測定体
14の今回の変位が加算される。またこれとともに、今
度は2番目のパワーのスペクトルである周波数f4 のス
ペクトルの位相がモニタされる。
Here, it is assumed that the object 14 to be measured begins to tilt slightly, and the spectral distribution at that time is entirely shifted as indicated by the alternate long and short dash line in FIG. At this point, the spectrum of frequency f 3 has the maximum power, and the spectrum of frequency f 4 has the second power. Therefore, this time, the displacement of the DUT 14 which has been obtained based on the phase change of the spectrum of the frequency f 2 is obtained based on the phase difference between the previous phase and the current phase of the frequency f 3. The current displacement of the measured object 14 is added. At the same time, the phase of the spectrum of the frequency f 4 , which is the spectrum of the second power, is monitored.

【0014】その後被測定体14がさらに傾き、図2に
破線で示すようなスペクトル分布に移行したとする。今
度は、その直前と比べ周波数f3 と周波数f4 のパワー
配分が入れ替わり、周波数f4 のスペクトルのパワーが
最大、周波数f3 のスペクトルのパワーが2番目とな
る。この時点では、今度は周波数f4 のスペクトルの位
相変化に基づいて被測定体14の今回の変位が求めら
れ、今回の変位がそれまでの累積変位に加算される。
After that, it is assumed that the object 14 to be measured further tilts and shifts to a spectral distribution shown by a broken line in FIG. This time, just before the comparison frequency f 3 and exchanges the power distribution of a frequency f 4, the spectrum of the power of the frequency f 4 is the largest, the spectral power of the frequency f 3 is the second. At this point, the current displacement of the measured object 14 is obtained based on the phase change of the spectrum of the frequency f 4 , and this displacement is added to the accumulated displacement up to that point.

【0015】このように、本実施例では最大パワーのス
ペクトルと2番目のパワーのスペクトルの双方を常にモ
ニタし続けることにより、被測定体が傾いてもその被測
定体の変位が計測される。尚、上記実施例では常に2つ
のスペクトルをモニタしていたが、モニタするスペクト
ルの数は2つに限定されるものでないことはもちろんで
ある。また図1は、いわゆるマイケルソン型干渉計の例
であるが、本発明の変位計に適用される干渉計はマイケ
ルソン型に限られるものではなく、被測定体の反射光と
参照体の反射光との干渉縞を検出位置に形成することが
できさえすればどのような干渉計の原理を用いてもよい
ものである。
As described above, in this embodiment, by constantly monitoring both the maximum power spectrum and the second power spectrum, the displacement of the measured object can be measured even if the measured object is tilted. Although two spectra are always monitored in the above embodiment, it goes without saying that the number of spectra to be monitored is not limited to two. Further, FIG. 1 shows an example of a so-called Michelson interferometer, but the interferometer applied to the displacement meter of the present invention is not limited to the Michelson type, and the reflected light of the object to be measured and the reflection of the reference object are reflected. Any interferometer principle may be used as long as an interference fringe with light can be formed at the detection position.

【0016】さらに上記実施例では検出位置に1次元イ
メージセンサが配置されているが、本発明はイメージセ
ンサを用いるものに限られるものではなく、例えば時間
的に偏向するミラーと単一の光センサとを組合せて干渉
縞をスキャニングして検出するように構成してもよい。
その他本発明は、上記実施例に限定されず、種々に構成
される。
Further, although the one-dimensional image sensor is arranged at the detection position in the above embodiment, the present invention is not limited to the one using the image sensor. For example, a mirror deflecting with time and a single optical sensor are used. A combination of and may be combined to scan and detect interference fringes.
Others The present invention is not limited to the above-mentioned embodiments, but can be variously constructed.

【0017】[0017]

【発明の効果】以上説明したように、本発明の変位計
は、複数のスペクトルの位相をモニタするものであるた
め、被測定体が光軸に対し傾いてもその被測定体の変位
が高精度に計測される。
As described above, since the displacement meter of the present invention monitors the phases of a plurality of spectra, the displacement of the measured object is high even if the measured object is tilted with respect to the optical axis. Measured with precision.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変位計の一実施例の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of an embodiment of a displacement meter of the present invention.

【図2】被測定体が傾いた際のスペクトルのパワーを模
式的に示した図である。
FIG. 2 is a diagram schematically showing the spectrum power when the measured object is tilted.

【図3】干渉計を利用した従来の変位計の概略構成図で
ある。
FIG. 3 is a schematic configuration diagram of a conventional displacement meter using an interferometer.

【図4】図3に示す変位計の受光位置に形成された干渉
縞を表わした図である。
FIG. 4 is a diagram showing interference fringes formed at a light receiving position of the displacement meter shown in FIG.

【符号の説明】[Explanation of symbols]

10 レーザ光源 11 レーザ光 12 ビームスプリッタ 14 被測定体 16 受光位置 18 参照体 26 1次元イメージセンサ 28 スペクトル演算部 30 変位演算部 10 Laser Light Source 11 Laser Light 12 Beam Splitter 14 Object to be Measured 16 Light Receiving Position 18 Reference Object 26 One-Dimensional Image Sensor 28 Spectral Calculator 30 Displacement Calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を分割して一方を被測定体、他
方を光軸に対し傾いた参照体に照射し、該被測定体及び
該参照体から反射した光を互いに干渉させることにより
干渉縞を生成し、該干渉縞の変化を検出することにより
前記被測定体の光軸方向の変位を計測する変位計におい
て、 前記干渉縞の明暗を、該干渉縞を横切る横断方向の位置
の関数として繰り返し検出する検出器と、 該検出器で検出された信号に基づいて、前記干渉縞の前
記横断方向の複数の空間周波数スペクトルの位相を繰り
返し求めるスペクトル演算手段と、 該スペクトル演算手段で求められた複数の空間周波数ス
ペクトルのうちの少くとも1つの空間周波数スペクトル
の位相変化に基づいて前記被測定体の光軸方向の変位を
求める変位演算手段とを備えたことを特徴とする変位
計。
1. Interference is achieved by dividing laser light and irradiating one of the measured object and the other with a reference object inclined with respect to the optical axis, and causing the light reflected from the measured object and the reference object to interfere with each other. In a displacement meter that generates a fringe and measures the displacement of the measured object in the optical axis direction by detecting a change in the interference fringe, the lightness and darkness of the interference fringe is a function of a position in a transverse direction across the interference fringe. And a spectrum calculation means for repeatedly obtaining the phases of a plurality of spatial frequency spectra in the transverse direction of the interference fringes based on the signal detected by the detector, and the spectrum calculation means. Displacement calculation means for determining the displacement in the optical axis direction of the object to be measured based on the phase change of at least one of the plurality of spatial frequency spectra. Displacement meter.
JP5201455A 1993-08-13 1993-08-13 Displacement gauge Pending JPH0755418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201455A JPH0755418A (en) 1993-08-13 1993-08-13 Displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201455A JPH0755418A (en) 1993-08-13 1993-08-13 Displacement gauge

Publications (1)

Publication Number Publication Date
JPH0755418A true JPH0755418A (en) 1995-03-03

Family

ID=16441381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201455A Pending JPH0755418A (en) 1993-08-13 1993-08-13 Displacement gauge

Country Status (1)

Country Link
JP (1) JPH0755418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe
WO2015022851A1 (en) * 2013-08-15 2015-02-19 富士通株式会社 Measurement device using optical interferometry and measurement method using optical interferometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020360U (en) * 1995-07-10 1996-01-23 日本シャーウッド株式会社 Dilator and sheath assembly
JPH09225035A (en) * 1996-02-21 1997-09-02 Nippon Zeon Co Ltd Medical insertion aid
JPH09322941A (en) * 1996-02-29 1997-12-16 Medtronic Inc Introducing device of smooth transition part of sheath
US6120480A (en) * 1997-10-28 2000-09-19 Medtronic Ave, Inc. Catheter introducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020360U (en) * 1995-07-10 1996-01-23 日本シャーウッド株式会社 Dilator and sheath assembly
JPH09225035A (en) * 1996-02-21 1997-09-02 Nippon Zeon Co Ltd Medical insertion aid
JPH09322941A (en) * 1996-02-29 1997-12-16 Medtronic Inc Introducing device of smooth transition part of sheath
US6120480A (en) * 1997-10-28 2000-09-19 Medtronic Ave, Inc. Catheter introducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096295A (en) * 2006-10-12 2008-04-24 Mitsutoyo Corp Three-dimensional sensor and contact probe
WO2015022851A1 (en) * 2013-08-15 2015-02-19 富士通株式会社 Measurement device using optical interferometry and measurement method using optical interferometry

Similar Documents

Publication Publication Date Title
JP5265918B2 (en) Optical feedback from mode select tuner
US7385707B2 (en) Surface profiling apparatus
US7948634B2 (en) Surface profiling apparatus
US5305077A (en) High-resolution spectroscopy system
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
EP0636240B1 (en) Angle detection
US4345838A (en) Apparatus for spectrometer alignment
US7304745B2 (en) Phase measuring method and apparatus for multi-frequency interferometry
JPH0755418A (en) Displacement gauge
JP2005537475A6 (en) Phase measurement method and multi-frequency interferometer
JPS6271804A (en) Film thickness measuring instrument
US5471302A (en) Interferometric probe for distance measurement utilizing a diffraction reflecting element as a reference surface
JP2993836B2 (en) Interferometer using coherence degree
JPH063192A (en) Method for determining sampling optical path difference for short wavelength region measurement in fourier spectrometer
JPH09196619A (en) Method and instrument for measuring minute displacement
JP3914617B2 (en) Coherence analysis method of semiconductor laser
JP2679810B2 (en) Optical wavelength measurement device
EP0144338A1 (en) Dynamic mirror alignment control
EP0179151A1 (en) Sample signal for interferogram generation and method for obtaining same
JP2001201326A (en) Interference fringe measuring and analyzing method
JP2022074869A (en) Interferometer and optical device
JPH063191A (en) Method for correcting phase error of fourier spectrometer
GB2236178A (en) Monitoring arrangements
JP2014134399A (en) Measuring apparatus
JPH0593616A (en) Method and apparatus for measuring straightness

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030325