JPH0592623U - Three-dimensional shape measuring device - Google Patents
Three-dimensional shape measuring deviceInfo
- Publication number
- JPH0592623U JPH0592623U JP3250292U JP3250292U JPH0592623U JP H0592623 U JPH0592623 U JP H0592623U JP 3250292 U JP3250292 U JP 3250292U JP 3250292 U JP3250292 U JP 3250292U JP H0592623 U JPH0592623 U JP H0592623U
- Authority
- JP
- Japan
- Prior art keywords
- objective lens
- light
- measurement target
- optical axis
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
(57)【要約】
【目的】 位置の誤差を低減して、測定精度を向上させ
る。
【構成】 レーザ光源と、入射光を2方向に分岐する光
学部品と、前記レーザ光源の出射光を測定対象に集光さ
せるための対物レンズと、この対物レンズを光軸方向に
動かす駆動部と、前記測定対象からの第1の反射光が前
記対物レンズを介して入射される偏光ビ−ムスプリッタ
および1/4波長板と、この偏光ビームスプリッタおよ
び1/4波長板に入射された光を再び前記対物レンズを
介して前記測定対象へ入射させるための平面ミラ−と、
前記測定対象からの第2の反射光の拡がり角から前記対
物レンズの焦点誤差を検出して、対物レンズの位置に帰
還をかけて常に合焦状態にする焦点位置検出光学系と、
前記測定対象と前記光学系を光軸に対して垂直な面内で
相対的に移動させ、その変位を出力するステ−ジと、前
記対物レンズの光軸方向の変位および前記ステ−ジの変
位出力から前記測定対象の形状を求めて表示する信号処
理装置とを備えた構成としたことを特徴とする。
(57) [Abstract] [Purpose] To reduce the position error and improve the measurement accuracy. A laser light source, an optical component that splits incident light into two directions, an objective lens for converging the emitted light of the laser light source on a measurement target, and a drive unit that moves the objective lens in the optical axis direction. , A polarized beam splitter and a 1/4 wavelength plate on which the first reflected light from the measurement target is incident through the objective lens, and a light incident on the polarized beam splitter and the 1/4 wavelength plate. Again, a plane mirror for entering the measuring object through the objective lens,
A focus position detection optical system that detects a focus error of the objective lens from the divergence angle of the second reflected light from the measurement object and returns the focus error to the position of the objective lens to always bring the focus state.
A stage that relatively moves the object to be measured and the optical system in a plane perpendicular to the optical axis and outputs the displacement, a displacement in the optical axis direction of the objective lens, and a displacement of the stage. A signal processing device for obtaining and displaying the shape of the measurement target from the output is provided.
Description
【0001】[0001]
本考案は、非接触で物体の3次元形状を測定する3次元形状測定装置に関し、 特に、測定面の傾斜による影響を低減した装置に関するものである。 The present invention relates to a three-dimensional shape measuring apparatus that measures the three-dimensional shape of an object in a non-contact manner, and more particularly to an apparatus that reduces the influence of the inclination of the measurement surface.
【0002】[0002]
図2は非点収差法を用いた3次元形状測定装置の一例を示す構成図である。図 2において、1は直線偏光のレーザ光を出力するレーザ光源、2は入射光を透過 光と反射光の2方向に分岐するハーフミラー、3はレーザ光を被測定物4に集光 するための対物レンズ、5は被測定物4を光軸に対して垂直方向(x,y方向) に走査するためのステージ、6は対物レンズ3を光軸方向(z方向)に動かすた めの駆動装置、7,8は被測定物4からの反射光を集束するための凸レンズ,円 筒形レンズ、9は凸レンズ7,円筒形レンズ8により集束された光を4つに分割 した電気信号に変換する4分割フォトダイオード、10は4分割フォトダイオー ド9からの電気信号より対物レンズ3の焦点誤差を検出して駆動装置6を動かし て焦点合わせを行うと共に、ステージ5を走査して3次元信号を動かすための信 号処理装置である。 FIG. 2 is a block diagram showing an example of a three-dimensional shape measuring apparatus using the astigmatism method. In FIG. 2, 1 is a laser light source that outputs linearly polarized laser light, 2 is a half mirror that splits incident light into two directions of transmitted light and reflected light, and 3 is for focusing the laser light on the DUT 4. Objective lens, 5 is a stage for scanning the DUT 4 in the directions perpendicular to the optical axis (x and y directions), and 6 is a drive for moving the objective lens 3 in the optical axis direction (z direction). Equipment, 7 and 8 are convex lenses for focusing the reflected light from the DUT 4, cylindrical lenses, and 9 are the light focused by the convex lenses 7 and the cylindrical lenses 8 and are converted into four electric signals. The four-division photodiode 10 detects the focus error of the objective lens 3 from the electric signal from the four-division photodiode 9, moves the driving device 6 to perform focusing, and scans the stage 5 to generate a three-dimensional signal. Signal processing device for moving Is.
【0003】 このような構成において、レーザ光源1から出力された光は、ハーフミラー2 を透過して、対物レンズ3により集光されて被測定物4に照射され、反射される 。反射光は、対物レンズ3を通って、ハーフミラー2で反射される。反射光は、 凸レンズ7,円筒形レンズ8および4分割フォトダイオード9から成る非点収差 法を用いた焦点誤差検出光学系に入射され、4分割フォトダイオード9で被測定 物4上での焦点ずれを検出して、駆動装置6により対物レンズ3を動かして焦点 を合わせる。この時の駆動装置6の動きをZ方向の変位(=高さ)信号にして、 ステージ5で被測定物4をx,y方向に走査した時の変位出力とから信号処理装 置10で被測定物の3次元形状を求めていた。In such a configuration, the light output from the laser light source 1 passes through the half mirror 2, is condensed by the objective lens 3, is irradiated to the DUT 4, and is reflected. The reflected light passes through the objective lens 3 and is reflected by the half mirror 2. The reflected light is incident on the focus error detection optical system using the astigmatism method, which is composed of the convex lens 7, the cylindrical lens 8 and the 4-division photodiode 9, and is defocused on the DUT 4 by the 4-division photodiode 9. Is detected, the objective lens 3 is moved by the driving device 6 to adjust the focus. The movement of the driving device 6 at this time is used as a displacement (= height) signal in the Z direction, and the displacement output when the DUT 4 is scanned in the x and y directions by the stage 5 is detected by the signal processing device 10. The three-dimensional shape of the measured object was sought.
【0004】[0004]
しかしながら、上記従来技術に示す3次元形状測定装置においては、被測定物 4に傾きがあると、4分割フォトダイオード9上でビームが中心からずれるため 、測定誤差の原因となるという課題があった。 However, in the three-dimensional shape measuring apparatus shown in the above-mentioned prior art, when the DUT 4 is tilted, the beam is deviated from the center on the 4-division photodiode 9, which causes a measurement error. ..
【0005】 本考案は、上記従来技術の課題を踏まえて成されたものであり、偏光を用いて 、被測定物に光を2回照射させることにより、被測定物からの反射光の光軸を常 に一定にすることにより、位置の誤差を低減して、測定精度を向上した3次元形 状測定装置を提供することを目的としたものである。The present invention has been made in view of the above-mentioned problems of the prior art, and an optical axis of reflected light from an object to be measured is irradiated by irradiating the object to be measured with polarized light twice. The object of the present invention is to provide a three-dimensional shape measuring apparatus in which the position error is reduced by keeping the constant value constantly and the measurement accuracy is improved.
【0006】[0006]
上記課題を解決するための本考案の構成は、 レーザ光源と、 入射光を2方向に分岐する光学部品と、 前記レーザ光源の出射光を測定対象に集光させるための対物レンズと、 この対物レンズを光軸方向に動かす駆動部と、 前記測定対象からの第1の反射光が前記対物レンズを介して入射される偏光ビ −ムスプリッタおよび1/4波長板と、 この偏光ビームスプリッタおよび1/4波長板に入射された光を再び前記対物 レンズを介して前記測定対象へ入射させるための平面ミラ−と、 前記測定対象からの第2の反射光の拡がり角から前記対物レンズの焦点誤差を 検出して、対物レンズの位置に帰還をかけて常に合焦状態にする焦点位置検出光 学系と、 前記測定対象と前記光学系を光軸に対して垂直な面内で相対的に移動させ、そ の変位を出力するステ−ジと、 前記対物レンズの光軸方向の変位および前記ステ−ジの変位出力から前記測定 対象の形状を求めて表示する信号処理装置と を備えた構成としたことを特徴とするものである。 The structure of the present invention for solving the above-mentioned problems is a laser light source, an optical component that splits incident light into two directions, an objective lens for converging the emitted light of the laser light source on a measurement target, and this objective. A drive unit for moving the lens in the optical axis direction, a polarization beam splitter and a quarter wave plate on which the first reflected light from the measurement target is incident through the objective lens, and the polarization beam splitter and 1 A plane mirror for causing the light incident on the / 4 wavelength plate to enter the measurement object again through the objective lens, and the focus error of the objective lens from the divergence angle of the second reflected light from the measurement object. And the focus position detection optical system that always returns to the position of the objective lens to keep in focus, and the measurement target and the optical system move relatively in a plane perpendicular to the optical axis. And its displacement And a signal processing device for displaying and obtaining the shape of the object to be measured from the displacement of the objective lens in the optical axis direction and the displacement output of the stage. It is a thing.
【0007】[0007]
本考案によると、偏光を利用して、被測定物に光を2回照射させることにより 、反射光の光軸を入射光の光軸に一致させている。したがって、被測定物が傾い ていても、4分割フォトダイオード上での光のスポット位置がずれることを低減 できる。 According to the present invention, the optical axis of the reflected light is made to coincide with the optical axis of the incident light by irradiating the DUT with light twice using polarized light. Therefore, even if the object to be measured is tilted, it is possible to reduce the deviation of the light spot position on the four-division photodiode.
【0008】[0008]
以下、本考案を図面に基づいて説明する。 図1は本考案の3次元形状測定装置の一実施例を示す構成図である。なお、図 1において図2と同一要素には同一符号を付して重複する説明は省略する。 図1において、11は偏光状態によって光を反射光と透過光に分岐するための 偏光ビームスプリッタ、12は直線偏光を円偏光に、また円偏光を直線偏光に変 えるための1/4波長板、13は平面ミラーである。 Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the three-dimensional shape measuring apparatus of the present invention. In FIG. 1, the same elements as those in FIG. 2 are designated by the same reference numerals, and overlapping description will be omitted. In FIG. 1, 11 is a polarization beam splitter for splitting light into reflected light and transmitted light according to the polarization state, 12 is a quarter-wave plate for converting linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light. , 13 are plane mirrors.
【0009】 このような構成において、レーザ光源1から出射した光は、ハーフミラー2, 偏光ビームスプリッタ11を透過する。なお、この時のレーザ光源1の偏光は、 偏光ビームスプリッタ11を透過する方向に合わせてある。その後、1/4波長 板12を通ることにより、円偏光に変換され、対物レンズ3で集光されて被測定 物4に照射される。その反射光は、対物レンズ3,1/4波長板12を通って、 偏光ビームスプリッタ11で反射され、平面ミラー13に入射され、反射される 。反射光は、偏光ビームスプリッタ11で反射され、1/4波長板12を通って 、対物レンズ3で集光され、被測定物4に照射される。その反射光は、対物レン ズ3,1/4波長板12,偏光ビームスプリッタ11を通って、ハーフミラー2 で反射され、非点収差法による焦点誤差検出光学系に入射する。非点収差法によ る焦点誤差検出光学系では、2つのレンズ7,8を通って、4分割フォトダイオ ード9に照射され、電気信号に変換される。4分割フォトダイオード9上でのビ ーム形状から、被測定物4上での焦点ずれを信号処理装置10で測定し、対物レ ンズ駆動機構6を動かして、焦点を合わせる。この時の対物レンズ駆動機構の動 きをz方向の変位(=高さ)信号にして、ステージ5をx,y方向に走査して、 被測定物4の3次元形状を測定する。In such a configuration, the light emitted from the laser light source 1 passes through the half mirror 2 and the polarization beam splitter 11. The polarization of the laser light source 1 at this time is aligned with the direction of transmission through the polarization beam splitter 11. After that, the light is converted into circularly polarized light by passing through the quarter-wave plate 12, is condensed by the objective lens 3, and is irradiated onto the DUT 4. The reflected light passes through the objective lens 3 and the quarter-wave plate 12, is reflected by the polarization beam splitter 11, is incident on the plane mirror 13, and is reflected. The reflected light is reflected by the polarization beam splitter 11, passes through the quarter-wave plate 12, is condensed by the objective lens 3, and is irradiated onto the DUT 4. The reflected light passes through the objective lens 3, the quarter-wave plate 12, and the polarization beam splitter 11, is reflected by the half mirror 2, and enters the focus error detection optical system by the astigmatism method. In the focus error detection optical system based on the astigmatism method, the four-divided photodiode 9 is irradiated through the two lenses 7 and 8 and converted into an electric signal. The focus shift on the DUT 4 is measured by the signal processing device 10 from the beam shape on the four-division photodiode 9, and the objective lens drive mechanism 6 is moved to adjust the focus. The movement of the objective lens driving mechanism at this time is used as a displacement (= height) signal in the z direction, and the stage 5 is scanned in the x and y directions to measure the three-dimensional shape of the DUT 4.
【0010】 このように、上記実施例では、偏光を利用して、被測定物に光を2回照射させ ている。したがって、反射光の光軸を入射光の光軸に一致させることができ、被 測定物が傾いていても、4分割フォトダイオード上での光のスポット位置がずれ ることを低減できるため、測定誤差を低減できる。As described above, in the above-described embodiment, the measured object is irradiated with the light twice by using the polarized light. Therefore, the optical axis of the reflected light can be aligned with the optical axis of the incident light, and even if the DUT is tilted, it is possible to reduce the deviation of the spot position of the light on the 4-division photodiode. The error can be reduced.
【0011】 なお、上記実施例において、対物レンズの光軸方向の動きを変位信号とはしな いで、4分割フォトダイオードでの焦点ずれ信号を変位信号として測定すること によっても可能である。この場合、従来から使用されている3次元形状測定器用 の非接触プローブとして使用することができる。つまり、このプローブを被測定 物に近づけていき、一定の距離になった時点で、変位信号のゼロクロス信号から トリガ出力を出す。3次元測定器では、トリガ信号によって、その時点でのスケ ールの値を読むことで、表面形状を測定することができる。In the above embodiment, the movement of the objective lens in the optical axis direction may not be a displacement signal, but may be a defocus signal of the four-division photodiode as a displacement signal. In this case, it can be used as a non-contact probe for a three-dimensional shape measuring instrument that has been conventionally used. In other words, when this probe is brought closer to the object to be measured and a certain distance is reached, a trigger output is output from the zero-cross signal of the displacement signal. The three-dimensional measuring device can measure the surface shape by reading the scale value at that point in time by the trigger signal.
【0012】 また、測定対象を光軸に対して垂直方向に動かす方式ではなく、測定対象を固 定しておいて、光学系全体を光軸に垂直方向(x−y方向)に動かすことも可能 である。Further, instead of moving the measurement object in the direction perpendicular to the optical axis, the measurement object may be fixed and the entire optical system may be moved in the direction perpendicular to the optical axis (xy direction). It is possible.
【0013】[0013]
以上、実施例と共に具体的に説明したように、本考案によれば、偏光を利用し て、被測定物に光を2回照射させることにより、反射光の光軸を入射光の光軸に 一致させている。したがって、被測定物が傾いていても、4分割フォトダイオー ド上での光のスポット位置がずれることを低減できるため、測定精度を向上した 3次元形状測定装置を実現することができる。 As described above in detail with reference to the embodiments, according to the present invention, the optical axis of the reflected light is changed to the optical axis of the incident light by irradiating the DUT with the light twice by using the polarized light. Match. Therefore, even if the object to be measured is tilted, it is possible to reduce the deviation of the light spot position on the four-division photodiode, and it is possible to realize a three-dimensional shape measuring apparatus with improved measurement accuracy.
【図1】本考案の3次元形状測定装置の一実施例を示す
構成図である。FIG. 1 is a configuration diagram showing an embodiment of a three-dimensional shape measuring apparatus of the present invention.
【図2】3次元形状測定装置の従来例である。FIG. 2 is a conventional example of a three-dimensional shape measuring apparatus.
1 レーザ光源 2 ビームスプリッタ 3 対物レンズ 4 被測定物 5 ステージ 6 対物レンズ駆動機構 7 凸レンズ 8 円筒形レンズ 9 4分割フォトダイオード 10 信号処理装置 11 偏光ビームスプリッタ 12 1/4波長板 13 平面ミラー 1 Laser Light Source 2 Beam Splitter 3 Objective Lens 4 Object to be Measured 5 Stage 6 Objective Lens Drive Mechanism 7 Convex Lens 8 Cylindrical Lens 9 4 Division Photodiode 10 Signal Processor 11 Polarization Beam Splitter 12 1/4 Wave Plate 13 Planar Mirror
Claims (1)
対物レンズと、 この対物レンズを光軸方向に動かす駆動部と、前記測定
対象からの第1の反射光が前記対物レンズを介して入射
される偏光ビ −ムスプリッタおよび1/4波長板と、 この偏光ビームスプリッタおよび1/4波長板に入射さ
れた光を再び前記対物レンズを介して前記測定対象へ入
射させるための平面ミラ−と、 前記測定対象からの第2の反射光の拡がり角から前記対
物レンズの焦点誤差を検出して、対物レンズの位置に帰
還をかけて常に合焦状態にする焦点位置検出光学系と、 前記測定対象と前記光学系を光軸に対して垂直な面内で
相対的に移動させ、その変位を出力するステ−ジと、 前記対物レンズの光軸方向の変位および前記ステ−ジの
変位出力から前記測定対象の形状を求めて表示する信号
処理装置とを備えた構成としたことを特徴とする3次元
形状測定装置。1. A laser light source, an optical component for branching incident light into two directions, an objective lens for converging the emitted light of the laser light source on a measurement target, and a drive for moving the objective lens in the optical axis direction. Section, the first reflected light from the measurement target is incident through the objective lens, and the quarter-wave plate, and the polarization beam splitter and the quarter-wave plate are incident. The focus error of the objective lens is detected by detecting the focus error of the objective lens from the plane mirror for causing the light to enter the measurement target again through the objective lens and the divergence angle of the second reflected light from the measurement target. A focus position detection optical system that returns a position to always bring the object into focus, and a stage that relatively moves the measurement target and the optical system in a plane perpendicular to the optical axis and outputs the displacement. And the objective lens 'S in the optical axis direction of displacement and the stearyl - three-dimensional shape measuring apparatus according to claim from the displacement output of di it has a structure in which a signal processing device for determining and displaying the shape of the measurement target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3250292U JP2564799Y2 (en) | 1992-05-18 | 1992-05-18 | 3D shape measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3250292U JP2564799Y2 (en) | 1992-05-18 | 1992-05-18 | 3D shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0592623U true JPH0592623U (en) | 1993-12-17 |
JP2564799Y2 JP2564799Y2 (en) | 1998-03-09 |
Family
ID=12360770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3250292U Expired - Fee Related JP2564799Y2 (en) | 1992-05-18 | 1992-05-18 | 3D shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564799Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118129055A (en) * | 2024-04-30 | 2024-06-04 | 成都飞机工业(集团)有限责任公司 | Line laser scanning device and scanning method for aviation part contour |
-
1992
- 1992-05-18 JP JP3250292U patent/JP2564799Y2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118129055A (en) * | 2024-04-30 | 2024-06-04 | 成都飞机工业(集团)有限责任公司 | Line laser scanning device and scanning method for aviation part contour |
Also Published As
Publication number | Publication date |
---|---|
JP2564799Y2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4355904A (en) | Optical inspection device for measuring depthwise variations from a focal plane | |
JPH10185529A (en) | Interferometer and shape measuring instrument | |
JPH0743251B2 (en) | Optical displacement meter | |
EP0208276A1 (en) | Optical measuring device | |
JP2001108417A (en) | Optical shape measuring instrument | |
JP2002039724A (en) | Internal hole surface inspecting device | |
US5202740A (en) | Method of and device for determining the position of a surface | |
JPS5979104A (en) | Optical device | |
JPS6161178B2 (en) | ||
JP2564799Y2 (en) | 3D shape measuring device | |
JPH05203431A (en) | Surface shape measuring instrument | |
JPS63194886A (en) | Device for detecting laser optical axis | |
JP2808713B2 (en) | Optical micro displacement measuring device | |
JPH05312538A (en) | Three-dimensional shape measuring instrument | |
JP2003161610A (en) | Optical measurement device | |
JP2674467B2 (en) | Optical pickup | |
JP2625209B2 (en) | Optical micro displacement measuring device | |
JP2001304833A (en) | Optical lever type inclination detecting apparatus | |
JPH0510733A (en) | Three-dimensional shape measuring apparatus | |
JPS62218802A (en) | Optical type distance and inclination measuring apparatus | |
JPS635208A (en) | Apparatus for measuring surface shape | |
JPH0648399Y2 (en) | Non-contact micro surface abnormality detector | |
JPH06137827A (en) | Optical level difference measuring apparatus | |
JP2591143B2 (en) | 3D shape measuring device | |
JPH0469508A (en) | Method and instrument for optical contactless shape measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971028 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R323115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |