JPH0591731A - Switching power supply device - Google Patents

Switching power supply device

Info

Publication number
JPH0591731A
JPH0591731A JP27317091A JP27317091A JPH0591731A JP H0591731 A JPH0591731 A JP H0591731A JP 27317091 A JP27317091 A JP 27317091A JP 27317091 A JP27317091 A JP 27317091A JP H0591731 A JPH0591731 A JP H0591731A
Authority
JP
Japan
Prior art keywords
switch element
input
power supply
supply device
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27317091A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kikuchi
芳彦 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP27317091A priority Critical patent/JPH0591731A/en
Publication of JPH0591731A publication Critical patent/JPH0591731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a switching power supply device which is compact and light, has a high power conversion efficiency, and can reduce cost at the time of mass-production by dividing and utilizing a control signal of a switch element of a DC/DC converter for a control signal of the switch element of a booster- type chopper circuit. CONSTITUTION:A switching power-supply device is constituted of a booster chopper and a DC/DC converter 4 and then an AC input is subjected to all-wave rectification by an all-wave rectifier 3 and then is input to a booster chopper part as a pulsating current. Then, after a control signal of a switch element 13 is synthesized by a signal of an input voltage monitoring circuit which is constituted of a resistor 9, a zener diode 10, and a transistor 11 and a NAND gate 8, a control signal to a switch element 6 of the booster chopper is supplied only before and after a zero-cross point of an input voltage waveform, thus enabling a power loss of the switch element 6 of the booster chopper to be small, a power conversion efficiency to be high, and at the same time an inductor 4 to be compact and light owing to drive at a same high frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単相交流電源を入力と
する高力率タイプのスイッチング電源装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high power factor type switching power supply device which inputs a single-phase AC power supply.

【0002】[0002]

【従来の技術】この10年来、各種装置の電源として小
形、軽量でかつ量産時コストダウンが期待できる利点が
あることからスイッチング電源装置が多用されている。
交流入力のスイッチング電源装置では、交流入力の整流
の後コンデンサインプット形平滑回路によりリップル電
流を低減しDC/DCコンバ−タの直流入力としている
のが一般的である。コンデンサインプット形平滑回路回
路の場合入力電流波形は図3(i)に示すように導通角
が狭く、ピ−ク電流値が大きい。この為入力電流の実効
値が大きくなり、交流入力率が約0.5ないし0.6と低
いのが欠点である。一方、入力電流の実効値が大きいの
でスイッチング電源装置までの電源線の配線を太くしな
ければならないとか、分電盤のスイッチング電源装置用
の開閉器の容量をアップする必要があるとかい(2)ろ
いろな問題を引きおこしている。特にスイッチング電源
装置を複数台まとめて比較的中・大容量電源装置として
使用する場合にこの問題は顕著である。
2. Description of the Related Art Since the last 10 years, switching power supply devices have been widely used as power supplies for various devices because they are small and lightweight and have the advantage of cost reduction during mass production.
In an AC input switching power supply device, a ripple current is generally reduced by a capacitor input type smoothing circuit after rectification of an AC input, and is used as a DC input of a DC / DC converter. In the case of the capacitor input type smoothing circuit circuit, the input current waveform has a narrow conduction angle and a large peak current value as shown in FIG. For this reason, the effective value of the input current becomes large, and the AC input ratio is low at about 0.5 to 0.6, which is a drawback. On the other hand, since the effective value of the input current is large, it is necessary to thicken the wiring of the power supply line to the switching power supply, or to increase the capacity of the switch for the switching power supply of the distribution board (2 It causes various problems. This problem is particularly noticeable when a plurality of switching power supply devices are used together as a relatively medium / large capacity power supply device.

【0003】この改善対策として、図4に示すように全
波整流器3と平滑用キャパシタ7との間にインダクタ4
を挿入することが通常行われている。この改善策の場
合、入力電流波形は、図3(j)に示すようになりピ−
ク電流値はコンデンサインプット形平滑回路のものより
小さくなり、交流入力力率も約0.7ないし0.8程度に
改善可能であるが、インダクタは寸法が大きく、重量が
重く、コストが高いのでスイッチング電源装置の大きな
利点を減殺する。
As a countermeasure against this, as shown in FIG. 4, an inductor 4 is provided between the full-wave rectifier 3 and the smoothing capacitor 7.
It is usually done to insert. In the case of this improvement measure, the input current waveform becomes as shown in FIG.
The current value is smaller than that of the capacitor input type smoothing circuit, and the AC input power factor can be improved to about 0.7 to 0.8, but the inductor is large in size, heavy and costly. It diminishes the major advantages of switching power supplies.

【0004】そこで近年交流入力力率改善を目的とし
て、図5に示すアクティブフィルタを用いることが多く
なっている。アクティブフィルタを使用した場合の入力
電流波形は図3(k)に示すようにほぼ正弦波となり交
流入力力率も1に近い値となる。
Therefore, in recent years, the active filter shown in FIG. 5 is often used for the purpose of improving the AC input power factor. When the active filter is used, the input current waveform is almost a sine wave as shown in FIG. 3 (k), and the AC input power factor is a value close to 1.

【0005】図5は、アクティブフィルタつきスイッチ
ング電源装置の一例でありその動作を説明する。単相交
流入力は、全波整流器3で全波整流されアクティブフィ
ルタの入力となる。アクティブフィルタの主回路はイン
ダクタ4と、スイッチ素子6とダイオ−ド5と平滑用キ
ャパシタ7で構成される昇圧形チョッパ回路で構成され
ている。変流器21で入力電流i1を検出し、整流器2
2で全波整流した後抵抗器23で電圧に変換する、一方
整流器3の出力を抵抗器32と33で分圧した電圧を得
る。次に抵抗器23の電圧と抵抗器32と33で分圧し
た電圧とを増幅器24によりその差分を増幅する。一
方、増幅器26で平滑用キャパシタ7の電圧を抵抗器3
0と31で分圧した後、基準電圧源29との差分を増幅
する。増幅器24と26の出力は乗算器25で乗算され
さらに比較器28で三角波と比較されPWM(パルス幅
変調)信号に変換され、駆動回路27で増幅等(3)を
した後スイッチ素子6を駆動する。
FIG. 5 shows an example of a switching power supply device with an active filter, and its operation will be described. The single-phase AC input is full-wave rectified by the full-wave rectifier 3 and becomes the input of the active filter. The main circuit of the active filter is composed of an inductor 4, a switch element 6, a diode 5 and a smoothing capacitor 7, which is a step-up chopper circuit. The current transformer 21 detects the input current i1 and the rectifier 2
After full-wave rectification in 2, the voltage is converted into a voltage by the resistor 23, while the output of the rectifier 3 is divided by the resistors 32 and 33 to obtain a voltage. Next, the difference between the voltage of the resistor 23 and the voltage divided by the resistors 32 and 33 is amplified by the amplifier 24. On the other hand, the amplifier 26 supplies the voltage of the smoothing capacitor 7 to the resistor 3
After the voltage is divided by 0 and 31, the difference from the reference voltage source 29 is amplified. The outputs of the amplifiers 24 and 26 are multiplied by a multiplier 25, further compared with a triangular wave by a comparator 28, converted into a PWM (pulse width modulation) signal, amplified by a drive circuit 27 (3), and then the switch element 6 is driven. To do.

【0006】このように、入力電圧比較、出力電圧比較
等の帰還制御回路の働きにより平滑用キャパシタ7の両
端の電圧は定電圧化され、交流入力電流波形i1は、交
流電圧波形Viと相似となるように制御される故、交流
入力電流波形はほぼ正弦波となり交流入力力率を1に近
づけることができる。図6にアクティブフィルタ動作時
の各部波形を示す。
As described above, the voltage across the smoothing capacitor 7 is made constant by the operation of the feedback control circuit for input voltage comparison, output voltage comparison, etc., and the AC input current waveform i1 is similar to the AC voltage waveform Vi. Therefore, the AC input current waveform becomes a sine wave, and the AC input power factor can be brought close to 1. FIG. 6 shows waveforms at various parts during active filter operation.

【0007】[0007]

【従来技術の問題点】このように従来のアクティブフィ
ルタ回路は、入力電流波形を入力電圧波形とほぼ相似と
することができるが、スイッチ素子6に流れる電流は大
きく、従ってスイッチ素子6の電力損失も大きくなり必
然的にスイッチ素子6に放熱フィンが必要となり、それ
らに起因してスイッチング電源装置の電力変換効率の低
下、外形寸法および重量の増大等をひきおこし、一方ア
クティブフィルタの制御回路も複雑であり総合的観点か
らみてスイッチング電源装置の価格が高くなるという重
要な問題をも派生していた。
As described above, in the conventional active filter circuit, the input current waveform can be made substantially similar to the input voltage waveform, but the current flowing through the switch element 6 is large and therefore the power loss of the switch element 6 is large. Inevitably, a heat radiation fin is required for the switch element 6, which causes a reduction in power conversion efficiency of the switching power supply device, an increase in external dimensions and weight, and a complicated control circuit for the active filter. There was also an important problem that the price of the switching power supply increased from a comprehensive viewpoint.

【0008】[0008]

【発明の目的】従来のアクティブフィルタで交流入力力
率を1に近い値に近づけるという目的を踏襲し、さらに
上記従来のアクティブフィルタに内存していた諸問題を
解決して、小形、軽量、電力変換効率が高く、且つ量産
時コストダウンが可能というスイッチング電源装置の利
点をあわせもつ、改良されたアクティブフィルタ内蔵の
スイッチング電源装置を提供することにある。
OBJECTS OF THE INVENTION Following the purpose of making an AC input power factor close to a value of 1 in a conventional active filter, and solving various problems inherent in the above-mentioned conventional active filter, a small size, a light weight, and a low power consumption are obtained. An object of the present invention is to provide an improved switching power supply device with a built-in active filter, which has the advantages of a switching power supply device with high conversion efficiency and cost reduction during mass production.

【0009】[0009]

【発明の実施例】図1に本発明によるスイッチング電源
装置の一実施例を示す。図1において、図5で説明したも
のと同じものは同じ符号をつけている。図1は、昇圧チ
ョッパ(アクティブフィルタの主要部分、以下同じ)と
DC/DCコンバ−タ(4)で構成されている。交流入
力は、全波整流器3で全波整流され脈流直流となり、昇
圧チョッパ部に入力される。DC/DCコンバ−タのス
イッチ素子13の制御信号[図2(C)]は、抵抗9、
ツェナ−ダイオ−ド10、トランジスタ11で構成され
る入力電圧監視回路の信号[図2(b)]と、ナンドゲ
−ト8で合成され[図2(d)]、合成後、昇圧チョッ
パのスイッチ素子6への制御信号は、入力電圧波形のゼ
ロクロス点の前後だけ供給されることになる。
FIG. 1 shows an embodiment of a switching power supply device according to the present invention. In FIG. 1, the same components as those described in FIG. 5 are designated by the same reference numerals. FIG. 1 is composed of a step-up chopper (main part of an active filter, the same applies hereinafter) and a DC / DC converter (4). The AC input is full-wave rectified by the full-wave rectifier 3 to become pulsating direct current, which is input to the step-up chopper section. The control signal [Fig. 2 (C)] of the switch element 13 of the DC / DC converter is the resistance 9,
The signal of the input voltage monitoring circuit composed of the Zener diode 10 and the transistor 11 [Fig. 2 (b)] and the signal of the NAND gate 8 [Fig. 2 (d)] are synthesized [Fig. 2 (d)]. The control signal to the element 6 is supplied only before and after the zero cross point of the input voltage waveform.

【0010】スイッチ素子6は、入力電圧のゼロクロス
点の前後だけ駆動されるためインダクタ4の電流は図2
(e)に示すように入力電圧のゼロクロス点の前後で流
れ、しかもスイッチ素子6のオン期間も充分長いので交
流入力力率を改善するのに必要充分な大きさの電源とな
り交流入力力率改善の目的を達成する。一方、上記の如
く入力電圧のピ−ク値前後では図2(f)に示すごとく
スイッチ素子6は駆動されないので、従来のアクティブ
フィルタのスイッチ素子6に流れる電流図6(P)と本
発明による昇圧チョッパのスイッチ素子6に流れる電流
図2(f)を比較すれば判る通り、昇圧チョッパのスイ
ッチ素子6に流れる電流のピ−ク値は低く、且つバルス
数は少ない。
Since the switch element 6 is driven only before and after the zero cross point of the input voltage, the current of the inductor 4 is as shown in FIG.
As shown in (e), the input voltage flows before and after the zero-cross point, and since the ON period of the switch element 6 is sufficiently long, it becomes a power supply of a magnitude sufficient for improving the AC input power factor, and the AC input power factor is improved. Achieve the purpose of. On the other hand, as described above, the switch element 6 is not driven around the peak value of the input voltage as shown in FIG. 2 (f), so that the current flowing through the switch element 6 of the conventional active filter is shown in FIG. 6 (P) and the present invention. As can be seen by comparing FIG. 2 (f), the current flowing through the switch element 6 of the boost chopper, the peak value of the current flowing through the switch element 6 of the boost chopper is low, and the pulse number is small.

【0011】この結果、昇圧チョッパのスイッチ素子6
の電力損失は小さく、電力変換効率は高くなる。また、
昇圧チョッパのスイッチ素子6は後段のDC/DCコン
バ−タの制御信号を分割利用しているので、DC/DC
コンバ−タと同一の高周波数で駆動されるのでインダク
タ4は小形、軽量となる利点がある。さらに、昇圧チョ
ッパの制御回路(図1に包含)は、従来のアクティブフ
ィルタの制御回路(図5に包含)に比較して、駆動回路
27、変流器21、全波整流器22を削除でき、図1に
示すように簡単な回路構成となり、小形、軽量、コスト
ダウンそしてさらに信頼性の向上に多大に寄与するもの
である。
As a result, the switch element 6 of the boost chopper
The power loss is small and the power conversion efficiency is high. Also,
Since the switch element 6 of the step-up chopper divides and uses the control signal of the DC / DC converter in the subsequent stage, the DC / DC converter
Since the inductor 4 is driven at the same high frequency as the converter, there is an advantage that the inductor 4 is small and lightweight. Furthermore, the control circuit of the step-up chopper (included in FIG. 1) can eliminate the drive circuit 27, the current transformer 21, and the full-wave rectifier 22 as compared with the control circuit of the conventional active filter (included in FIG. 5). As shown in FIG. 1, it has a simple circuit configuration, which greatly contributes to small size, light weight, cost reduction and further improvement in reliability.

【0012】[0012]

【発明の効果】(5)本発明によれば、簡単な半導体回
路と小さなインダクタを付加するだけで、高入力力率
で、電力変換効率の高い、量産時コストダウンの可能性
があり且つ高信頼度のスイッチング電源装置を提供でき
る。産業界で多用されている交流入力の通信機用電源、
コンピュ−タ周辺・本体装置用電源等に本発明を応用す
れば省エネルギ−効果を含めて大きな成果をあげること
ができる。
(5) According to the present invention, by simply adding a simple semiconductor circuit and a small inductor, there is a high input power factor, high power conversion efficiency, and a high possibility of cost reduction during mass production. A reliable switching power supply device can be provided. AC input power supply, which is widely used in industry
If the present invention is applied to a power source for computer peripherals, main body devices, etc., great results including energy saving effects can be achieved.

【0013】ここで、発明の効果の一立証手段として従
来例と本発明の場合の主スイッチ素子6に係る損失値を
比較する。 1.従来例 図5及び図6が該当。スイッチ素子6の損失を、スイッ
チ素子の漏れ電流による損失は小さいので無視し、導通
損失とスイッチング損失の加算値とする。ここで導通損
失Wcondは、
Here, as a means for demonstrating the effect of the present invention, the loss values of the main switch element 6 in the conventional example and in the case of the present invention will be compared. 1. Conventional example Applies to FIGS. 5 and 6. The loss of the switch element 6 is neglected because the loss due to the leakage current of the switch element is small, and is set as the addition value of the conduction loss and the switching loss. Here, the conduction loss Wcond is

【数1】 次に、スイッチング損失は、スイッチング損失WS=タ
−ンオン時損失WON+タ−ンオフ時損失WOffで表され
る。タ−ンオン時の損失WONは、
[Equation 1] Next, the switching loss is represented by switching loss WS = turn-on loss WON + turn-off loss WOff. The loss WON at turn-on is

【数2】 ここで、 CO:Vds=VO時のスイッチ素子の内部容量 タ−ンオフ時の損失Woffは、[Equation 2] Here, the loss Woff at the time of turning off the internal capacitance of the switch element when CO: Vds = VO is

【数3】 ここで、 l:配車等の寄生インダクタンス 2.本発明 図1および図2が該当。(6)スイッチ素子6の損失
を、スイッチ素子の漏れ電流による損失は小さいので無
視し、導通損失とスイッチング損失の加算値とする。こ
こで導通損失Wcondは、
[Equation 3] Here, 1: Parasitic inductance such as vehicle allocation 2. The present invention applies to FIGS. 1 and 2. (6) The loss of the switch element 6 is neglected because the loss due to the leakage current of the switch element is small, and is set as the addition value of the conduction loss and the switching loss. Here, the conduction loss Wcond is

【数4】 ここで、 n:商用周波数の1/4サイクル中のスイッ
チング回数 n<m D:デュ−ティサイクル(一定) 次に、スイッチング損失は、 スイッチング損失 WS=タ−ンオン時損失WON+タ−
ンオフ時損失Woffで表される。 タ−ンオン時損失Wonは、
[Equation 4] Here, n is the number of times of switching in 1/4 cycle of the commercial frequency n <m D: Duty cycle (constant) Next, the switching loss is: switching loss WS = loss at turn-on WON + target
It is represented by a loss Woff during off-state. Turn-on loss Won is

【数5】 タ−ンオフ時損失Woffは、[Equation 5] The turn-off loss Woff is

【数6】 [Equation 6]

【0014】一計算例として、出力容量500Wのスイ
ッチング電源について、[数式1]…[数式6]に或る
数値を算入して、従来例と本発明について、具体的に損
失値を計算し、比較してみる。算入した数値例の主たる
ものは、 fAC :50Hz fS :200KHZ Vi :100VAC Ii :5A (7) 上記例に示す如く本発明による損失は、従来例の損失の
約28%に軽減されている。これはスイッチング電源が
情報処理装置に使用される場合、ひとたび運転を開始す
ると数年のオ−ダ−で連続運転されるのでその間におけ
る使用電力の節減効果は実に多大といえる。
As a calculation example, for a switching power supply with an output capacity of 500 W, a certain numerical value is included in [Equation 1] ... [Equation 6], and the loss value is specifically calculated for the conventional example and the present invention. Let's compare. The main examples of the numerical values included are: fAC: 50Hz fS: 200KHz Vi: 100VAC Ii: 5A (7) As shown in the above example, the loss according to the present invention is reduced to about 28% of the loss in the conventional example. This means that when the switching power supply is used in an information processing apparatus, once it starts to operate, it is continuously operated for several years, so that the power saving effect during that time is quite significant.

【0015】[0015]

【他の実施例】図1において、単相交流と単相全波整流
器に代わって、三相交流と三相全波整流器を使用した昇
圧チョッパ回路とDC/DCコンバ−タによって構成さ
れるスイッチング電源装置。
[Other Embodiments] In FIG. 1, instead of the single-phase AC and single-phase full-wave rectifiers, switching composed of a step-up chopper circuit and a DC / DC converter using three-phase AC and three-phase full-wave rectifiers. Power supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にもとづくスイッチング電源装置の
一実施例
FIG. 1 is an embodiment of a switching power supply device according to the present invention.

【図2】 本発明にもとずくスイッチング電源装置の
各部波形
FIG. 2 is a waveform of each part of the switching power supply device according to the present invention.

【図3】 各種交流入力電流波形図[Figure 3] Various AC input current waveform diagrams

【図4】 交流入力力率改善への一実施例[Fig. 4] Example of improving AC input power factor

【図5】 従来のスイッチング電源装置の一例FIG. 5 shows an example of a conventional switching power supply device.

【図6】 従来のスイッチング電源装置の一例の各部
波形(アクティブフィルタ動作時の各部波形)
FIG. 6 is a waveform of each part of an example of a conventional switching power supply device (waveform of each part during active filter operation)

【符号の説明】[Explanation of symbols]

(8)1…単相交流電源 2…キャパシタ 3…単相全波整流器 4…インダクタ 5…ダイオ−ド 6…アクティブフィルタ、昇圧チョッパスイッチ素子 7…平滑用キャパシタ 8…ナンドゲ−ト回路 9…抵抗器 10…ツェナ−ダイオ−ド 11…トランジスタ 12…トランス 13…DC/DCコンバ−タのスイッチ素子 14…DC/DCコンバ−タ駆動回路 15…DC/DCコンバ−タ制御回路 16…整流用ダイオ−ド 17…ダイオ−ド 18…インダクタ 19…平滑用キャパシタ 20…スイッチ素子6の制御回路 21…変流器 22…単相全波整流器 23…抵抗器 24…増幅器 25…乗算器 26…増幅器 27…アクティブフィルタ駆動回路 28…増幅器 (9)29…基準電圧源 30…抵抗器 31…抵抗器 32…抵抗器 33…抵抗器 (8) 1 ... Single-phase AC power supply 2 ... Capacitor 3 ... Single-phase full-wave rectifier 4 ... Inductor 5 ... Diode 6 ... Active filter, step-up chopper switch element 7 ... Smoothing capacitor 8 ... Nand gate circuit 9 ... Resistance Container 10 Zener diode 11 Transistor 12 Transformer 13 Switch element of DC / DC converter 14 DC / DC converter drive circuit 15 DC / DC converter control circuit 16 Rectifying diode -Dode 17 ... Diode 18 ... Inductor 19 ... Smoothing capacitor 20 ... Control circuit of switch element 21 ... Current transformer 22 ... Single-phase full-wave rectifier 23 ... Resistor 24 ... Amplifier 25 ... Multiplier 26 ... Amplifier 27 ... Active filter drive circuit 28 ... Amplifier (9) 29 ... Reference voltage source 30 ... Resistor 31 ... Resistor 32 ... Resistor 33 ... Resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単相交流の全波整流器とその全波整流器
出力に接続された昇圧形チョッパ回路とその昇圧形チョ
ッパ回路に接続されたDC/DCコンバ−タで構成さ
れ、前記昇圧形チョッパ回路のスイッチ素子の制御信号
は前記DC/DCコンバ−タのスイッチ素子の制御信号
を分割利用することを特徴とするスイッチング電源装
置。
1. A step-up chopper comprising a single-phase AC full-wave rectifier, a step-up chopper circuit connected to the output of the full-wave rectifier, and a DC / DC converter connected to the step-up chopper circuit. The switching power supply device is characterized in that the control signal of the switch element of the circuit uses the control signal of the switch element of the DC / DC converter in a divided manner.
【請求項2】 請求項1において、昇圧形チョッパ回路
のスイッチ素子は、単相交流のゼロクロス点前後の一定
期間だけ駆動されることを特徴とするスイッチング電源
装置。
2. The switching power supply device according to claim 1, wherein the switch element of the step-up chopper circuit is driven only for a certain period before and after the zero-cross point of the single-phase alternating current.
JP27317091A 1991-09-25 1991-09-25 Switching power supply device Pending JPH0591731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27317091A JPH0591731A (en) 1991-09-25 1991-09-25 Switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27317091A JPH0591731A (en) 1991-09-25 1991-09-25 Switching power supply device

Publications (1)

Publication Number Publication Date
JPH0591731A true JPH0591731A (en) 1993-04-09

Family

ID=17524077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27317091A Pending JPH0591731A (en) 1991-09-25 1991-09-25 Switching power supply device

Country Status (1)

Country Link
JP (1) JPH0591731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715966A (en) * 1993-06-25 1995-01-17 Hitachi Ltd Electric motor drive device
WO1996008073A1 (en) * 1994-09-05 1996-03-14 Tdk Corporation Power supply having improved power factor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715966A (en) * 1993-06-25 1995-01-17 Hitachi Ltd Electric motor drive device
WO1996008073A1 (en) * 1994-09-05 1996-03-14 Tdk Corporation Power supply having improved power factor
US5856917A (en) * 1994-09-05 1999-01-05 Tdk Corporation Electric power device with improved power factor

Similar Documents

Publication Publication Date Title
US8378647B2 (en) Power supply unit and information processor
Lai et al. Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode
JP5543975B2 (en) One-cycle control power factor correction method
US6738274B2 (en) Power supply with integrated bridge and boost circuit
de Souza et al. High power factor rectifier with reduced conduction and commutation losses
US20100259240A1 (en) Bridgeless PFC converter
US20060132104A1 (en) Digital control of bridgeless power factor correction circuit
US20190199205A1 (en) Quasi-resonant buck-boost converter with voltage shifter control
TWI565204B (en) Dynamic detection regulator boost power factor correction control device
JPH07245955A (en) Regulated power supply with improved power factor and uninterruptible power supply
US7834597B1 (en) System and method for AC voltage regulation
JPH03226276A (en) Power supply
JPH1198685A (en) Game machine power supply circuit
JPH0591731A (en) Switching power supply device
CN111541386A (en) High PF (positive-frequency) fixed switching frequency boost converter of parallel active filter
JP3038304B2 (en) Switching power supply
JP2609330B2 (en) Power supply
US6697269B2 (en) Single-stage converter compensating power factor
JP2646824B2 (en) Power supply
JPH04368471A (en) Power source
JP3228828B2 (en) Power factor improving type converter
Chen et al. Comparison of 1.4-kW power factor correction converters
JP2637646B2 (en) DC power supply circuit
JP3019717B2 (en) Switching power supply
JP2547953Y2 (en) converter