JPH0592769U - Inter-vehicle distance alarm device - Google Patents

Inter-vehicle distance alarm device

Info

Publication number
JPH0592769U
JPH0592769U JP3327592U JP3327592U JPH0592769U JP H0592769 U JPH0592769 U JP H0592769U JP 3327592 U JP3327592 U JP 3327592U JP 3327592 U JP3327592 U JP 3327592U JP H0592769 U JPH0592769 U JP H0592769U
Authority
JP
Japan
Prior art keywords
detection
vehicle
detection distance
vehicle speed
turning radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327592U
Other languages
Japanese (ja)
Inventor
利行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP3327592U priority Critical patent/JPH0592769U/en
Publication of JPH0592769U publication Critical patent/JPH0592769U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 車速変化による検知不可領域の発生や誤検知
を防止することにある。 【構成】 複数の各レーダビームを車両の前方にそれぞ
れ放射するアンテナ11,12,13と、アンテナに発
進信号を出力すると共に受信信号を受ける送受信機1
4,15,16と、検知距離を設定する検知距離設定手
段21と、検知領域内の障害物に応じた検知信号を出力
する信号処理手段22と、車速情報を出力する車速セン
サ18と、車両のヨーレイト情報を出力すヨーレイトセ
ンサ19と、車両の旋回半径を算出する旋回半径算出手
段20とを有し、検知距離設定手段21は旋回半径に基
づき各レーダビームの検知距離Bを、反旋回側レーダビ
ームの検知距離ほど短く設定し、旋回側レーダビームの
検知距離ほど長く設定することを特徴とする。
(57) [Summary] [Purpose] To prevent the occurrence of undetectable areas and erroneous detection due to changes in vehicle speed. [Structure] Antennas 11, 12, 13 for radiating a plurality of radar beams in front of a vehicle, respectively, and a transceiver 1 for outputting a start signal to the antenna and receiving a received signal.
4, 15, 16, detection distance setting means 21 for setting a detection distance, signal processing means 22 for outputting a detection signal according to an obstacle in the detection area, vehicle speed sensor 18 for outputting vehicle speed information, and vehicle The yaw rate sensor 19 for outputting the yaw rate information of the vehicle and the turning radius calculation means 20 for calculating the turning radius of the vehicle are provided, and the detection distance setting means 21 sets the detection distance B of each radar beam on the anti-turning side based on the turning radius. The detection distance of the radar beam is set shorter, and the detection distance of the turning radar beam is set longer.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、車両の前方にレーダビームを放射して障害物を検知する装置、特に 、複数の各レーダビームを左右に各々区分して放射して障害物を検知する車間距 離警報装置に関する。 The present invention relates to a device that emits a radar beam in front of a vehicle to detect an obstacle, and more particularly, to an inter-vehicle distance warning device that divides each of a plurality of radar beams into right and left and emits them to detect an obstacle.

【0002】[0002]

【従来の技術】[Prior Art]

従来、車両に搭載された車間距離警報装置は走行路前方の車両やガイドレール 等の障害物に検出波であるレーダビームを放射し、このレーダビームが障害物に 当たって反射してくる反射波を受信して、送信波と受信波の周波数の差に応じた 出力に基づき障害物の有無を判断している。 このような装置の一例が特公昭60−34708号公報等に開示されている。 この装置は図8に示すように車両1に搭載の走査アンテナ2よりレーダビーム を水平方向に走査しながら二点鎖線で示すように3方向に各々拡がる検知領域E 1、E2、E3にビームを放射している。この場合、走査アンテナ2は機械的走 査あるいは電気的走査によってビーム方向を順次変化させて3方向に拡がる検知 領域E1、E2、E3にそれぞれビームを放射する様に構成されている。 Conventionally, an inter-vehicle distance warning device mounted on a vehicle radiates a radar beam, which is a detection wave, to an obstacle such as a vehicle or a guide rail in front of a traveling road, and this radar beam reflects the reflected wave when it hits an obstacle. Is received and the presence or absence of an obstacle is determined based on the output according to the difference between the frequencies of the transmitted wave and the received wave. An example of such a device is disclosed in Japanese Patent Publication No. 60-34708. This device scans a radar beam horizontally from a scanning antenna 2 mounted on a vehicle 1 as shown in FIG. 8 and spreads the beam in detection areas E 1, E 2 and E 3 which respectively spread in 3 directions as shown by a chain double-dashed line. It is radiating. In this case, the scanning antenna 2 is configured to sequentially change the beam direction by mechanical scanning or electrical scanning and radiate the beam to each of detection areas E1, E2, E3 which spread in three directions.

【0003】 このように放射される検知波としてのビームは障害物C(他の車両),G(ガ ードレール)等があると、各障害物までの距離などに応じた遅延を受けて反射波 として受信される。例えば、受信波を所定の受信時間以内(パルスレーダの場合 )に受けた場合、あるいは受信波を受けた場合であって、送受信波の周波数の差 が算出され(FM−CWレーダの場合)そのビート出力が求められると、これら 出力に基づき信号処理器3が所定の警報指令を発するように構成される。If there are obstacles C (other vehicles), G (guard rails), etc., the beam as the detection wave radiated as described above is delayed by the delay according to the distance to each obstacle and the like and is reflected. As received. For example, when the received wave is received within a predetermined reception time (in the case of pulse radar), or when the received wave is received, the difference between the frequencies of the transmitted and received waves is calculated (in the case of FM-CW radar). When the beat outputs are obtained, the signal processor 3 is configured to issue a predetermined alarm command based on these outputs.

【0004】 ここでは特に、姿勢検知器4によってハンドルの曲がり角度(ステアリング切 れ角)θsを取り込み、車両の直進、左右曲り方向の情報を信号処理器3に取り 込んでいる。これによって、信号処理器3が各検知領域E1、E2、E3の反射 波に対して予め設定されている時間ゲートを用いて、ある時間以上の反射波(検 知信号)を除去したり、あるいは各検知領域E1、E2、E3の反射波に対して 予め設定されているフィルタを用いて、ある周波数以上の反射波(検知信号)を 除去したりして、各検知領域(各ビームの検知領域)を外れる領域からの検知信 号の排除(レンジカット)を行っている。 このようなレンジカット処理によって車両1のカーブ走行時の曲がり方向と反 対側の領域(図8ではE1の領域)の外側域である不検知領域e1、e2、e3 にある障害物C,Gを走行方向の障害物と誤判定して検知信号を出力するという ような不具合を除去している。Here, in particular, the turning angle (steering turning angle) θs of the steering wheel is taken in by the attitude detector 4, and the information on the straight-ahead or left-right turning direction of the vehicle is taken in the signal processor 3. Thereby, the signal processor 3 removes the reflected wave (detection signal) for a certain time or longer by using the time gate preset for the reflected wave of each detection area E1, E2, E3, or A reflected wave (detection signal) with a certain frequency or higher is removed by using a preset filter for the reflected wave of each detection area E1, E2, E3 to detect each detection area (detection area of each beam). The detection signal is removed from the area outside the range (range cut). By such range cut processing, the obstacles C and G in the non-detection areas e1, e2, and e3, which are areas outside the area (area E1 in FIG. 8) opposite to the curving direction when the vehicle 1 travels in a curve. It eliminates the inconvenience of erroneously determining that an obstacle in the traveling direction and outputting a detection signal.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

処で、ステアリング切れ角θsによって得られた車両の直進、左右曲り方向の 情報に基づいてレンジカット処理を行った場合、次のような不具合が生じている 。 即ち、ステアリング切れ角θsに応じ、極低速時の旋回半径を求め、この旋 回半径に応じてレンジカット処理のための検知距離をそれぞれの検知領域毎に一 様に設定したとする。すると、同一のステアリング切れ角θsであっても、タイ ヤの横滑り量が多くなることより、図9(a)に示す低速時の旋回半径Raに対 して、図9(b)に示す高速時の旋回半径Rbが大きくなる。このため、図9( a)に示す低速時における各検知領域a1,a2,a3の各検知距離は比較的適 正値に成り、不検知領域e1,e2,e3も適正なものとなる。他方、図9(b )に示す高速時における各検知領域a1,a2,a3は短すぎてしまい、本来検 知領域とすべき検知不可領域b1,b2,b3が拡がってしまう。このように、 ステアリング切れ角θsに応じた検知領域の設定によるレンジカット処理では、 高速走行時に検知不可領域b1,b2,b3が拡がってしまい、十分に車間距離 警報装置の機能を発揮出来ず問題と成っている。 Here, when the range cut processing is performed based on the information on the straight traveling direction and the right-and-left bending direction of the vehicle obtained by the steering turning angle θs, the following problems occur. That is, it is assumed that the turning radius at an extremely low speed is obtained according to the steering angle θs, and the detection distance for the range cut processing is set uniformly for each detection region according to the turning radius. Then, even if the steering angle θs is the same, the amount of side slip of the tire increases, so that the turning radius Ra at the low speed shown in FIG. 9 (a) becomes higher than that at the high speed shown in FIG. 9 (b). The turning radius Rb becomes large. Therefore, the detection distances of the detection areas a1, a2, a3 at the time of low speed shown in FIG. 9 (a) are relatively proper values, and the non-detection areas e1, e2, e3 are also proper. On the other hand, the detection areas a1, a2, a3 at the time of high speed shown in FIG. 9 (b) are too short, and the undetectable areas b1, b2, b3 which should originally be the detection areas are expanded. In this way, in the range cut processing by setting the detection area according to the steering angle θs, the non-detection areas b1, b2, b3 are widened at high speed, and the function of the inter-vehicle distance warning device cannot be fully exerted. Is made.

【0006】 更に、運転者はひとつのカーブを通過する際に、ハンドルを常に一定角に保っ て運転するものでなく、ステアリング切れ角θsは頻繁に変化する。このため、 ステアリング切れ角θsに応じレンジカット距離(検知距離)を決めると誤警報 が出やすく、この点でも問題があった。 本考案の目的は、車速変化による検知不可領域の発生や誤検知を防止出来る車 間距離警報装置を提供することにある。Further, the driver does not always keep the steering wheel at a constant angle when passing through one curve, and the steering angle θs changes frequently. Therefore, if the range cut distance (detection distance) is determined according to the steering angle θs, an erroneous alarm is likely to be issued, which is also a problem. An object of the present invention is to provide an inter-vehicle distance warning device that can prevent the occurrence of an undetectable area and erroneous detection due to changes in vehicle speed.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

上述の目的を達成するために、本考案は放射方向が左右に区分された複数の各 レーダビームを車両の前方にそれぞれ放射するアンテナと、上記アンテナに発進 信号を出力すると共に受信信号を受ける送受信機と、障害物の検知領域に応じた 検知距離を設定する検知距離設定手段と、上記検知領域内の障害物に応じた検知 信号を上記発進信号と受信信号とに基づき算出して出力する信号処理手段と、上 記車両の車速情報を出力する車速センサと、上記車両のヨーレイト情報を出力す ヨーレイトセンサと、上記車速及びヨーレイトに基づき車両の旋回半径を算出す る旋回半径算出手段とを有し、上記検知距離設定手段は上記旋回半径に基づき上 記各レーダビームの検知距離を、反旋回側レーダビームの検知距離ほど短く設定 し、旋回側レーダビームの検知距離ほど長く設定することを特徴とする。 In order to achieve the above object, the present invention provides an antenna that radiates a plurality of radar beams whose emission directions are divided into left and right, respectively, in front of a vehicle, and a transceiver that outputs a start signal to the antenna and receives a received signal. Machine, detection distance setting means for setting a detection distance according to the detection area of the obstacle, and a signal for calculating and outputting a detection signal according to the obstacle within the detection area based on the start signal and the reception signal It has a processing means, a vehicle speed sensor for outputting the vehicle speed information of the vehicle, a yaw rate sensor for outputting the yaw rate information of the vehicle, and a turning radius calculation means for calculating the turning radius of the vehicle based on the vehicle speed and the yaw rate. However, the detection distance setting means sets the detection distance of each radar beam based on the turning radius to be shorter as the detection distance of the anti-turning side radar beam, And sets as the detection distance of the beam long.

【0008】[0008]

【作用】[Action]

車速センサが車速情報を出力し、ヨーレイトセンサがヨーレイト情報を出力し 、旋回半径算出手段が車速及びヨーレイトに基づき車両の旋回半径を算出し、検 知距離設定手段が旋回半径に基づき各レーダビームの検知距離を、反旋回側レー ダビームの検知距離ほど短く設定し、旋回側レーダビームの検知距離ほど長く設 定するので、信号処理手段が検知領域内の障害物に応じた検知信号を発進信号と 受信信号とに基づき算出して出力する際に、走行方向より外れ易い反旋回側の検 知領域の障害物からの不要な検知信号を排除出来る。 The vehicle speed sensor outputs vehicle speed information, the yaw rate sensor outputs yaw rate information, the turning radius calculation means calculates the turning radius of the vehicle based on the vehicle speed and yaw rate, and the detection distance setting means determines the radar beam of each radar beam based on the turning radius. Since the detection distance is set shorter for the radar beam on the anti-turning side and longer for the radar beam on the turning side, the signal processing means uses the detection signal corresponding to the obstacle in the detection area as the start signal. When calculating and outputting based on the received signal, it is possible to eliminate unnecessary detection signals from obstacles in the detection area on the anti-turning side, which is easily deviated from the traveling direction.

【0009】[0009]

【実施例】【Example】

図1の車間距離警報装置は自動車10前部先端に取付けられると共にパルス波 を出力する第1、第2及び第3の各アンテナ11,12,13と、各アンテナの 送信アンテナ111,121,131より送信波を出力させると共に受信アンテ ナ112,122,132によって受信波を受ける第1、第2及び第3の各送受 信器14,15,16と、各受信器14,15,16の受信波を受け障害物の有 無を判断して検知信号Seを出力できるコントローラ17と、自動車10の車速 Vc情報をコントローラ17に出力する車速センサ18と、自動車10の走行方 向経の変位角であるヨー角α(図2参照)の時間比率をヨーレート(°/sec) としてコントローラ17に出力するヨーレートセンサ19とを備える。 The inter-vehicle distance warning device of FIG. 1 is attached to the front end of the vehicle 10 and outputs first and second pulse antennas 11, 12, and 13, and transmission antennas 111, 121, 131 of the respective antennas. The first, second, and third transmitters / receivers 14, 15, 16 receiving the received waves by the reception antennas 112, 122, 132 and the reception by the receivers 14, 15, 16 A controller 17 capable of receiving a wave and determining whether an obstacle is present and outputting a detection signal Se, a vehicle speed sensor 18 outputting the vehicle speed Vc information of the vehicle 10 to the controller 17, and a displacement angle of the traveling direction of the vehicle 10 The yaw rate sensor 19 outputs a yaw rate (° / sec) as a time ratio of a certain yaw angle α (see FIG. 2) to the controller 17.

【0010】 ここで、第1、第2及び第3の送信アンテナ111,121,131は第1、 第2及び第3送受信器14,15,16に制御されて、所定の時間幅tb(図5 (c)参照)毎に送信波であるパルスp1,p2,p3(図5(a),(b), (c)参照)を順次放射する。第1、第2及び第3の受信アンテナ112,12 2,132は第1、第2及び第3送受信器14,15,16に制御されて受信波 である受信パルスpr(図5(a),(b),(c)参照)を順次放射する。Here, the first, second and third transmitting antennas 111, 121 and 131 are controlled by the first, second and third transceivers 14, 15 and 16 to have a predetermined time width tb (see FIG. 5 (c)), pulses p1, p2, p3 (see FIGS. 5A, 5B, and 5C), which are transmission waves, are sequentially emitted. The first, second and third receiving antennas 112, 122 and 132 are controlled by the first, second and third transceivers 14, 15 and 16 to receive a received pulse pr (Fig. 5 (a)). , (B), (c)) are sequentially emitted.

【0011】 ここで第2送信アンテナ121は平面視における車体中心線の方向で所定の向 い角内にある検知領域A2にパルスp2を放射し、第1送信アンテナ111は平 面視における検知領域A2の左近接域にある検知領域A1にパルスp1を放射し 、第3送信アンテナ131は平面視における検知領域A2の右近接域にある検知 領域A3にパルスp3を放射する。Here, the second transmission antenna 121 emits a pulse p2 to the detection area A2 within a predetermined angle in the direction of the vehicle body centerline in plan view, and the first transmission antenna 111 has the detection area in plan view. The pulse p1 is emitted to the detection area A1 in the left proximity area of A2, and the third transmission antenna 131 emits the pulse p3 to the detection area A3 in the right proximity area of the detection area A2 in plan view.

【0012】 ここでコントローラ17は後述するような旋回半径算出手段20、検知距離設 定手段21及び信号処理手段22としての機能を備える。 各送受信器14,15,16は同様の構成を採り、各送信アンテナ111,1 21,131に所定幅のパルスp1,p2,p3の放射を行わせる周知の発振器 (図示せず)が接続され、第1、第2及び第3の各受信アンテナ112,122 ,132に各受信パルスprを増幅して出力する周知の増幅器(図示せず)が接 続される。これら各発振器の発振信号及び増幅器の出力である受信パルスprは コントローラ17の信号処理手段22に出力される。Here, the controller 17 has functions as a turning radius calculation means 20, a detection distance setting means 21, and a signal processing means 22, which will be described later. Each of the transceivers 14, 15 and 16 has the same configuration, and a well-known oscillator (not shown) for causing the transmission antennas 111, 121 and 131 to radiate the pulses p1, p2 and p3 having a predetermined width is connected. A well-known amplifier (not shown) that amplifies and outputs each reception pulse pr is connected to each of the first, second, and third reception antennas 112, 122, and 132. The oscillation signal of each oscillator and the reception pulse pr which is the output of the amplifier are output to the signal processing means 22 of the controller 17.

【0013】 ヨーレートセンサ19は図2に示すように車体の中心線Lcの平面視における 変化角であるヨー角α情報を図示しない慣性体の動きより経時的に順次検出し、 そのヨー角αの単位時間における変化、即ち時間比率をヨーレートγ(°/sec )として算出するタイマ及び演算回路を備える。 してコントローラ17に出力する。ここでヨー角αの変化は図示しないヨーレー トセンサ19とを備える。 このようなヨーレートγ及び車速Vcは旋回半径算出手段20に取り込まれる 。 この旋回半径算出手段20は下式(1)によりヨーレートγを算出する。As shown in FIG. 2, the yaw rate sensor 19 sequentially detects yaw angle α information, which is a change angle of the center line Lc of the vehicle body in a plan view, from the movement of an inertial body (not shown), and the yaw angle α A timer and an arithmetic circuit for calculating a change in unit time, that is, a time ratio as a yaw rate γ (° / sec) are provided. And outputs it to the controller 17. Here, the change of the yaw angle α is provided by a yaw rate sensor 19 not shown. The yaw rate γ and the vehicle speed Vc are taken into the turning radius calculation means 20. The turning radius calculation means 20 calculates the yaw rate γ by the following equation (1).

【0014】 R=V/(γ×π/180)・・・・・・・・(1) なお、旋回半径:R(m)、車速:V(m/sec)とする。この(1)式に よって得られた旋回半径R(m)は車速Vcに比例し、ヨーレートγに反比例す ることより、前述したような車速増に伴うタイヤスリップによる旋回半径の増加 を考慮出来ることとなる。R = V / (γ × π / 180) (1) Note that the turning radius is R (m) and the vehicle speed is V (m / sec). Since the turning radius R (m) obtained by the equation (1) is proportional to the vehicle speed Vc and inversely proportional to the yaw rate γ, it is possible to consider the increase in the turning radius due to the tire slip accompanying the vehicle speed increase as described above. It will be.

【0015】 なお、(1)式を考慮し、ヨーレートγ及び車速Vcより車両の旋回半径Rを 算出する旋回半径マップ(図3参照)を予め製作しておき、これに基づき旋回半 径Rを算出しても良い。なお、この旋回半径マップは各車両の運転特性に応じて 異なり、予め車両毎に製作されたものが採用されることとなる。 コントローラの検知距離設定手段21は旋回半径Rに基づき第1、第2及び第 3の各検知領域A1,A2,A3毎の検知距離B1,B2,B3を設定する。特 に、旋回方向と反対側の反旋回側の検知領域の検知距離ほど短く設定し、旋回方 向の旋回側の検知領域の検知距離ほど長く設定する用に構成されている。このよ うな特性を考慮して図4に示すような検知距離算出マップが設定されている。こ こで、右旋回であると、各検知領域A1,A2,A3の検知距離はB1<B2< B3を保ったままで右旋回量の増加と共に各値が増加する様に設定され、逆に、 左旋回であると、各検知領域A1,A2,A3の検知距離はB1>B2>B3を 保ったままで左旋回量の増加と共に各値が増加する様に設定される。In consideration of the equation (1), a turning radius map (see FIG. 3) for calculating the turning radius R of the vehicle from the yaw rate γ and the vehicle speed Vc is prepared in advance, and the turning radius R is calculated based on the map. It may be calculated. It should be noted that this turning radius map differs depending on the driving characteristics of each vehicle, and a map manufactured in advance for each vehicle is adopted. The detection distance setting means 21 of the controller sets the detection distances B1, B2, B3 for each of the first, second and third detection areas A1, A2, A3 based on the turning radius R. In particular, the detection distance of the detection area on the side opposite to the turning direction on the side opposite to the turning direction is set shorter, and the detection distance on the side of the turning side in the turning direction is set longer. Considering such characteristics, the detection distance calculation map as shown in FIG. 4 is set. Here, in the case of a right turn, the detection distances of the detection areas A1, A2, A3 are set so that each value increases with an increase in the right turn amount while keeping B1 <B2 <B3. In the case of a left turn, the detection distances of the detection areas A1, A2, A3 are set so that the respective values increase with an increase in the left turn amount while keeping B1> B2> B3.

【0016】 コントローラの信号処理手段22は各検知領域A1,A2,A3に応じた各検 知距離B1,B2,B3内の障害物に応じた検知信号Seを各パルスp1,p2 ,p3(発進信号)と各受信パルスpr(受信信号)とに基づき算出して出力す る。 即ち、コントローラの信号処理手段22は各検知距離B1,B2,B3相 当の検知時間tf1,tf2,tf3を順次算出する。なお、パルスレーダでの 検知距離Bと検知時間tfは比例し、比例定数をk1とすると(2)式の様にな る。The signal processing means 22 of the controller outputs the detection signals Se corresponding to the obstacles within the detection distances B1, B2, B3 corresponding to the detection areas A1, A2, A3 to the pulses p1, p2, p3 (starting). Signal) and each received pulse pr (received signal), and calculates and outputs. That is, the signal processing means 22 of the controller sequentially calculates the detection times tf1, tf2, tf3 corresponding to the respective detection distances B1, B2, B3. The detection distance B in the pulse radar is proportional to the detection time tf, and if the proportionality constant is k1, then equation (2) is obtained.

【0017】 B=k1×tf・・・・・・・・(2) これ故、第1、第2及び第3の各送受信器14,15,16からの各パルスp 1,p2,p3の立上り時点より各検知時間tf1,tf2,tf3の経過時ま でに入力する受信パルスprの有無を判断する。受信パルスprの入力時には検 知信号Seを図示しない警報手段や車速規制手段に出力することと成る。 ここで、コントローラ17の行う車間距離警報制御処理を図6の車間距離警報 制御ルーチンに沿って説明する。B = k1 × tf (2) Therefore, each pulse p 1, p 2, p 3 from each of the first, second and third transceivers 14, 15, 16 is It is determined whether or not there is a received pulse pr to be input until the detection time tf1, tf2, tf3 elapses from the rising time. When the reception pulse pr is input, the detection signal Se is output to the alarm means and vehicle speed regulation means (not shown). Here, the inter-vehicle distance warning control process performed by the controller 17 will be described with reference to the inter-vehicle distance warning control routine of FIG.

【0018】 制御がスタートすると、ステップs1に達し、ここで車速Vcが設定されたシ ステム作動域か否かを判定する閾値としての車速30(Km/h)を上回ったか 否か判定し、下回っている間はリターンし、上回るとステップs2に進む。ここ では最新のヨーレートγを取り込み、この値が0か否か判断し、0(直進)では リターンし、非直進ではステップs3に進む。ステップs3では車速Vc、ヨー レートγより(1)式に応じて旋回半径Rを算出し、その旋回半径Rより検知距 離(レンジカット距離)を算出する。その上で検知距離B1,B2,B3相当の 検知時間tf1,tf2,tf3を順次算出する。この後、ステップs4に進み 、第1、第2及び第3の各送受信器14,15,16からの各パルスp1,p2 ,p3(発進信号)に時間フィルタをかけ、即ち、各送受信器14,15,16 からの各パルスp1,p2,p3の立上りからの検知時間tf1,tf2,tf 3内に、入力される受信パルスpr(受信信号)のみを検知信号Seと見做して 出力し、リターンする。When the control is started, step s1 is reached, where it is determined whether or not the vehicle speed Vc exceeds a vehicle speed 30 (Km / h) as a threshold value for determining whether or not the system operation range is set, and the vehicle speed Vc is lower than the threshold value. While returning, return to step s2. Here, the latest yaw rate γ is fetched, and it is judged whether or not this value is 0. If it is 0 (straight ahead), return is made, and if not straight ahead, the routine proceeds to step s3. In step s3, the turning radius R is calculated from the vehicle speed Vc and the yaw rate γ according to the equation (1), and the detection distance (range cut distance) is calculated from the turning radius R. Then, the detection times tf1, tf2, tf3 corresponding to the detection distances B1, B2, B3 are sequentially calculated. After that, the process proceeds to step s4, where each pulse p1, p2, p3 (starting signal) from each of the first, second and third transceivers 14, 15, 16 is time-filtered, that is, each transceiver 14 , 15 and 16 are detected during the detection time tf1, tf2, tf3 from the rise of each pulse p1, p2, p3, and only the input received pulse pr (received signal) is regarded as the detection signal Se and output. , Return.

【0019】 このように、時間フィルタによって、検知時間tf1,tf2,tf3内に入 力した受信パルスprに基づき(図5(a)参照)検知信号Seを出力し、検知 時間tf1,tf2,tf3の経過後、即ち、時間フィルタを外れた受信パルス pr(受信信号)は排除することと成り、走行方向とは異なる反旋回方向の障害 物による誤検知を排除出来る。特に、車速Vc、ヨーレートγより旋回半径Rを 求め、その旋回半径Rより検知距離(レンジカット距離)相当の検知時間tf1 ,tf2,tf3を算出して、これによる時間フィルタをかけており、適確な検 知距離(レンジカット距離)を確保出来るので、検知不可領域(図9(b)参照 )の発生を防止出来、しかも、ステアリング切れ角θsと比べて変動の少ないヨ ーレートγを用いるので、車速変化による誤検知を低減出来る。As described above, the time filter outputs the detection signal Se based on the received pulse pr input within the detection times tf1, tf2, and tf3 (see FIG. 5A), and the detection times tf1, tf2, and tf3. After that, that is, the received pulse pr (received signal) out of the time filter is eliminated, and erroneous detection due to an obstacle in the anti-turning direction different from the traveling direction can be eliminated. In particular, the turning radius R is calculated from the vehicle speed Vc and the yaw rate γ, and the detection times tf1, tf2, tf3 corresponding to the detection distance (range cut distance) are calculated from the turning radius R, and the time filter based on this is applied. Since an accurate detection distance (range cut distance) can be secured, it is possible to prevent the occurrence of an undetectable area (see Fig. 9 (b)), and the yaw rate γ, which has less fluctuation than the steering angle θs, is used. Therefore, it is possible to reduce false detection due to changes in vehicle speed.

【0020】 上述のところにおいて、図1の車間距離警報装置ではパルスレーダによる障害 物の検知を行っていたが、これに代えて、周波数変調方式(FM−CW)レーダ を用いても良い。この場合の車間距離警報装置は図1の装置と同一部材を多く含 みここでは重複説明を略す。即ち、図1の装置の内の送受信器14,15,16 が周知のFM−CWレーダ用に代えられ、コントローラ17内の信号処理手段2 2の制御(図7に制御フローを示した)が相違するのみである。In the above description, the inter-vehicle distance warning device of FIG. 1 detects an obstacle by a pulse radar, but instead of this, a frequency modulation (FM-CW) radar may be used. The inter-vehicle distance warning device in this case includes many of the same members as the device of FIG. 1, and a duplicate description is omitted here. That is, the transmitters / receivers 14, 15 and 16 of the apparatus of FIG. 1 are replaced with those of the well-known FM-CW radar, and the control of the signal processing means 22 in the controller 17 (the control flow is shown in FIG. 7) is used. Only the difference.

【0021】 ここでのコントローラ17の信号処理手段(図1参照)は送信波周波数fhと 受信波周波数frの差Δf(=fh−fr)のビート出力を検知し、検知時には これを増幅して検知信号Seとして出力する。この場合、特に、各検知距離B1 ,B2,B3相当の各検知周波数(周波数フィルタ)f1,f2,f3を順次算 出する。なお、FM−CWレーダでの検知周波数fnは検知距離Bと比例し、比 例定数をk2とすると(3)式の様になる。The signal processing means (see FIG. 1) of the controller 17 detects the beat output of the difference Δf (= fh−fr) between the transmission wave frequency fh and the reception wave frequency fr, and amplifies the beat output at the time of detection. It is output as the detection signal Se. In this case, in particular, the detection frequencies (frequency filters) f1, f2, f3 corresponding to the detection distances B1, B2, B3 are sequentially calculated. The detection frequency fn in the FM-CW radar is proportional to the detection distance B, and if the relative constant is k2, it becomes as shown in equation (3).

【0022】 B=k2×fn・・・・・・・・(3) これ故、第1、第2及び第3の各送受信器14,15,16からの各送信周波 数fh及び受信周波数frの差Δf(=fh−fr)のビート出力を検知した際 には、これを増幅して、各検知周波数(周波数フィルタ)f1,f2,f3内に あると、検知信号Seとして図示しない警報手段や車速規制手段に出力すること と成る。 ここで、コントローラ17の行う車間距離警報制御処理を図7の車間距離警報 制御ルーチンに沿って説明する。なお、図6中にあるものと同一ルーチンについ てはその重複説明を簡略化する。B = k2 × fn (3) Therefore, the transmission frequency fh and the reception frequency fr from the first, second and third transceivers 14, 15 and 16 respectively. When a beat output having a difference Δf (= fh-fr) is detected, it is amplified, and if it is within each of the detection frequencies (frequency filters) f1, f2, f3, an alarm means not shown as a detection signal Se is shown. And the vehicle speed regulation means. Here, the inter-vehicle distance warning control processing performed by the controller 17 will be described with reference to the inter-vehicle distance warning control routine of FIG. 7. Note that duplicate description of the same routine as that shown in FIG. 6 will be simplified.

【0023】 制御がスタートすると、ステップs1に達し、車速Vcが30(Km/h)以 下でない限りステップs2に進む。ここでヨーレートγが0の直進でない限りス テップs3に進む。ステップs3’では車速Vc、ヨーレートγ相当の旋回半径 R、及び、旋回半径R相当の検知距離B1,B2,B3を算出する。その上で検 知距離B1,B2,B3相当の各検知周波数(周波数フィルタ)f1,f2,t f3を順次算出する。この後、ステップs4’に進みレンジカットを行う。即ち 、第1、第2及び第3の各送受信器14,15,16からの各送信周波数fh及 び受信周波数frの差Δf(=fh−fr)のビート出力を検知した際には、こ れを増幅して、各検知周波数(周波数フィルタ)f1,f2,f3内にあると、 これを検知信号Seと見做して出力し、リターンする。When the control is started, step s1 is reached, and unless the vehicle speed Vc is 30 (Km / h) or less, step s2 is proceeded to. Here, unless the yaw rate γ is 0, the process proceeds to step s3. In step s3 ', the vehicle speed Vc, the turning radius R corresponding to the yaw rate γ, and the detection distances B1, B2, B3 corresponding to the turning radius R are calculated. Then, the respective detection frequencies (frequency filters) f1, f2, tf3 corresponding to the detection distances B1, B2, B3 are sequentially calculated. After this, the process proceeds to step s4 'to perform range cut. That is, when the beat output of the difference Δf (= fh−fr) between the transmission frequencies fh and the reception frequencies fr from the first, second and third transceivers 14, 15, 16 is detected, If this is amplified and is within each of the detection frequencies (frequency filters) f1, f2, f3, this is regarded as the detection signal Se and output, and the process returns.

【0024】 このように、周波数フィルタによって、検知周波数f1,f2,f3内に入力 した受信波frに基づき検知信号Seを出力するので、周波数フィルタを外れた 受信周波数の受信波(受信信号)は排除されることと成り、走行方向とは異なる 反旋回方向の障害物による誤検知を排除出来る。特に、車速Vc、ヨーレートγ より旋回半径Rを求め、その旋回半径Rより検知距離(レンジカット距離)相当 の各検知周波数f1,f2,f3を算出して、これによる周波数フィルタをかけ ており、適確な検知距離(レンジカット距離)を確保出来るので、検知不可領域 (図9(b)参照)の発生を防止出来、しかも、ステアリング切れ角θsと比べ て変動の少ないヨーレートγを用いるので、車速変化による誤検知を低減出来る 。As described above, since the detection signal Se is output by the frequency filter based on the reception wave fr input within the detection frequencies f1, f2, and f3, the reception wave (reception signal) of the reception frequency that has deviated from the frequency filter is Therefore, false detection due to an obstacle in the anti-turning direction, which is different from the traveling direction, can be eliminated. In particular, the turning radius R is calculated from the vehicle speed Vc and the yaw rate γ, and the respective detection frequencies f1, f2, f3 corresponding to the detection distance (range cut distance) are calculated from the turning radius R, and the frequency filter based on this is applied. Since a proper detection distance (range cut distance) can be secured, the occurrence of a non-detectable area (see FIG. 9 (b)) can be prevented, and since the yaw rate γ that has less fluctuation than the steering angle θs is used, False detection due to changes in vehicle speed can be reduced.

【0025】[0025]

【考案の効果】[Effect of the device]

以上のように、この考案は、車速及びヨーレイトに基づき車両の旋回半径を算 出し、旋回半径に基づき各レーダビームの検知距離を、反旋回側レーダビームの 検知距離ほど短く設定し、旋回側レーダビームの検知距離ほど長く設定するので 、検知領域内の障害物に応じた検知信号を発進信号と受信信号とに基づき算出し て出力する際に、走行方向より外れ易い反旋回側の検知領域の障害物からの不要 な検知信号を排除出来ことが出来、特に、車速変化による検知不可領域の発生や 誤検知を防止出来る。 As described above, the present invention calculates the turning radius of the vehicle based on the vehicle speed and the yaw rate, and sets the detection distance of each radar beam based on the turning radius as short as the detection distance of the anti-turning side radar beam. Since the detection distance of the beam is set to be longer, the detection signal corresponding to the obstacle in the detection area is calculated based on the start signal and the received signal and is output. Unnecessary detection signals from obstacles can be eliminated, and in particular, generation of undetectable areas due to changes in vehicle speed and erroneous detection can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例としての車間距離警報装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an inter-vehicle distance warning device as one embodiment of the present invention.

【図2】図1の装置を搭載した自動車の姿勢説明図であ
る。
FIG. 2 is an explanatory view of the posture of an automobile equipped with the device of FIG.

【図3】図1の装置のコントローラが採用可能な旋回半
径算出マップの3次元特性線図である。
3 is a three-dimensional characteristic diagram of a turning radius calculation map that can be adopted by the controller of the apparatus of FIG.

【図4】図1の装置のコントローラの用いるが検知距離
算出マップの特性線図である。
FIG. 4 is a characteristic diagram of a detection distance calculation map used by the controller of the apparatus of FIG.

【図5】(a)は図1の装置の第1送受信器内での作動
説明のための波形図、(b)は図1の装置の第2送受信
器内での作動説明のための波形図、(c)は図1の装置
の第3送受信器内での作動説明のための波形図である。
5A is a waveform diagram for explaining the operation of the device in FIG. 1 in a first transceiver, and FIG. 5B is a waveform diagram for explaining the operation of the device in FIG. 1 in a second transceiver. FIG. 3C is a waveform diagram for explaining the operation of the device of FIG. 1 in the third transceiver.

【図6】図1の装置の制御フローチャートである。FIG. 6 is a control flowchart of the apparatus of FIG.

【図7】本考案の他の実施例としての車間距離警報装置
装置の制御フローチャートである。
FIG. 7 is a control flowchart of an inter-vehicle distance warning device according to another embodiment of the present invention.

【図8】従来の装置の概略構成図である。FIG. 8 is a schematic configuration diagram of a conventional device.

【図9】(a)は従来の装置の低速時における作用説明
図である。(b)従来の装置の高速時における作用説明
図である。
FIG. 9A is an explanatory view of the operation of the conventional device at low speed. (B) It is operation | movement explanatory drawing at the time of the high speed of the conventional apparatus.

【符号の説明】[Explanation of symbols]

10 自動車 11 送受信器 12 送受信器 13 送受信器 14 送受信器 15 送受信器 16 送受信器 17 コントローラ 18 車速センサ 19 ヨーレートセンサ 20 旋回半径算出手段 21 検知距離算出手段 22 信号処理手段 B 検知距離 R 旋回半径 γ ヨーレート 10 Car 11 Transceiver 12 Transceiver 13 Transceiver 14 Transceiver 15 Transceiver 16 Transceiver 17 Controller 18 Vehicle speed sensor 19 Yaw rate sensor 20 Turning radius calculating means 21 Detecting distance calculating means 22 Signal processing means B Detecting distance R Turning radius γ Yaw rate

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】放射方向が左右に区分された複数の各レー
ダビームを車両の前方にそれぞれ放射するアンテナと、
上記アンテナに発進信号を出力すると共に受信信号を受
ける送受信機と、障害物の検知領域に応じた検知距離を
設定する検知距離設定手段と、上記検知領域内の障害物
に応じた検知信号を上記発進信号と受信信号とに基づき
算出して出力する信号処理手段と、上記車両の車速情報
を出力する車速センサと、上記車両のヨーレイト情報を
出力すヨーレイトセンサと、上記車速及びヨーレイトに
基づき車両の旋回半径を算出する旋回半径算出手段とを
有し、上記検知距離設定手段は上記旋回半径に基づき上
記各レーダビームの検知距離を、反旋回側レーダビーム
の検知距離ほど短く設定し、旋回側レーダビームの検知
距離ほど長く設定することを特徴とする車間距離警報装
置。
1. An antenna for radiating a plurality of radar beams whose emission directions are divided into left and right in front of a vehicle, respectively.
A transmitter / receiver that outputs a start signal to the antenna and receives a received signal, a detection distance setting unit that sets a detection distance according to an obstacle detection area, and a detection signal that corresponds to an obstacle in the detection area Signal processing means for calculating and outputting based on a start signal and a received signal, a vehicle speed sensor for outputting vehicle speed information of the vehicle, a yaw rate sensor for outputting yaw rate information of the vehicle, and a vehicle speed based on the vehicle speed and yaw rate of the vehicle. And a turning radius calculation means for calculating a turning radius, wherein the detection distance setting means sets the detection distance of each of the radar beams based on the turning radius to be shorter than the detection distance of the anti-turning side radar beam. An inter-vehicle distance warning device characterized in that the detection distance of the beam is set longer.
JP3327592U 1992-05-20 1992-05-20 Inter-vehicle distance alarm device Pending JPH0592769U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327592U JPH0592769U (en) 1992-05-20 1992-05-20 Inter-vehicle distance alarm device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327592U JPH0592769U (en) 1992-05-20 1992-05-20 Inter-vehicle distance alarm device

Publications (1)

Publication Number Publication Date
JPH0592769U true JPH0592769U (en) 1993-12-17

Family

ID=12381987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327592U Pending JPH0592769U (en) 1992-05-20 1992-05-20 Inter-vehicle distance alarm device

Country Status (1)

Country Link
JP (1) JPH0592769U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075686A1 (en) * 2018-10-12 2020-04-16 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192912A (en) * 1983-04-15 1984-11-01 Fujitsu Ten Ltd Measuring device of curve radius
JPS6034708A (en) * 1983-05-24 1985-02-22 ドー―オリヴアー インコーポレーテツド Vacuum squeezing apparatus and method for rotary type drum vacuum filter
JPH05203741A (en) * 1992-01-29 1993-08-10 Mazda Motor Corp Obstacle detector for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192912A (en) * 1983-04-15 1984-11-01 Fujitsu Ten Ltd Measuring device of curve radius
JPS6034708A (en) * 1983-05-24 1985-02-22 ドー―オリヴアー インコーポレーテツド Vacuum squeezing apparatus and method for rotary type drum vacuum filter
JPH05203741A (en) * 1992-01-29 1993-08-10 Mazda Motor Corp Obstacle detector for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075686A1 (en) * 2018-10-12 2020-04-16 京セラ株式会社 Electronic device, method for controlling electronic device, and program for controlling electronic device
JPWO2020075686A1 (en) * 2018-10-12 2021-09-09 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices

Similar Documents

Publication Publication Date Title
JP3645988B2 (en) Vehicle obstacle detection device
JP3770189B2 (en) Object recognition device, object recognition method, radar device
JP3119142B2 (en) In-vehicle radar device
JP6430778B2 (en) Object detection device
JP6574407B2 (en) Vehicle control apparatus and vehicle control method
JP5737411B2 (en) Alarm device
JPH1095291A (en) Collision warning system of vehicle
WO2018092565A1 (en) Collision determination device, and collision determination method
JPH0592768U (en) Inter-vehicle distance alarm device
JPH0592769U (en) Inter-vehicle distance alarm device
JP2859928B2 (en) Rear monitoring device for vehicles
JP2932210B2 (en) Automotive radar system
JP3082535B2 (en) In-vehicle radar device
JP2001021646A (en) On-vehicle radar apparatus
JP2022164343A (en) Method, computer readable medium, radar object detection system and vehicle specification system
JP5604179B2 (en) Object detection device
JPH1123706A (en) Obstacle detecting device for vehicle
JPH11118925A (en) Distance-between-vehicles alarm apparatus
JP2794843B2 (en) Vehicle movement detection device
JP3241906B2 (en) In-vehicle object detection device using laser light
JP3020584B2 (en) Obstacle detection device
JP7377054B2 (en) Control device
JPH06160518A (en) On-vehicle radar device
JP3790436B2 (en) Radar device and automobile equipped with the same
JP3909764B2 (en) Target width calculation method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980106