JPH059256B2 - - Google Patents

Info

Publication number
JPH059256B2
JPH059256B2 JP3468789A JP3468789A JPH059256B2 JP H059256 B2 JPH059256 B2 JP H059256B2 JP 3468789 A JP3468789 A JP 3468789A JP 3468789 A JP3468789 A JP 3468789A JP H059256 B2 JPH059256 B2 JP H059256B2
Authority
JP
Japan
Prior art keywords
screw
injection
molding machine
injection molding
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3468789A
Other languages
Japanese (ja)
Other versions
JPH01308611A (en
Inventor
Junichi Shimizu
Tadashi Nakajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP3468789A priority Critical patent/JPH01308611A/en
Publication of JPH01308611A publication Critical patent/JPH01308611A/en
Publication of JPH059256B2 publication Critical patent/JPH059256B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は射出成形機の制御方法、特に射出工程
におけるスクリユに対する制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling an injection molding machine, and particularly to a method for controlling a screw in an injection process.

〔従来の技術〕[Conventional technology]

インラインスクリユ式射出成形機における従来
の形式は、一般に、後部に成形材料を供給するホ
ツパを配した加熱筒を備え、この加熱筒に進退及
び回転が制御されるスクリユを挿入して構成す
る。そして、計量工程ではスクリユを回転させて
スクリユ前方に溶融樹脂材料を蓄積するととも
に、射出工程ではスクリユを前進させて金型への
射出充填を行う。このため、この種の射出成形機
においては、射出速度や射出圧力(保圧圧力)等
を正確に制御することが、高精度、高品質、かつ
安定した成形品を確保する上で極めて重要とな
る。
Conventional in-line screw injection molding machines generally include a heating cylinder with a hopper disposed at the rear for supplying molding material, and a screw whose advancement/retraction and rotation are controlled is inserted into the heating cylinder. In the metering step, the screw is rotated to accumulate molten resin material in front of the screw, and in the injection step, the screw is moved forward to inject and fill the mold. Therefore, in this type of injection molding machine, accurate control of injection speed, injection pressure (holding pressure), etc. is extremely important to ensure high precision, high quality, and stable molded products. Become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような従来のインラインスクリ
ユ式射出成形機は次のような解決すべき課題が存
在した。
However, such conventional in-line screw type injection molding machines have the following problems to be solved.

まず、成形材料に起因する問題である。第6図
に示すように、スクリユ61を挿入した加熱筒6
2には、スクリユ61の軸方向に対し垂直方向に
形成した材料供給路(ホツパ)63から成形材料
が供給される。この場合、成形材料としてアクリ
ル樹脂、ポリカーボネイト樹脂、ガラス入り樹脂
等のように、硬度の特に高い固形材料(ペレツ
ト)Wを使用し、しかも、スクリユ61の溝部6
1dの深さが固形材料Wの大きさに比べて浅い場
合には、スクリユ61の前進時(矢印A方向)
に、材料供給路63の下端エツジ64とスクリユ
61の山部61hによつて溝部61dに存在する
固形材料Wが剪断される。このときの剪断力はス
クリユ61の径によつても異なるが、100〜500Kg
程度にもなり、射出力が数トン程度の小型機では
かなり大きな抵抗となつて現れる。
First, there is a problem caused by the molding material. As shown in FIG. 6, a heating cylinder 6 into which a screw 61 is inserted
2 is supplied with molding material from a material supply path (hopper) 63 formed in a direction perpendicular to the axial direction of the screw 61. In this case, a solid material (pellet) W with particularly high hardness, such as acrylic resin, polycarbonate resin, glass-filled resin, etc., is used as the molding material, and the groove 6 of the screw 61 is used as the molding material.
If the depth of 1d is shallow compared to the size of the solid material W, when the screw 61 moves forward (in the direction of arrow A)
At this time, the solid material W present in the groove portion 61d is sheared by the lower edge 64 of the material supply path 63 and the peak portion 61h of the screw 61. The shearing force at this time varies depending on the diameter of the screw 61, but is 100 to 500 kg.
In a small aircraft with an ejection force of several tons, this will create quite a large amount of resistance.

また、計量工程における計量後のスクリユ停止
位置、即ち、射出開始位置でのスクリユ61の回
転方向位置が成形サイクル毎にも異なるため、結
局、この場合にも固形材料Wの配列状態、密度、
数量等に違いを生じ、スクリユ61に対する機械
的抵抗がシヨツト毎にバラついてしまう。
In addition, since the rotational direction position of the screw 61 at the post-measurement stop position in the metering process, that is, the injection start position, differs for each molding cycle, the arrangement state of the solid material W, the density,
This causes a difference in quantity, etc., and the mechanical resistance to the screw 61 varies from shot to shot.

一方、金型キヤビテイ内部における樹脂材料圧
力を直接検出できれば理想的であるが、現実には
技術的にも困難を伴うため、通常は圧力センサを
駆動部側に設けている。例えば、油圧式射出成形
機の場合には、射出シリンダ内の油圧を液圧セン
サ等の圧力センサにより検出し、また、電動式射
出成形機の場合には、スクリユの反力をロードセ
ル(歪ゲージ)等の圧力センサによつて検出して
おり、例えば特開昭60−174625号(日本国公開特
許公報)等で開示される。そして、圧力センサか
らの検出信号(検出値)と射出圧力(保圧圧力)
の設定値が一致するようにクローズドループによ
る制御を行つている。
On the other hand, it would be ideal if the pressure of the resin material inside the mold cavity could be directly detected, but in reality this is technically difficult, so a pressure sensor is usually provided on the drive section side. For example, in the case of a hydraulic injection molding machine, the oil pressure in the injection cylinder is detected by a pressure sensor such as a hydraulic pressure sensor, and in the case of an electric injection molding machine, the reaction force of the screw is detected by a load cell (strain gauge). ), etc., and is disclosed in, for example, Japanese Unexamined Patent Publication No. 174625/1983 (Japanese Patent Publication). Then, the detection signal (detection value) from the pressure sensor and the injection pressure (holding pressure)
Closed-loop control is performed to ensure that the set values match.

しかし、このような圧力検出ではスクリユ61
の前方に存在する溶融樹脂材料の圧力に加え、前
述した材料供給路63付近の固形材料Wに基づく
機械的抵抗をも検出してしまう。結局、当該抵抗
のバラつきは直接的に圧力センサの検出値に影響
し、クローズドループ制御にも拘わらず、本来検
出すべき溶融樹脂の圧力を正確に検出できず、高
品質で高精度、かつ安定した成形品を得ることが
できなかつた。
However, in this type of pressure detection, the screw 61
In addition to the pressure of the molten resin material existing in front of the molten resin material, the mechanical resistance based on the solid material W near the material supply path 63 mentioned above is also detected. In the end, the variation in resistance directly affects the detection value of the pressure sensor, and despite closed-loop control, the pressure of the molten resin that should be detected cannot be accurately detected, resulting in high quality, high precision, and stable However, it was not possible to obtain a molded product.

本発明はこのような従来の技術に存在する不具
合を解消した射出成形機の制御方法の提供を目的
とするものである。
An object of the present invention is to provide a method for controlling an injection molding machine that eliminates the problems existing in the conventional technology.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は回転又は進退移動するスクリユ2と、
スクリユ2を挿入し、かつ成形材料を供給するホ
ツパ3を配した加熱筒4を備えるインラインスク
リユ式射出成形機の制御方法を実施するに際し、
固形材料Wの成形時に、スクリユ2を軸方向へ前
進させる射出工程の全部又は一部のストローク範
囲で、所定速度r、即ち、r≒Vs/L(回転/
sec)(ただし、Vs:スクリユ前進速度(mm/
sec)、 L :スクリユのピツチ(mm))により
設定される所定速度rによつて、スクリユ2を計
量時の回転方向に対し逆方向へ回転させ、スクリ
ユ2の前進時に、加熱筒4の所定位置におけるス
クリユ2の山部2hの見掛上の位置が略不動(不
動又は本発明の目的を達成できる前後への誤差と
認められる程度の若干の移動を含む)となるよう
に制御することを特徴とする。
The present invention includes a screw 2 that rotates or moves forward and backward;
When carrying out a method for controlling an in-line screw type injection molding machine equipped with a heating cylinder 4 in which a screw 2 is inserted and a hopper 3 for supplying molding material is arranged,
During molding of the solid material W, a predetermined speed r, that is, r≈Vs/L (rotation/
sec) (where, Vs: Screw advance speed (mm/
sec), L: Screw pitch (mm)) The screw 2 is rotated in the opposite direction to the rotation direction during measurement, and as the screw 2 moves forward, the heating cylinder 4 is rotated at a prescribed speed r. Control is performed so that the apparent position of the ridge 2h of the screw 2 remains almost immobile (including immobility or slight movement to the extent that it is recognized as an error in the forward and backward directions that can achieve the purpose of the present invention). Features.

〔作用〕[Effect]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

本発明に係る射出成形機の制御方法は、特に射
出工程におけるスクリユ2の前進時に、同時にス
クリユ2が計量時の回転方向に対し逆方向へ回転
するため、加熱筒4の所定位置におけるスクリユ
2の山部2hの見掛上の位置は略不動となる。よ
つて、固形材料Wがスクリユ2の前進に伴つて剪
断される弊害は解消又は著しく低減されるととも
に、固形材料Wによる抵抗は従来よりも著しく小
さく、かつバラつきがなくなるため、駆動部側に
配設したロードセル等の圧力センサからの圧力検
出信号値は実際の溶融樹脂圧力と略一致し、正確
な射出圧力(保圧圧力)の検出が行われる。
In the method for controlling an injection molding machine according to the present invention, especially when the screw 2 moves forward in the injection process, the screw 2 simultaneously rotates in the opposite direction to the rotation direction during metering. The apparent position of the mountain portion 2h remains substantially unchanged. Therefore, the adverse effect of the solid material W being sheared as the screw 2 advances is eliminated or significantly reduced, and the resistance due to the solid material W is significantly smaller than before and has no variation, so it is possible to The pressure detection signal value from the installed pressure sensor such as a load cell substantially matches the actual molten resin pressure, and accurate injection pressure (holding pressure) is detected.

〔実施例〕〔Example〕

以下には、本発明に係る好適な実施例を挙げ、
図面に基づき詳細に説明する。
Below, preferred embodiments according to the present invention are listed,
This will be explained in detail based on the drawings.

まず、本発明の理解を助けるため、インライン
スクリユ式射出成形機における射出装置1の概略
構成について第3図を参照して説明する。
First, in order to facilitate understanding of the present invention, a schematic configuration of the injection device 1 in an in-line screw type injection molding machine will be described with reference to FIG. 3.

4は加熱筒であり、前端に射出ノズル12を備
えるとともに、後部上端に成形材料(固形材料
W)を加熱筒4内へ供給するホツパ3を備え、加
熱筒4にはスクリユ2を挿入する。また、加熱筒
4の後端は支持盤14によつて支持し、さらに支
持盤14には複数のタイバー15……を後方へ水
平に備える。タイバー15……には前後方向へス
ライド自在な摺動部材16を備え、この摺動部材
16の内部には進退方向が許容され、かつ回転方
向が規制される回動規制部材16aを挿入する。
この回動規制部材16aの中には回動自在の結合
部材17を備える。結合部材17の後端面と摺動
部材16間にはリング状のロードセル18を介装
する。一方、結合部材17の前端にはスクリユ2
の後端を結合し、結合部材17の後端には後方へ
延出する内軸部材19を結合する。内軸部材19
には同軸的に回動自在な筒状の外軸部材20を挿
入し、さらに、外軸部材20の外周と摺動部材1
6間には射出用ボールネジ機構21を介在せしめ
る。また、外軸部材20の後端には被動ギア22
を取付け、この被動ギア22はタイミングベルト
23を介して射出用サーボモータ24に取付けた
駆動ギア25に接続する。他方、内軸部材19の
後端にはスプライン機構26を介して被動ギア2
7を備え、この被動ギア27はスクリユ回転用サ
ーボモータ28に取付けた駆動ギア29に噛合す
る。
Reference numeral 4 denotes a heating cylinder, which is equipped with an injection nozzle 12 at its front end, and a hopper 3 at its rear upper end for supplying the molding material (solid material W) into the heating cylinder 4, into which the screw 2 is inserted. Further, the rear end of the heating cylinder 4 is supported by a support plate 14, and the support plate 14 is further provided with a plurality of tie bars 15 extending horizontally toward the rear. The tie bars 15... are provided with a sliding member 16 that can freely slide in the front and back direction, and a rotation regulating member 16a that is allowed to move forward and backward and is restricted in the rotational direction is inserted into the sliding member 16.
A rotatable coupling member 17 is provided in the rotation regulating member 16a. A ring-shaped load cell 18 is interposed between the rear end surface of the coupling member 17 and the sliding member 16. On the other hand, a screw 2 is provided at the front end of the coupling member 17.
The rear ends of the connecting member 17 are connected to each other, and an inner shaft member 19 extending rearward is connected to the rear end of the connecting member 17. Inner shaft member 19
A cylindrical outer shaft member 20 that is coaxially rotatable is inserted into the outer shaft member 20, and the outer circumference of the outer shaft member 20 and the sliding member 1
An injection ball screw mechanism 21 is interposed between the holes 6 and 6. Further, a driven gear 22 is provided at the rear end of the outer shaft member 20.
This driven gear 22 is connected via a timing belt 23 to a drive gear 25 attached to an injection servo motor 24. On the other hand, the driven gear 2 is connected to the rear end of the inner shaft member 19 via a spline mechanism 26.
7, and this driven gear 27 meshes with a drive gear 29 attached to a servo motor 28 for rotating the screw.

以上の構成からなる射出装置1は次のように機
能する。
The injection device 1 having the above configuration functions as follows.

まず、サーボモータ28の正回転によつて、同
モータ28の回転力は駆動ギア29→被動ギア2
7→スプライン機構26→内軸部材19→結合部
材17→スクリユ2の経路で伝達される。よつ
て、スクリユ2は正回転し、溶融樹脂材料の計量
を行うことができる。なお、同モータ28を逆回
転させれば同様の経路でスクリユ2を逆回転させ
ることができる。
First, due to the forward rotation of the servo motor 28, the rotational force of the motor 28 is transferred from the driving gear 29 to the driven gear 2.
7→spline mechanism 26→inner shaft member 19→coupling member 17→screw 2. Therefore, the screw 2 rotates forward and the molten resin material can be measured. Note that by rotating the motor 28 in the reverse direction, the screw 2 can be rotated in the reverse direction along the same route.

一方、サーボモータ24の正回転によつて、同
モータ24の回転力は駆動ギア25→被動ギア2
2→外軸部材20→ボールネジ機構21→摺動部
材16→結合部材17の経路で伝達される。よつ
て、スクリユ2は前進し、計量された溶融樹脂材
料を金型に射出充填することができる。なお、同
モータ24を逆回転させれば、同様の経路でスク
リユ2を後退させることができる。
On the other hand, due to the forward rotation of the servo motor 24, the rotational force of the motor 24 is transferred from the driving gear 25 to the driven gear 2.
2→outer shaft member 20→ball screw mechanism 21→sliding member 16→coupling member 17. Therefore, the screw 2 moves forward, and the measured amount of molten resin material can be injected and filled into the mold. Note that by rotating the motor 24 in the opposite direction, the screw 2 can be moved backward along the same route.

次に、第1図及び第2図を参照して本発明に係
る射出成形機の制御方法について説明する。
Next, a method for controlling an injection molding machine according to the present invention will be explained with reference to FIGS. 1 and 2.

まず、計量工程における中央制御部32から計
量指令信号及び不図示の計量値設定器によつて設
定された設定値に基づく計量値信号をサーボモー
タ28を制御するモータ制御部33へ付与する。
これにより、同モータ28(第3図に同符号で示
す)は正回転して計量を行う。なお、この状態を
第1図bに示す。
First, the central control unit 32 in the metering process provides a measurement command signal and a measurement value signal based on a set value set by a measurement value setter (not shown) to the motor control unit 33 that controls the servo motor 28 .
As a result, the motor 28 (indicated by the same reference numerals in FIG. 3) rotates in the forward direction to perform weighing. This state is shown in FIG. 1b.

一方、計量工程が終了すると射出工程へ移行す
る。射出工程においては金型(不図示)の型閉終
了に基づいて中央制御部32から射出指令信号及
び射出速度設定器34によつて設定された設定値
に基づく射出速度指令信号をサーボモータ24を
制御するモータ制御部36へ付与する。これによ
り、同モータ24が回転してスクリユ2を前進さ
せ、同時に、同モータ24に結合したモータ速度
を検出するタコメータジエネレータ38の検出信
号をモータ制御部36へ付与し、射出速度指令信
号と一致するようにクローズドループによる制御
を行う。
On the other hand, when the metering process is completed, the process moves to the injection process. In the injection process, when the mold (not shown) closes, the central control unit 32 sends an injection command signal and an injection speed command signal based on the setting value set by the injection speed setting device 34 to the servo motor 24. It is given to the motor control unit 36 that controls it. As a result, the motor 24 rotates to advance the screw 2, and at the same time, a detection signal from a tachometer generator 38 that detects the speed of the motor connected to the motor 24 is given to the motor control unit 36, which is used as an injection speed command signal. Perform closed-loop control to ensure consistency.

また、この際、本発明に係る制御方法に従つ
て、スクリユ逆回転速度設定器39によつて予め
設定された設定信号がモータ制御部33に付与さ
れ、サーボモータ28は逆回転を開始する。同時
に、同モータ28に結合したタコメータジエネレ
ータ40からの検出信号をモータ制御部33へ付
与し、逆回転速度設定値と一致するようにクロー
ズドループによる制御を行う。つまり、第1図b
のようにスクリユ2は前記計量工程における計量
時の回転方向に対し逆方向へ回転する。このよう
に、射出工程におけるスクリユ2は設定速度で前
進すると同時に、設定された所定速度rで逆回転
する。この所定速度rはスクリユ2の前進時にお
いて、加熱筒4の所定位置におけるスクリユ2の
山部2hの見掛上の位置が略不動となるように設
定する。
Further, at this time, according to the control method according to the present invention, a setting signal preset by the screw reverse rotation speed setting device 39 is applied to the motor control section 33, and the servo motor 28 starts reverse rotation. At the same time, a detection signal from the tachometer generator 40 coupled to the motor 28 is applied to the motor control section 33, and closed-loop control is performed so as to match the reverse rotation speed setting value. In other words, Figure 1b
As shown in the figure, the screw 2 rotates in the opposite direction to the rotation direction during measurement in the measurement process. In this way, the screw 2 in the injection process moves forward at the set speed and at the same time rotates backward at the set predetermined speed r. The predetermined speed r is set so that the apparent position of the peak portion 2h of the screw 2 at a predetermined position of the heating cylinder 4 remains substantially fixed when the screw 2 moves forward.

なお、この例ではスクリユ2の逆回転速度をス
クリユ逆回転速度設定器39により予め設定した
場合を示したが、中央制御部32にマイクロプロ
セツサを用い、射出速度設定器34の設定値から
逆回転する速度を自動的に演算処理してもよい。
即ち、スクリユ2のピツチをL(mm)、スクリユ2
の射出(前進)速度をVs(mm/sec)、スクリユ2
の逆回転速度をr(回転/sec)としたとき、 r≒Vs/L(r=Vs/Lを含む) の関係式を満たすように演算処理すればよい。こ
れにより、スクリユ2が前進しても加熱筒4の所
定位置におけるスクリユ2の山部2hの見掛上の
位置は略不動(不動又は本発明の目的を達成でき
る前後への誤差と認められる程度の若干の移動を
含む)となる。
In this example, the reverse rotation speed of the screw 2 is set in advance by the screw reverse rotation speed setting device 39, but a microprocessor is used in the central control section 32, and the reverse rotation speed of the screw 2 is set in advance from the setting value of the injection speed setting device 34. The rotation speed may be automatically calculated.
That is, the pitch of the screw 2 is L (mm), and the pitch of the screw 2 is
The injection (forward) speed is Vs (mm/sec), screw 2
When the reverse rotation speed of is set to r (rotations/sec), calculation processing may be performed so as to satisfy the relational expression r≈Vs/L (including r=Vs/L). As a result, even if the screw 2 moves forward, the apparent position of the peak 2h of the screw 2 at the predetermined position of the heating cylinder 4 remains almost constant (immobile, or to the extent that it can be recognized as a forward/backward error that can achieve the purpose of the present invention). ).

また、スクリユ2の山部2hの軸方向における
見掛上の位置を検出する例えば位置センサ50を
設置し、射出時において当該位置が略一定となる
ように逆回転する所定速度rをフイードバツク制
御してもよい。
Further, a position sensor 50, for example, is installed to detect the apparent position of the peak 2h of the screw 2 in the axial direction, and a predetermined speed r of reverse rotation is controlled by feedback so that the position is approximately constant during injection. It's okay.

なお、スクリユ2を逆回転させる範囲は射出工
程においてスクリユ2が前進する全部のストロー
クが望ましい。また、必要に応じて一部のストロ
ークであつてもよい。さらにまた、第1図中、仮
想線Vmで示すように、射出工程中において射出
速度(射出用モータ速度)を多段に変化させる制
御を行う場合は、これに応じてスクリユの逆回転
する所定速度rを多段階に可変制御すればよい。
以上、射出工程を例示したが、これに限らず、他
の工程においてスクリユ2を前進させる場合にも
同様に応用することができる。
The range in which the screw 2 is reversely rotated is preferably the entire stroke in which the screw 2 moves forward during the injection process. Further, it may be a part of the stroke if necessary. Furthermore, as shown by the virtual line Vm in FIG. 1, when controlling the injection speed (injection motor speed) to be changed in multiple stages during the injection process, the screw rotates in reverse at a predetermined speed corresponding to the control. It is sufficient to variably control r in multiple stages.
Although the injection process has been exemplified above, the present invention is not limited to this, and can be similarly applied to cases in which the screw 2 is advanced in other processes.

一方、射出工程においてはスクリユ2の前進と
ともに、サーボモータ24に結合したスクリユ2
のパルスジエネレータ35の検出信号が中央処理
部32に入力する。そして、スクリユ2が保圧切
替位置設定器41によつて設定された設定値まで
移動すると、中央制御部32は保圧力制御信号を
サーボモータ24へ付与し、同モータ24は速度
制御状態から保圧制御(射出圧力制御)状態とな
るとともに、同時に、モータ制御部33へは逆回
転停止信号を付与し、サーボモータ28の回転を
停止させる。なお、上記保圧力制御信号は保圧力
設定器43によつて予め設定される。保圧力制御
状態により、圧力検出を行うロードセル18の検
出信号はアンプ44を介して中央制御部32に入
力し、上記保圧力制御信号と一致するように、ク
ローズドループよる制御が行われる。射出タイマ
(不図示)がタイムアツプして、所定の射出時間
が経過すると、サーボモータ24及び28の各制
御信号がOFFとなり射出工程は全て終了する。
On the other hand, in the injection process, as the screw 2 moves forward, the screw 2 connected to the servo motor 24
The detection signal of the pulse generator 35 is input to the central processing section 32. When the screw 2 moves to the setting value set by the holding pressure switching position setter 41, the central control unit 32 applies a holding pressure control signal to the servo motor 24, and the motor 24 changes from the speed control state to the setting value set by the holding pressure switching position setter 41. While entering the pressure control (injection pressure control) state, at the same time, a reverse rotation stop signal is given to the motor control unit 33 to stop the rotation of the servo motor 28. Note that the above-mentioned holding force control signal is set in advance by the holding force setting device 43. In the holding force control state, the detection signal of the load cell 18 that performs pressure detection is input to the central control unit 32 via the amplifier 44, and closed-loop control is performed so as to match the holding force control signal. When the injection timer (not shown) times up and a predetermined injection time has elapsed, each control signal for the servo motors 24 and 28 is turned OFF and the entire injection process is completed.

第4図にはこの発明方法によつて制御された場
合の射出圧力Pと射出速度Vの実測図を示す。同
図aは射出圧力(ロードセル出力)Pの実測記録
データ、同図bは射出速度Vの実測記録データで
ある。なお、いずれも横軸を時間軸とした100シ
ヨツト分の重ね書きである。あた、成形品は重量
約0.2(g)、四個取り、スプール及びランナを含
めての総重量約5.6(g)の小型アクリルレンズを
用いた。
FIG. 4 shows a diagram of actually measured injection pressure P and injection speed V when controlled by the method of the present invention. Figure a shows actually measured recorded data of the injection pressure (load cell output) P, and Figure b shows actually measured recorded data of the injection speed V. In both cases, 100 shots are overwritten with the horizontal axis as the time axis. The molded product used was a small acrylic lens with a weight of about 0.2 (g) and a total weight of about 5.6 (g) including four pieces and a spool and runner.

他方、第5図は従来方法によつて制御された場
合の第4図と同様の実測図を示す。即ち、射出時
においてスクリユ2を回転させない場合であり、
第5図aは射出圧力Pの実測記録データ、同図b
は射出速度Vの実測記録データである。なお、い
ずれも横軸を時間軸とした30シヨツト分の重ね書
きである。
On the other hand, FIG. 5 shows an actual measurement diagram similar to FIG. 4 when controlled by the conventional method. That is, when the screw 2 is not rotated during injection,
Figure 5a shows actual measurement record data of injection pressure P, Figure 5b
is actually measured recorded data of the injection speed V. In each case, 30 shots are overwritten with the horizontal axis as the time axis.

実測結果では従来の制御方法が30シヨツト分の
成形を行つた場合であつても重量バラつきが全重
量5.6(g)に対して10〜16(mg)程度あり、不良
品を二個生じた。他方、本発明方法では100シヨ
ツト分を成形したにも拘わらず、重量バラつきが
全重量5.6(g)に対して4.3(mg)と小さく、全て
良品であつた。
Actual measurement results show that even when 30 shots were molded using the conventional control method, the weight variation was about 10 to 16 (mg) relative to the total weight of 5.6 (g), resulting in two defective products. On the other hand, in the method of the present invention, even though 100 shots were molded, the weight variation was as small as 4.3 (mg) compared to the total weight of 5.6 (g), and all were good products.

また、第4図a及び第5図aの比較からも明ら
かなように、射出速度の制御中における射出圧力
のバラつきは本発明方法によつて従来の1/6程度
となり、定格射出圧力に対しては約0.4(%)のバ
ラつきとなる。このため、本発明方法は射出圧力
が一定値になつてから保圧力の切替を行う形式の
射出成形機の場合に用いてより効果的となる。な
お、本発明方法によれば加熱筒内部の樹脂材料に
よる粘度抵抗をより下げ得ること、射出時にスク
リユの前部に設けたリングバルブ(逆止弁)がよ
り閉じ易くなることを期待できる。
In addition, as is clear from the comparison between Figures 4a and 5a, the variation in injection pressure during injection speed control is reduced to about 1/6 of the conventional method by the method of the present invention, and compared to the rated injection pressure. This results in a variation of approximately 0.4 (%). Therefore, the method of the present invention is more effective when used in an injection molding machine in which the holding pressure is switched after the injection pressure reaches a constant value. In addition, according to the method of the present invention, it can be expected that the viscosity resistance due to the resin material inside the heating cylinder can be further reduced, and that the ring valve (check valve) provided at the front of the screw will be easier to close during injection.

以上、実施例について詳細に説明したが、本発
明はこのような実施例に限定されるものではな
く、構成、形状、手法、数値、数量等において、
本発明の精神を逸脱しない範囲で任意に変更でき
る。特に、実施例においては電動式射出成形機の
場合を示したが、油圧式射出成形機への適用を妨
げるものではない。
Although the embodiments have been described in detail above, the present invention is not limited to such embodiments, and the present invention is not limited to such embodiments, but includes the following in terms of configuration, shape, method, numerical value, quantity, etc.
Any changes can be made without departing from the spirit of the invention. In particular, in the examples, the case of an electric injection molding machine is shown, but this does not preclude application to a hydraulic injection molding machine.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る射出成形機の制御方
法は、固形材料を成形する射出工程において、ス
クリユを計量時の回転方向に対して逆方向へ回転
させ、加熱筒の所定位置におけるスクリユ山部の
見掛上の位置が略不動となるように制御するた
め、次のような効果を奏する。
As described above, in the injection molding machine control method according to the present invention, in the injection process of molding a solid material, the screw is rotated in the opposite direction to the rotation direction at the time of measurement, and the screw crest at a predetermined position of the heating cylinder is adjusted. Since the apparent position of is controlled so as to be substantially immobile, the following effects are achieved.

スクリユと材料供給路間に、固形材料が挟ま
れて剪断される弊害を解消できるとともに、各
シヨツト毎の圧力のバラつきを著しく小さくで
きる。この結果、射出制御及び保圧制御の安定
化を図れるとともに、高品質かつ高精度の成形
品を得ることができる。
It is possible to eliminate the problem of solid material being pinched and sheared between the screw and the material supply path, and it is possible to significantly reduce variations in pressure from shot to shot. As a result, injection control and holding pressure control can be stabilized, and a molded product of high quality and high precision can be obtained.

固形材料に基づくスクリユと加熱筒内壁間の
機械的抵抗が小さくなるとともに、成形サイク
ル毎の機械的抵抗のバラつきが小さくなるた
め、油圧センサあるいはロードセル等による間
接的圧力検出方法であつても、キヤビテイ内部
の樹脂材料圧力に略一致する正確な圧力検出を
行うことができる。
The mechanical resistance between the solid material-based screw and the inner wall of the heating cylinder is reduced, and the variation in mechanical resistance from molding cycle to molding cycle is also reduced. Accurate pressure detection that substantially matches the internal resin material pressure can be performed.

スクリユと加熱筒間の機械的抵抗を低減でき
るため、これに基づく電力ロスを低減できる。
Since the mechanical resistance between the screw and the heating cylinder can be reduced, power loss based on this can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明に係る制御方法による計量工程
及び射出工程における各モータの動作概要図、第
2図:同制御方法を実施する制御装置の要部のみ
を示すブロツク回路図、第3図:同制御方法を実
施する射出成形機における射出装置の縦断面図、
第4図:本発明方法によつて制御された場合の射
出圧力と射出速度の実測図、第5図:従来方法に
よつて制御された場合の射出圧力と射出速度の実
測図、第6図:背景技術の問題点を説明する射出
装置におけるホツパ付近の縦断面図。 尚図面中、2……スクリユ、2h……スクリユ
の山部、3……ホツパ、4……加熱筒、W……固
形材料。
Fig. 1: A schematic diagram of the operation of each motor in the metering process and injection process according to the control method according to the present invention, Fig. 2: A block circuit diagram showing only the main parts of the control device that implements the control method, Fig. 3: A vertical cross-sectional view of an injection device in an injection molding machine implementing the same control method,
Figure 4: Actual measurement diagram of injection pressure and injection speed when controlled by the method of the present invention, Figure 5: Actual measurement diagram of injection pressure and injection speed when controlled by the conventional method, Figure 6 : A vertical cross-sectional view of the vicinity of the hopper in the injection device to explain the problems of the background art. In the drawings, 2...Scrill, 2h...Scroll peak, 3...Hotsupa, 4...Heating tube, W...Solid material.

Claims (1)

【特許請求の範囲】 1 回転または進退移動するスクリユ2と、前記
スクリユ2を挿入し、かつ成形材料を供給するホ
ツパ3を配した加熱筒4を備えるインラインスク
リユ式射出成形機の制御方法において、固形材料
Wの成形時に、スクリユ2を軸方向へ前進させる
射出工程の全部または一部のストローク範囲で、
次式により設定する所定速度rによつて、スクリ
ユ2を計量時の回転方向に対し逆方向へ回転さ
せ、加熱筒4の所定位置におけるスクリユ2の山
部2hの見掛上の位置が略不動となるように制御
することを特徴とする射出成形機の制御方法。 所定速度r≒Vs/L(回転/sec) ただし Vs:スクリユ前進速度(mm/sec) L:スクリユのピツチ(mm) 2 所定速度rはスクリユ2の前進速度に対応し
て可変することを特徴とする請求項1または2記
載の射出成形機の制御方法。 3 加熱筒4の所定位置におけるスクリユ2の山
部2hの軸方向に対する見掛上の位置を検出し、
この検出結果に基づき前記所定位置における山部
2hの見掛上の位置が略不動となるようにフイー
ドバツク制御することを特徴とする請求項1記載
の射出成形機の制御方法。
[Scope of Claims] 1. A method for controlling an in-line screw injection molding machine comprising a screw 2 that rotates or moves back and forth, and a heating cylinder 4 equipped with a hopper 3 into which the screw 2 is inserted and which supplies molding material. , during molding of the solid material W, in all or part of the stroke range of the injection process in which the screw 2 is advanced in the axial direction,
The screw 2 is rotated in the opposite direction to the rotation direction during measurement at a predetermined speed r set by the following formula, and the apparent position of the peak 2h of the screw 2 at a predetermined position of the heating cylinder 4 remains almost constant. A method for controlling an injection molding machine, the method comprising: controlling an injection molding machine so that Predetermined speed r≒Vs/L (rotations/sec) where Vs: Screw forward speed (mm/sec) L: Screw pitch (mm) 2 The predetermined speed r is characterized by being variable in accordance with the forward speed of screw 2. A method for controlling an injection molding machine according to claim 1 or 2. 3 detecting the apparent position of the peak 2h of the screw 2 in the axial direction at a predetermined position of the heating cylinder 4;
2. The method of controlling an injection molding machine according to claim 1, wherein feedback control is performed based on the detection result so that the apparent position of the peak portion 2h at the predetermined position remains substantially fixed.
JP3468789A 1988-02-29 1989-02-14 Method of controlling injection molding machine Granted JPH01308611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3468789A JPH01308611A (en) 1988-02-29 1989-02-14 Method of controlling injection molding machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4685388 1988-02-29
JP63-46853 1988-02-29
JP3468789A JPH01308611A (en) 1988-02-29 1989-02-14 Method of controlling injection molding machine

Publications (2)

Publication Number Publication Date
JPH01308611A JPH01308611A (en) 1989-12-13
JPH059256B2 true JPH059256B2 (en) 1993-02-04

Family

ID=26373527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3468789A Granted JPH01308611A (en) 1988-02-29 1989-02-14 Method of controlling injection molding machine

Country Status (1)

Country Link
JP (1) JPH01308611A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713049B2 (en) 2007-07-17 2010-05-11 Fanuc Ltd Injecting molding machine having a torque detecting device

Also Published As

Publication number Publication date
JPH01308611A (en) 1989-12-13

Similar Documents

Publication Publication Date Title
EP0965428B1 (en) Depressurization method in plasticization and metering process for a motor-driven injection molding machine
US4879077A (en) Control method of injection molding machine
EP1418040B1 (en) Controller of Injection Molding Machine
EP1163993B1 (en) Injection molding machine and method for controlling screw position in the same
US6416694B1 (en) Injection controlling method for an injection molding machine
KR100355739B1 (en) Method and apparatus for adjusting zero point of a pressure sensor of an injection apparatus
KR100466521B1 (en) Method for controlling injection molding machine capable of reducing variations in weight of molded products
US5232714A (en) In-line screw type injection molding machine
JP2638626B2 (en) Feedback control method for injection molding machine
JPH059256B2 (en)
JPH01238917A (en) Injecting method and apparatus for injection molder
JPH0464493B2 (en)
JP2769648B2 (en) Injection molding machine
JPH0547382B2 (en)
JP5410663B2 (en) Injection molding machine
JP2002254470A (en) Zero adjustment method of load cell in electromotive injection molding machine
JPS61182913A (en) Modified injection molding machine
JPH0152170B2 (en)
JP2919167B2 (en) Injection control method for electric injection molding machine
JP5226191B2 (en) Molding machine and control method thereof
JP3563062B2 (en) Zero adjustment method of load cell of electric injection molding machine
JPH01249420A (en) Method for controlling injection molder
JP2868139B2 (en) Injection control method and apparatus for injection molding machine
JPH0592461A (en) Measurement controlling method for injection molding machine of in-line screw type
JPH0321421A (en) Device for controlling backward speed of screw of injection molder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20090204

LAPS Cancellation because of no payment of annual fees