JPH059197B2 - - Google Patents

Info

Publication number
JPH059197B2
JPH059197B2 JP59042263A JP4226384A JPH059197B2 JP H059197 B2 JPH059197 B2 JP H059197B2 JP 59042263 A JP59042263 A JP 59042263A JP 4226384 A JP4226384 A JP 4226384A JP H059197 B2 JPH059197 B2 JP H059197B2
Authority
JP
Japan
Prior art keywords
welding
flux
slag
amount
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042263A
Other languages
Japanese (ja)
Other versions
JPS60187495A (en
Inventor
Isao Sugioka
Hajime Motosugi
Masami Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4226384A priority Critical patent/JPS60187495A/en
Publication of JPS60187495A publication Critical patent/JPS60187495A/en
Publication of JPH059197B2 publication Critical patent/JPH059197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、潜弧溶接用溶融型フラツクスに関す
るもので、さらに詳しくは、建築、橋梁、造船等
の施工に用いられる軟鋼、50〜60Kg/mm2級高張力
鋼用のすみ肉および突合せ溶接を主な用途とし、
スラグ剥離性およびビード形状、外観が優れ、拡
散性水素量が低く、しかも高じん性を得ることの
できる潜弧溶接用溶融型フラツクスを提供するも
のである。 (従来技術) 一般に建築、橋梁、造船関係のすみ肉溶接に
は、良好なビード形状および外観が得られ、しか
も高能率である潜弧溶接法が用いられる。潜弧フ
ラツクスには溶融型と焼成型とに分類され、溶融
型フラツクスは焼成型に比べ吸湿しにくいこと、
フラツクス成分の偏析が少ないこと、溶接ビード
の外観も優れることなどからピツト、ポツクマー
ク等の表面欠陥のない良好なビード外観が得られ
ることを重視するすみ肉溶接には適している。 溶融型フラツクスの中でも、特公昭51−46653
号公報、特公昭55−42671号公報などに示される
主成分がSiO2およびMnOのフラツクスは、小入
熱での下向すみ肉溶接において重要なスラグ剥離
性、ビード形状は良好であるが、比較的大入熱す
なわち大脚長溶接条件では、スラグがビード表面
に焼付いたり、ビード形状の均一性が悪くアンダ
ーカツトも発生しやすくなるのは避けられなかつ
た。また、フラツクス組成がSiO2−MnO系は酸
性系であり、溶接金属の高じん性を得ることは本
質的に困難でもあつた。 また、CaOやCaFを多く含有させ、高じん性と
耐水素割れ性に優れたフラツクスとして特開昭53
−81445号などがあるが、CaO、CaF2成分を多く
含有するため、スラグ剥離性については満足でき
るものではなかつた。 一方、スラグ剥離性を改善するため、TiO2
分を20%程度含有させることが特開昭55−10356
号公報、特開昭57−14496号で提案されている。
しかし、TiO2成分を多量に含有するとスラグ密
度が大となり、下向すみ肉溶接ではビード形状は
中央部のみが高くなるいわゆる中高ビードとな
り、形状、外観を重視するすみ肉溶接には適用で
きない。 通常、建築、橋梁あるいは造船関係において
は、すみ肉継手溶接と突合せ継手溶接とが一つの
構造物に含まれ、しかも軟鋼や60キロ級高張力鋼
との継手の溶接もあり、溶接作業性重視のフラツ
クスあるいは溶接部のじん性を考慮したフラツク
スを、目的に応じ同一構造物の溶接部で使い分け
ている。すなわち、高じん性を要求される溶接部
には、SiO2−MnO系フラツクスは使用できず、
中性あるいは塩基性フラツクスの使用が必要とな
り、スラグ剥離性の不良、ビード形状および外観
の不良等があるにも拘わらずやむを得ず使用して
いる。スラグ剥離性の不良はビード表面に付着し
たスラグの除去作業工程が、またピツト、割れ等
の欠陥に対しては補修溶接が追加され、作業能率
低下をきたしている。 (発明の目的) 本発明は、溶接部の高じん性は得られるがすみ
肉溶接におけるビード形状および拡散性水素量が
高いためピツト、ブローホール、溶接割れ発生の
問題がある中性あるいは塩基性フラツクスと、比
較的に小入熱における下向すみ肉溶接での良好な
スラグ剥離性、滑らかな凹形のビード形状および
拡散性水素量も低いため水素に起因する溶接欠陥
が発生せず、良好なビード外観は得られるが高じ
ん性は望めない酸性フラツクスとの長所のみを併
せ持ち、さらに大入熱溶接においても溶接作業性
の劣化がないという従来にはない潜弧溶接用溶融
型フラツクスの提供を目的とする。 (発明の技術的背景) フラツクス組成面から見た場合、従来の技術で
は、溶接作業性とじん性とは相反する性能といえ
るものであつた。そこで、両性能に満足できるフ
ラツクスを得ようとするにあたり、まず、高じん
性を確保するためにある程度の塩基性成分は不可
欠と考え、含有させる各塩基性成分の溶接作業性
に及ぼす影響を調べた。また、良好な溶接作業性
を得るには、アークの安定化がひとつの条件であ
ると考えた。すなわち切れ目のないアーク状態を
保つことにより、ビード表面の波目が細かくな
り、しいてはビード表面へのスラグのかみ込みが
弱くなり、スラグ剥離性向上が期待でき、ポツク
マークやピツトの発生に対しても当然効果がある
ものと考えられる。これらの観点より、本目的達
成のため種々実験を重ねた。 以下に実験例を示す。 各種試作フラツクスについて、溶接作業性は第
1表に示すようにJIS Z3311の4種に規定された
2%Mn含有ワイヤのサイズ4.8φ(記号W2)と、
JIS G3106の2種に規定された50キロ級高張力鋼
の板厚16mm(記号S1)を表面黒皮のままで、第
2表に示すように溶接電流900A、アーク電圧
37V、溶接速度35cm/minの溶接条件で、下向す
み肉溶接を行つて調べた。 じん性の評価には、サイズ4.0φ(記号W1)と板
厚25mm(記号S2)で下向すみ肉溶接に用いたも
のと同種のワイヤおよび鋼板を使用し、第2表に
示すように溶接電流550A、アーク電圧30V、溶
接速度40cm/minの溶接条件で多層溶接した溶接
金属の衝撃値を調べた。試験片は、JIS Z3112に
規定の4号シヤルピー試験片で、切欠き位置は溶
接金属の中央部とした。 拡散性水素量は、第2表に示すように溶接電流
500A、アーク電圧33V、溶接速度30cm/minの溶
接条件で、JIS Z3116に規定のサブマージアーク
溶接部の水素量測定方法に準じたグリセリン置換
法により測定した。
(Industrial Application Field) The present invention relates to a fusion type flux for submerged arc welding, and more specifically for use in mild steel, 50 to 60 kg/mm class 2 high tensile strength steel used in construction of buildings, bridges, ships, etc. Mainly used for fillet and butt welding,
The present invention provides a melting type flux for submerged arc welding that has excellent slag removability, bead shape, and appearance, has a low amount of diffusible hydrogen, and has high toughness. (Prior Art) Generally, for fillet welding in architecture, bridges, and shipbuilding, the submerged arc welding method is used because it provides a good bead shape and appearance and is highly efficient. Submerged arc fluxes are classified into molten type and fired type, and fused type flux is less likely to absorb moisture than fired type.
It is suitable for fillet welding where it is important to obtain a good bead appearance without surface defects such as pits and pockmarks because there is little segregation of flux components and the appearance of the weld bead is excellent. Among the melting type fluxes, the
The fluxes whose main components are SiO 2 and MnO shown in Japanese Patent Publication No. 55-42671 have good slag removability and bead shape, which are important in downward fillet welding with small heat input. Under relatively large heat input or long leg welding conditions, it was inevitable that slag would be baked onto the bead surface and that the bead shape would be poor in uniformity and undercuts would easily occur. Furthermore, the flux composition of the SiO 2 --MnO system is an acid system, and it is essentially difficult to obtain high toughness of the weld metal. In addition, it has been developed as a flux containing a large amount of CaO and CaF, and has excellent toughness and hydrogen cracking resistance.
-81445, etc., but because it contains a large amount of CaO and CaF two components, the slag removability was not satisfactory. On the other hand, in order to improve the slag removability, it was proposed in JP-A-55-10356 to contain about 20% TiO2 component.
This method was proposed in Japanese Patent Application Laid-Open No. 14496/1983.
However, when a large amount of TiO 2 is contained, the slag density increases, and in downward fillet welding, the bead shape becomes a so-called medium-high bead in which only the center part is high, and it cannot be applied to fillet welding, where shape and appearance are important. Normally, in architecture, bridges, or shipbuilding, fillet joint welding and butt joint welding are included in one structure, and welding of joints with mild steel or 60 kg class high-strength steel is also performed, with emphasis on welding workability. Depending on the purpose, different fluxes are used in welded parts of the same structure, depending on the purpose. In other words, SiO 2 -MnO flux cannot be used in welded parts that require high toughness.
It is necessary to use a neutral or basic flux, and its use is unavoidable despite the fact that it has poor slag removability, poor bead shape, and poor appearance. Poor slag removability requires a process to remove slag adhering to the bead surface, and repairs to defects such as pits and cracks require additional welding, which reduces work efficiency. (Purpose of the Invention) The present invention is suitable for neutral or basic welding, which can provide high toughness of the welded part, but which has the problem of pitting, blowholes, and weld cracking due to the bead shape and high amount of diffusible hydrogen in fillet welding. Good slag removability in downward fillet welding with low flux and relatively low heat input, smooth concave bead shape, and low amount of diffusible hydrogen, so welding defects caused by hydrogen do not occur and the welding is good. To provide an unprecedented fusion type flux for submerged arc welding that has only the advantages of acid flux, which provides a bead appearance but does not have high toughness, and also has no deterioration in welding workability even in high heat input welding. With the goal. (Technical Background of the Invention) When viewed from the viewpoint of flux composition, in the conventional technology, welding workability and toughness can be said to be contradictory performances. Therefore, in trying to obtain a flux that satisfies both performances, we first considered that a certain amount of basic components are essential to ensure high toughness, and investigated the effects of each basic component to be included on welding workability. Ta. We also considered that stabilizing the arc is one of the conditions for obtaining good welding workability. In other words, by maintaining an unbroken arc state, the waves on the bead surface become finer, which in turn weakens the slag entanglement on the bead surface, which can be expected to improve slag removal properties and prevent the formation of pot marks and pits. Of course, it can be considered to be effective. From these points of view, various experiments were conducted to achieve this objective. An experimental example is shown below. As shown in Table 1, the welding workability of various prototype fluxes was determined by the size 4.8φ (symbol W2) of 2% Mn-containing wire specified in JIS Z3311 Type 4.
A 16 mm thick plate (symbol S1) of 50 kg class high-strength steel specified in Type 2 of JIS G3106 was welded at a welding current of 900 A and an arc voltage as shown in Table 2.
The investigation was conducted by performing downward fillet welding under the welding conditions of 37V and welding speed of 35cm/min. For evaluation of toughness, the same type of wire and steel plate as those used for downward fillet welding with a size of 4.0φ (symbol W1) and a plate thickness of 25 mm (symbol S2) were used, and welding was performed as shown in Table 2. The impact value of weld metal welded in multiple layers under welding conditions of 550 A current, 30 V arc voltage, and 40 cm/min welding speed was investigated. The test piece was a No. 4 Shapey test piece specified in JIS Z3112, and the notch was located at the center of the weld metal. The amount of diffusible hydrogen depends on the welding current as shown in Table 2.
Measurement was carried out under the welding conditions of 500 A, arc voltage 33 V, and welding speed 30 cm/min using the glycerin substitution method according to the method for measuring the amount of hydrogen in submerged arc welds specified in JIS Z3116.

【表】【table】

【表】 まず、塩基性成分CaO、MgOおよびBaOの必
要性と、さらにアルカリ金属化合物の影響につい
て、第3表に示す組成の溶融型フラツクス(粒
度:20×Dメツシユ)を試作し、性能を調査し
た。表中のフラツクスA1は、良好なじん性が得
られることを前提に本実験での基本フラツクスと
したもので、組成は塩基性成分として安価な原材
料であることから広く利用されるCaOを多く含有
し、SiO2が低く、少量のTiO2も加えた市販の60
Kg/mm2級鋼用フラツクスに近い。
[Table] First, we investigated the necessity of basic components CaO, MgO, and BaO, and the influence of alkali metal compounds by prototyping a molten flux (particle size: 20×D mesh) with the composition shown in Table 3, and testing its performance. investigated. Flux A1 in the table was used as the basic flux in this experiment on the premise that good toughness could be obtained, and its composition contains a large amount of CaO, which is widely used as a basic component and is an inexpensive raw material. , commercially available 60 with low SiO2 and also a small amount of TiO2
Kg/mm Close to flux for grade 2 steel.

【表】 なお、フラツクスの各成分値は、各元素の定量
値を化学的に安定な酸化物として換算した数値で
表わしている。Fについては、溶融型フラツクス
の場合、CaF2、MgF2、AlF3などF源の成分に
は関係なくFとしてのみ定量されるため、従来行
われているCaF2との表記はしていない。 結果は第4表に示す通りで、フラツクスA1の
成分を基準としてCaOを減少させ、その等量を
MgOまたはBaOに置換することにより、スラグ
剥離性が改善された。しかし、シヤルピー衝撃値
は劣化し、基本フラツクスと同等のじん性を得る
ためには、フラツクスA9のようにSiO2および
MnOなどの一部をさらにMgOまたはBaOへ置換
する必要がある。しかし、ビード外観が悪化し、
ポツクマークの発生も見られ、拡散性水素量も増
大した。一方、フラツクスA10のようにCaOを減
少させ、アルカリ金属化合物を添加することによ
り、アルカリ金属が使用したフラツクス原材料か
ら不可避的にごく少量含有したフラツクスA3に
比べ、スラグ剥離性、ビード外観、シヤルピー衝
撃値が大きく向上し、非常に有益な成分であるこ
とを見い出した。
[Table] The values of each component of flux are expressed as numerical values obtained by converting the quantitative values of each element as chemically stable oxides. Regarding F, in the case of molten flux, it is quantified only as F, regardless of the components of the F source such as CaF 2 , MgF 2 , AlF 3 , etc., so it is not expressed as CaF 2 as is conventionally done. The results are shown in Table 4. CaO was reduced based on the components of flux A1, and the equivalent amount was
Slag removability was improved by substituting MgO or BaO. However, the Shapey impact value deteriorates, and in order to obtain the same toughness as the basic flux, SiO 2 and
It is necessary to further replace part of MnO etc. with MgO or BaO. However, the bead appearance deteriorated and
Occurrence of pockmarks was also observed, and the amount of diffusible hydrogen also increased. On the other hand, by reducing CaO and adding an alkali metal compound like Flux A10, compared to Flux A3, which inevitably contains a very small amount of alkali metal from the flux raw material used, it has improved slag removability, bead appearance, and sharpie impact. It was found that the value was greatly improved and it is a very beneficial ingredient.

【表】 第5表は良好なじん性確保のため必要ではある
がスラグ剥離性、ビード形状には悪影響を及ぼす
成分として知られているFと、先の実験で添加す
ることにより良好な性能を示した、アルカリ金属
化合物との関係を調べた。
[Table] Table 5 shows that F, which is necessary to ensure good toughness but is known to have a negative effect on slag removability and bead shape, showed good performance when added in the previous experiment. In addition, the relationship with alkali metal compounds was investigated.

【表】【table】

【表】 その結果は第6表に示す通りで、アルカリ金属
化合物とFとの関係はきわめて重要であることを
見い出した。
[Table] The results are shown in Table 6, and it was found that the relationship between the alkali metal compound and F is extremely important.

【表】 すなわち、アルカリ金属化合物は、フラツクス
B2、B4のように、F量の10%未満ではその効果
がほとんど見られなかつた。また、フラツクス
B8のようにF量の50%にも含有すると、溶接ア
ーク長が長くなり過ぎ、フラツクスB4と同様に
ビード形状が中高となつた。しかし、アルカリ金
属がF量の30%程度であつても、フラツクスB1
のようにF量1.2%では、拡散性水素量が高く、
衝撃値も低値であり、フラツクスB9のようにF
量7.0%では下方すみ肉で良好な凹形ビードとな
らず、F量にも限界のあることがわかつた。な
お、アルカリ金属K、NaおよびLiは、酸化物、
炭酸塩あるいはフツ化物から得られ、別途実験の
結果では、K、Na、Liは等価の溶接性能を示し
た。 さらに、別途実験を行つた結果、SiO2が35%
程度以下ではスラグの粘性が低く、流動性が高く
なるため、すみ肉溶接において良好な凹形ビード
は得られなかつた。また、SiO2/MnO比が大き
いと、溶接金属の酸素量が高くなつて高じん性は
得られず、過小でもビード形状が凹となりにく
く、狭い範囲ではあるが、SiO2量、SiO2/MnO
比の適正な領域があることを合見い出した。 以上のように、CaOをMgOまたはBaOへ置換
し、さらにアルカリ金属化合物をFとの関係にお
いて添加し、SiO2、MnO等を制限することによ
り、スラグ剥離性、ビード形状等の溶接作業性に
優れ、高じん性、低水素化も図れる溶融型フラツ
クスを得たが、低融点金属化合物であるPbOおよ
びBi2O3の一方又は両方を適量添加することによ
つて、より一層優れたスラグ剥離性を得ることが
できた。 (発明の構成) 本発明は上記知見に基づくもので、その最大の
特徴とするところは、 フラツクス塩基度を中性系とし、良好なスラ
グ剥離性を得るため塩基性成分として必須とい
える程重要であつたCaO成分を極力低く制限し
たこと。 CaOに代わり高じん性を得るための成分とし
て、MgOあるいはBaOを多く含有させたこと。 アーク安定化成分で、スラグ剥離性およびじ
ん性の向上に極めて有益であつたアルカリ金属
化合物を、良好なスラグ剥離性およびビード形
状を得るには好ましくないが、溶融金属の酸素
量低減と低い拡散性水素量を得るためには効果
のあるFとの含有割合で規定したこと。 にあり、これら各成分の極めて限定された範囲で
の相乗効果によつて、溶接作業性、じん性共に優
れたフラツクスを得たことにある。 即ち本発明の要旨とするところは、重量%で、
SiO2:35%〜45%、CaO:10%以下、F:1.5〜
6%、Al2O3:4〜15%、TiO2:1〜8%、
MgOおよびBaOの1種又は2種の合計:10〜25
%を含有し(K2O、Na2OおよびLi2Oの1種もし
くは2種以上の合計)/F比0.1〜0.4、SiO2
MnO:55〜70%、SiO2/MnO比:1.4〜1.9であ
ることを特徴とする潜弧溶接用溶融型フラツク
ス。 及び、より一層優れたスラグ剥離性を得るた
め、さらにPbOまたはBi2O3の1種又は2種の合
計を0.005〜0.2%含有することを特徴とする潜弧
溶接用溶融型フラツクスにある。 以下に本発明の成分、成分量および成分量化の
限定理由について説明する。 SiO2:35〜45% SiO2はフラツクスの基本をなす成分であり、
良好なビード形成に必要とする適度なスラグの粘
性および流動性を保つため、35%を超えて含有す
ることが必要である。35%以下では、スラグの粘
性が低く、流動性が高くなることにより、すみ肉
溶接における良好な凹形ビードは得られず、特に
大脚長溶接条件では中高形状となる。また、45%
を超えると他必須成分の添加量を制約することに
なり、所望のフラツクス特性が得られない。 CaO:10%以下 CaOは強塩基性成分であり、従来のフラツクス
では高じん性を得るために多量含有させるが、本
発明においてはなるべく少なくし、10%以下とす
る必要がある。10%を超えると、スラグが溶接ビ
ード表面に強固に付着し、スラグの除去は著しく
困難となる。 F:1.5〜6% Fは、フツ化カルシウム、フツ化アルミニウ
ム、フツ化マグネシウム、フツ化鉛などの金属フ
ツ化物から添加し、溶接金属の酸素量を低下させ
高じん性を得るのに必要である。F含有量は、
1.5%未満ではこの効果が小さく、拡散性水素量
も多くなりピツト、ブローホール、溶接割れが発
生しやすくなる。また、6%を超えると、スラグ
粘性が低下し、アーク不安定にもなりビード形成
能は劣化し、CaO同様スラグ剥離性が悪化する。 Al2O3:4〜15% Al2O3は、4%以上であれば溶接金属の酸素量
を大きく増大させずにSiO2成分と同様スラグ粘
性を高め、光沢のある良好なすみ肉ビード形成に
寄与する。しかし15%を超えるとスラグ粘性が高
くなり過ぎ、ポツクマークが発生する。 TiO2:1〜8% TiO2は、溶接金属の結晶粒微細化によるじん
性向上効果を有するが、1%未満ではその効果が
明瞭でなく、8%を超えるとスラグ剥離性が劣化
し、すみ肉ビード形状も良好な凹形となりにく
い。 MgOおよびBaOの1種又は2種の合計:10〜
25% MgOおよびBaOは、強塩基性成分であるCaO
を含有せずに適度の塩基度を保ち、高じん性を確
保するのに必要な成分である。MgOおよびBaO
は、フラツクス物性、溶接性ともほぼ等価の性能
であることを実験により確認でき、単独または併
用した場合の合計が10%未満では、CaOに代わる
成分としてのじん性向上効果は見られず、25%を
超えるとスラグ粘性が高くなるためポツクマーク
が発生しやすく、また拡散性水素量が高くなりピ
ツト、ブローホール、溶接割れが発生する。 (K2O、Na2OおよびLi2Oの1種もしくは2種
以上の合計)/F比:0.1〜0.4 アルカリ金属化合物は、アーク安定化成分とし
て含有させ、スラグ剥離性、ビード形状および外
観の向上にきわめて効果があるほか、塩基性成分
としての機能を有しており、溶接作業性劣化のた
め多量には含有できないMgOおよびBaO成分の
代わりとして含有させることにより、じん性を向
上させる。この適正含有量は、アーク不安定化成
分であるFとの関連において規定される。アルカ
リ金属化合物がF含有量の10%未満ではアーク安
定化、じん性の向上は得られず、F含有量の40%
を超えると溶接作業性の劣化が見られ、特にすみ
肉溶接において凹形状が得にくくなる。したがつ
て、(K2O、Na2OおよびLi2Oの1種もしくは2
種以上の合計)/F比を0.1〜0.4とする必要があ
る。 SiO2+MnO:55〜70% 55%未満ではビード形成に必要とする適度なス
ラグ粘性は得られず、70%を超えても同様であ
り、しかも高じん性を得ることはできない。 SiO2/MnO比:1.4〜1.9 SiO2/MnO比が大となるほど溶接金属の酸素
量が増え、1.9を超えると高じん性が得られない。
また、その比が小となるほどスラグ粘性が低下し
てビード形状が悪化する。特に、1.4未満となる
と、拡散性水素量が増大しピツト、ブローホール
が発生する。したがつて、じん性と溶接作業性と
が良好な範囲としてSiO2/MnO比1.4〜1.9とする
必要がある。 PbOまたはBi2O3の1種又は2種の合計:0.005
〜0.2% より一層優れたスラグ剥離性を得るために必要
であるが、低融点金属の酸化物形態としての含有
量が0.2%を超えるとじん性の劣化が大きく、本
発明の目的を成さず、また、0.005%未満の含有
ではスラグ剥離性への効果がほとんど見られな
い。なお、PbOおよびBi2O3は、スラグ剥離性向
上効果、じん性劣化傾向とも同程度の作用を示し
た。よつてPbOまたはBi2O3の少なくともいずれ
か一方を0.005〜0.2%の範囲とすることが必要で
ある。 (実施例) 次に実施例により本発明の効果を述べる。 第7表に示す組成の溶融型フラツクス(粒度:
20×Dメツシユ)を製造し、先の実験例と同様の
試験を実施した。溶接作業性は第1表に示すよう
にJIS Z3311の4種に規定された2%Mn含有ワ
イヤのサイズ4.8φ(記号W2)と、JIS Z3106の2
種に規定された50キロ級高張力鋼の板厚16mm(記
号S1)を表面黒皮のままで、第2表に示すよう
に溶接電流900A、アーク電圧31V、溶接速度35
cm/minの溶接条件で、下向すみ肉溶接を行つて
調べた。 拡散性水素量は、第2表に示すように溶接電流
500A、アーク電圧33V、溶接速度30cm/minの溶
接条件で、JISZ3116に規定のサブマージアーク
溶接部の水素量測定方法に準じたグリセリン置換
法により測定した。 じん性の評価には、サイズ4.0φ(記号W1)と板
厚25mm(記号S2)で、下向すみ肉溶接に用いた
ものと同種のワイヤおよび鋼板を使用し、第2表
に示すように溶接電流550A、アーク電圧30V、
溶接速度40cm/minの溶接条件で多層溶接した溶
接金属の衝撃値を調べた。試験片は、JIS Z3112
に規定の4号シヤルピー試験片で、切欠き位置は
溶接金属の中央部とした。 これらの試験結果は第8表の通りで、比較フラ
ツクスにはそれぞれ欠点がある。すなわち、フラ
ツクスD1はSiO2およびMnOを主な構成成分と
し、MgOおよびBaOをほとんど含有しないため
じん性が非常に悪い。フラツクスD2はSiO2
MnO、CaO、MgOなどの本発明構成要件は満た
していても、F量に対するアルカリ金属化合物が
少ないため、スラグ剥離性、ビード外観、じん性
とも本発明フラツクスより劣る。フラツクスD3
は、CaOが多くMgOが低いためスラグ剥離性が
特に悪く、フラツクスD4のようにF量が構成要
件を超えた場合にもスラグ剥離性が劣り、しかも
ビード形状が中高で、ビード表面も粗い。また、
フラツクスD5はPbOおよびBi2O3が0.2%を超え
て含有した場合、CaOが10%を超えていてもスラ
グ剥離性は良好であるが、じん性が極めて悪い。
このように、本発明の構成要件を満たさない比較
フラツクスの性能は、満足できるものではない
が、本発明フラツクスは溶接作業性およびじん性
が優れ、拡散性水素量も低い。
[Table] In other words, alkali metal compounds are flux
As with B2 and B4, the effect was hardly seen when the F amount was less than 10%. Also, flux
When the F content was as high as 50% as in B8, the welding arc length became too long and the bead shape became medium to high, similar to flux B4. However, even if the alkali metal content is about 30% of the F content, flux B1
When the amount of F is 1.2%, the amount of diffusible hydrogen is high, as shown in
The impact value is also low, like Flux B9.
It was found that with an amount of 7.0%, a good concave bead could not be formed in the lower fillet, and that there was a limit to the amount of F. Note that the alkali metals K, Na and Li are oxides,
It can be obtained from carbonates or fluorides, and according to the results of separate experiments, K, Na, and Li showed equivalent welding performance. Furthermore, as a result of a separate experiment, SiO 2 was 35%
Below this level, the slag has low viscosity and high fluidity, making it impossible to obtain a good concave bead in fillet welding. In addition, if the SiO 2 /MnO ratio is large, the oxygen content of the weld metal becomes high and high toughness cannot be obtained, and even if it is too small, the bead shape is difficult to become concave . MnO
It was discovered that there is an appropriate range of ratios. As described above, by replacing CaO with MgO or BaO, adding an alkali metal compound in relation to F, and limiting SiO 2 , MnO, etc., welding workability such as slag removability and bead shape can be improved. Although we obtained a molten flux that has excellent properties, high toughness, and low hydrogenation, even more excellent slag removal can be achieved by adding an appropriate amount of one or both of PbO and Bi 2 O 3 , which are low melting point metal compounds. I was able to get sex. (Structure of the Invention) The present invention is based on the above knowledge, and its most important feature is that the basicity of the flux is neutral, which is so important that it can be said to be essential as a basic component in order to obtain good slag removability. The content of hot CaO is limited to as low as possible. Contains a large amount of MgO or BaO as an ingredient to obtain high toughness instead of CaO. Alkali metal compounds, which are arc stabilizing components and are extremely beneficial for improving slag removability and toughness, are unfavorable for obtaining good slag removability and bead shape, but they reduce the amount of oxygen in the molten metal and reduce diffusion. In order to obtain the desired amount of hydrogen, the effective content ratio of F should be specified. The synergistic effect of these components within a very limited range has resulted in a flux with excellent welding workability and toughness. That is, the gist of the present invention is that in weight %,
SiO2 : 35%~45%, CaO: 10% or less, F: 1.5~
6%, Al2O3 : 4-15%, TiO2 : 1-8%,
Total of one or two types of MgO and BaO: 10 to 25
% (total of one or more of K 2 O, Na 2 O and Li 2 O)/F ratio 0.1 to 0.4, SiO 2 +
A melt-type flux for submerged arc welding characterized by having MnO: 55-70% and SiO 2 /MnO ratio: 1.4-1.9. And, in order to obtain even better slag removability, there is provided a melt-type flux for submerged arc welding, which further contains 0.005 to 0.2% of one or both of PbO or Bi 2 O 3 in total. The components, component amounts, and reasons for limiting the component quantification of the present invention will be explained below. SiO 2 : 35-45% SiO 2 is a basic component of flux,
In order to maintain appropriate slag viscosity and fluidity necessary for good bead formation, it is necessary to contain more than 35%. If it is less than 35%, the slag has low viscosity and high fluidity, making it impossible to obtain a good concave bead in fillet welding, and especially under long leg welding conditions, a medium-height bead will result. Also, 45%
If it exceeds 100%, the amount of other essential components to be added will be restricted, making it impossible to obtain the desired flux characteristics. CaO: 10% or less CaO is a strong basic component, and in conventional fluxes it is contained in a large amount in order to obtain high toughness, but in the present invention it must be kept as low as possible, to 10% or less. If it exceeds 10%, slag will firmly adhere to the weld bead surface and removal of the slag will become extremely difficult. F: 1.5 to 6% F is added from metal fluorides such as calcium fluoride, aluminum fluoride, magnesium fluoride, and lead fluoride, and is necessary to reduce the amount of oxygen in the weld metal and obtain high toughness. be. The F content is
If it is less than 1.5%, this effect will be small and the amount of diffusible hydrogen will also increase, making pits, blowholes, and weld cracks more likely to occur. Moreover, when it exceeds 6%, slag viscosity decreases, arc becomes unstable, bead forming ability deteriorates, and slag removability deteriorates like CaO. Al 2 O 3 : 4 to 15% Al 2 O 3 increases the slag viscosity like the SiO 2 component without significantly increasing the oxygen content of the weld metal if it is 4% or more, creating a glossy and good fillet bead. Contribute to formation. However, if it exceeds 15%, the slag viscosity becomes too high and pockmarks occur. TiO 2 : 1-8% TiO 2 has the effect of improving the toughness by refining the grains of the weld metal, but if it is less than 1%, the effect is not clear, and if it exceeds 8%, the slag removability deteriorates, The fillet bead shape is also difficult to form a good concave shape. Total of one or two types of MgO and BaO: 10~
25% MgO and BaO are strongly basic components CaO
This is a necessary component to maintain appropriate basicity and ensure high toughness without containing MgO and BaO
It has been confirmed through experiments that CaO has almost equivalent performance in terms of flux physical properties and weldability, and if the total amount is less than 10% when used alone or in combination, no effect on improving toughness as a component replacing CaO is observed. %, the slag viscosity increases, which tends to cause pockmarks, and the amount of diffusible hydrogen increases, causing pits, blowholes, and weld cracks. (One type or the sum of two or more of K 2 O, Na 2 O and Li 2 O)/F ratio: 0.1 to 0.4 The alkali metal compound is included as an arc stabilizing component and improves slag removability, bead shape and appearance. In addition to being extremely effective in improving the welding properties, it also functions as a basic component, and by containing it as a substitute for the MgO and BaO components, which cannot be included in large amounts because of the deterioration of welding workability, it improves toughness. This appropriate content is defined in relation to F, which is an arc destabilizing component. If the alkali metal compound is less than 10% of the F content, arc stabilization and toughness improvement cannot be obtained, and if the F content is 40%
If it exceeds this value, welding workability deteriorates, and it becomes difficult to obtain a concave shape, especially in fillet welding. Therefore, (one or two of K 2 O, Na 2 O and Li 2 O)
It is necessary to set the ratio (total of species or more)/F to 0.1 to 0.4. SiO 2 +MnO: 55-70% If it is less than 55%, the appropriate slag viscosity necessary for bead formation cannot be obtained, and if it exceeds 70%, the same is true, and high toughness cannot be obtained. SiO 2 /MnO ratio: 1.4 to 1.9 As the SiO 2 /MnO ratio increases, the amount of oxygen in the weld metal increases, and if it exceeds 1.9, high toughness cannot be obtained.
Furthermore, as the ratio becomes smaller, the slag viscosity decreases and the bead shape deteriorates. In particular, when it is less than 1.4, the amount of diffusible hydrogen increases and pits and blowholes occur. Therefore, it is necessary to set the SiO 2 /MnO ratio in the range of 1.4 to 1.9 in order to obtain good toughness and welding workability. Total of one or both of PbO or Bi 2 O 3 : 0.005
~0.2% is necessary to obtain even better slag removability, but if the content of the low melting point metal in the form of oxide exceeds 0.2%, the toughness will deteriorate significantly and the purpose of the present invention cannot be achieved. Furthermore, if the content is less than 0.005%, there is almost no effect on slag removability. Note that PbO and Bi 2 O 3 showed similar effects on improving slag removability and on the tendency to deteriorate toughness. Therefore, it is necessary that at least one of PbO and Bi 2 O 3 be in the range of 0.005 to 0.2%. (Example) Next, the effects of the present invention will be described with reference to Examples. Melting flux with the composition shown in Table 7 (particle size:
A 20×D mesh was manufactured and the same test as in the previous experimental example was conducted. As shown in Table 1, welding workability is determined by the size 4.8φ (symbol W2) of 2% Mn-containing wire specified in JIS Z3311 type 4 and JIS Z3106 type 2.
A plate of 16 mm thick (symbol S1) of 50 kg class high tensile strength steel specified in the specifications was welded with a black crust on its surface, at a welding current of 900 A, an arc voltage of 31 V, and a welding speed of 35 as shown in Table 2.
The investigation was conducted by performing downward fillet welding under welding conditions of cm/min. The amount of diffusible hydrogen depends on the welding current as shown in Table 2.
Measurement was carried out under the welding conditions of 500 A, arc voltage 33 V, and welding speed 30 cm/min using the glycerin substitution method according to the method for measuring the amount of hydrogen in submerged arc welds specified in JIS Z3116. For the evaluation of toughness, we used the same type of wire and steel plate as those used for downward fillet welding, with a size of 4.0φ (symbol W1) and a plate thickness of 25 mm (symbol S2), as shown in Table 2. Welding current 550A, arc voltage 30V,
The impact value of weld metal welded in multiple layers at a welding speed of 40 cm/min was investigated. The test piece is JIS Z3112
A No. 4 Shapey test piece was used as specified in the following, and the notch position was at the center of the weld metal. The results of these tests are shown in Table 8, and each comparative flux has its own drawbacks. In other words, flux D1 has very poor toughness because its main components are SiO 2 and MnO and almost no MgO and BaO. Flux D2 is SiO 2 ,
Although it satisfies the constituent requirements of the present invention, such as MnO, CaO, and MgO, it is inferior to the present flux in terms of slag removability, bead appearance, and toughness because the alkali metal compound content is small relative to the amount of F. Flux D3
Flux has a high content of CaO and low content of MgO, so the slag removability is particularly poor, and even when the amount of F exceeds the constituent requirements like flux D4, the slag removability is poor, and the bead shape is medium to high and the bead surface is rough. Also,
Flux D5 has good slag removability even if it contains more than 0.2% of PbO and Bi 2 O 3 and more than 10% of CaO, but its toughness is extremely poor.
As described above, although the performance of the comparative flux that does not meet the requirements of the present invention is not satisfactory, the flux of the present invention has excellent welding workability and toughness, and has a low amount of diffusible hydrogen.

【表】【table】

【表】 (発明の効果) 本発明フラツクスは、従来フラツクスには見当
たらないスラグ剥離性、ビード形状等の溶接作業
性が優れ、しかも高じん性な溶接金属が得られ、
さらに拡散性水素量が低いことにより、軟鋼から
60キロ級高張力鋼までの鋼種に対して1種類のフ
ラツクスで溶接加工が可能となり、また、大脚長
すみ肉溶接においても容易にスラグ除去できるこ
とから、溶接作業能率の大幅な向上が図れ、工業
的価値は極めて大きい。
[Table] (Effects of the invention) The flux of the present invention has excellent welding workability such as slag removability and bead shape, which are not found in conventional fluxes, and also provides a highly tough weld metal.
Furthermore, due to the low amount of diffusible hydrogen, it is possible to
It is now possible to weld steel types up to 60 kg class high-strength steel with one type of flux, and slag can be easily removed even in fillet welding with long legs, greatly improving welding efficiency and making industrial use possible. The value is extremely large.

Claims (1)

【特許請求の範囲】 1 重量%で、SiO2:35〜45%、CaO:10%以
下、F:1.5〜6%、Al2O3:4〜15%、TiO2
1〜8%、MgOおよびBaOの1種又は2種の合
計:10〜25%を含有し、(K2O、Na2Oおよび
Li2Oの1種もしくは2種以上の合計)/F比:
0.1〜0.4、SiO2+MnO:55〜70%、SiO2/MnO
比:1.4〜1.9であることを特徴とする潜弧溶接用
溶融型フラツクス。 2 重量%で、SiO2:35〜45%、CaO:10%以
下、F:1.5〜6%、Al2O3:4〜15%、TiO2
1〜8%、MgOおよびBaOの1種又は2種の合
計:10〜25%かつPbOおよびBi2O3の1種又は2
種の合計:0.005〜0.2%を含有し、(K2O、Na2O
およびLi2Oの1種もしくは2種以上の合計)/
F比:0.1〜0.4、SiO2+MnO:55〜70%、SiO2
MnO比:1.4〜1.9であることを特徴とする潜弧溶
接用溶融型フラツクス。
[Claims] 1% by weight: SiO 2 : 35-45%, CaO: 10% or less, F: 1.5-6%, Al 2 O 3 : 4-15%, TiO 2 :
1 to 8%, a total of one or two of MgO and BaO: 10 to 25%, (K 2 O, Na 2 O and
(total of one or more types of Li 2 O)/F ratio:
0.1~0.4, SiO2 + MnO: 55~70%, SiO2 /MnO
A melting type flux for submerged arc welding characterized by a ratio: 1.4 to 1.9. 2% by weight, SiO2 : 35-45%, CaO: 10% or less, F: 1.5-6% , Al2O3 : 4-15%, TiO2 :
1 to 8%, total of one or two of MgO and BaO: 10 to 25% and one or two of PbO and Bi 2 O 3
Total seeds: Contains 0.005-0.2% ( K2O , Na2O
and the sum of one or more types of Li 2 O)/
F ratio: 0.1-0.4, SiO 2 +MnO: 55-70%, SiO 2 /
A melt-type flux for submerged arc welding characterized by an MnO ratio of 1.4 to 1.9.
JP4226384A 1984-03-06 1984-03-06 Fused flux for submerged arc welding Granted JPS60187495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226384A JPS60187495A (en) 1984-03-06 1984-03-06 Fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226384A JPS60187495A (en) 1984-03-06 1984-03-06 Fused flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JPS60187495A JPS60187495A (en) 1985-09-24
JPH059197B2 true JPH059197B2 (en) 1993-02-04

Family

ID=12631142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226384A Granted JPS60187495A (en) 1984-03-06 1984-03-06 Fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS60187495A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506303B2 (en) * 1992-12-23 1996-06-12 日本植生株式会社 Slope protection method
JP5922078B2 (en) * 2013-10-02 2016-05-24 Jfeスチール株式会社 Fused flux for submerged arc welding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141992A (en) * 1980-04-05 1981-11-05 Kobe Steel Ltd Fused flux for submerged arc welding
JPS5756196A (en) * 1980-09-18 1982-04-03 Nippon Steel Corp Fused flux for submerged arc welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141992A (en) * 1980-04-05 1981-11-05 Kobe Steel Ltd Fused flux for submerged arc welding
JPS5756196A (en) * 1980-09-18 1982-04-03 Nippon Steel Corp Fused flux for submerged arc welding

Also Published As

Publication number Publication date
JPS60187495A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
KR930009966B1 (en) Flux-cored wire for gas shilded arc welding
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2001300764A (en) Metal-cored wire for gas shielded arc welding
JPH0130597B2 (en)
JP3765771B2 (en) Stainless steel arc welding flux cored wire
JPH09277087A (en) Flux cored wire for arc welding
JP4949449B2 (en) Flux-cored wire for welding
JP2005279768A (en) Flux cored wire for welding and weld joint for steel structure
JP5824403B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2001205483A (en) Flux-containing wire for gas shield arc welding
JPH059197B2 (en)
KR102051960B1 (en) Tandem gas shielded arc welding wire
KR100347293B1 (en) Metal cored wire for high speed gas shield arc fillet welding with Twin-tandem welding method
JPH09262693A (en) Flux cored wire for arc welding
JPS5946716B2 (en) Narrow gap submerged arc welding method
KR100494008B1 (en) Metal cored wire for CO2 gas shielded arc welding
JP3512340B2 (en) Flux-cored wire for gas shielded arc welding
JPH01150497A (en) Low hydrogen covered electrode for fillet welding
JPS6313695A (en) Flux cored wire for welding stainless steel
JPS5937719B2 (en) Sintered flux for submerged arc welding
JPH089117B2 (en) Stainless steel coated arc welding rod
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP3463346B2 (en) Flux-cored wire for gas shielded arc welding
KR100340641B1 (en) Submerged arc welding flux containing TiO2 for Heat resistant steel
JPH09271982A (en) Ni-cr group covered electrode